Unsupervised Learning

CS4000: Harnessing AI
October 16, 2019
Chris Darken
Outline

• The data required for supervised learning is not always available
• In some of these situations, it is possible to solve the problem anyway
• These techniques are called “unsupervised learning”
• They often depend upon using the same algorithms as supervised learning, but applied in a clever way
• We will discuss two of the most significant algorithms in this family, anomaly detection and deep reinforcement learning
• We will discuss what these algorithms do and the main principle that makes them work
Black Box Supervised Learning

Before Learning

During Learning

After Learning

input (list of numbers)

output (list of numbers)

desired output (one followed by zero)

improved output
Part 1: Anomaly Detection
Example Task: Gearbox Failure Prediction

• Given a characterization of the vibration of a helo gearbox, determine whether the gearbox is healthy or about to fail
• Despite the smoke in my cartoon, there was no easy way to determine which were about to fail!

Healthy gearbox

Failing gearbox
Supervised Learning Approach: Gearbox Classification

Gather a large amount of healthy and failing data

Train neural net on both

Neural net will now classify data from unknown gearboxes

• Roadblock
 • We’re only sure that a gearbox is failing when a helo fails, and more helo failures is the last thing we want
The Unsupervised Approach: Anomaly Detection

• Given a set of data records from **healthy gearboxes only**, determine how similar a new record is

• If it is similar, we consider it normal, otherwise anomalous

• The anomalous records are reported to a human user who makes the determination as to whether “anomalous” means “failing”

• This type of system is called an **anomaly detector**

• The trick here is to find a good measure of similarity. The simplest ones are often not the best.

• Neural autoencoders are one of the most successful measures.
One Anomaly Detector: Neural Autoencoder

• Input the healthy vibration data into a neural net, and train it to output the *exact same data that was input*
• Neural net is limited so as to make learning the identity function impossible
• After training, the neural net does better on records like the ones it trained on
• More error in the neural net’s prediction indicates that new data is different from the training data, i.e. is anomalous
Part 2: Reinforcement Learning
Example Action Selection Task: Peg Jump Puzzle

• State
 • Each board position is a state.

• Action
 • Jump one peg over another and remove the jumped peg

• Reward
 • Maximize the long term discounted reward
 • Maximum reward of 1 for achieving the goal state
 • “Reward” of -1 for getting stuck
 • Zero reward otherwise (almost all the time)
 • We reduce the reward by a fraction f each move to encourage quick solutions!
Supervised Learning Approach: Behavioral Cloning

• **Procedure**
 - Let an expert play the game.
 - Record the states and the actions the expert chooses in those states.
 - Use supervised learning to create a neural net that predicts actions from states.
 - Then use the neural net to choose actions, imitating the expert’s behavior.

• **Roadblock**
 - The neural net isn’t a perfect copy of the expert’s behavior.
 - So there will be differences in action choice from the expert.
 - This will eventually result in states which an expert would never encounter.
 - The neural net’s choices on such states will generally be very poor.
Neural ("Deep") Reinforcement Learning (1/4)

- Key Idea
 - Use a neural net to represent the long term reward function: $Q(a,s)$ where a is an action and s is the current state.
 - Such a function would allow easy determination of the best action in any state

<table>
<thead>
<tr>
<th>Action</th>
<th>Long-term Reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>$Q(a_1,s) = 0.8$</td>
</tr>
<tr>
<td>a_2</td>
<td>$Q(a_2,s) = -0.9$</td>
</tr>
<tr>
<td>a_3</td>
<td>$Q(a_3,s) = -0.9$</td>
</tr>
<tr>
<td>a_4</td>
<td>$Q(a_4,s) = -0.8$</td>
</tr>
</tbody>
</table>
Neural ("Deep") Reinforcement Learning (2/4)

• But how can the neural net be trained?
• Assume that in state s1 action a1 is taken, with immediate reward r1 and ending up in state s2
• In state s2, we have a choice of either action a2 or a3
• What do we know about Q(a1,s1)?
Neural (“Deep”) Reinforcement Learning (3/4)

- $Q(a_1,s_1)$ is the long term reward we get from taking action a_1 in state s_1
- But the long term reward is just the immediate reward, r_1, plus...
- The reward we get later, which will be the discounted long term reward from taking a_2 or a_3, whichever is better
- I.e. $Q(a_1,s_1)$ ought to be $r_1 + f \max_{a} Q(a,s_2)$
Neural (‘‘Deep’’) Reinforcement Learning (4/4)

• Since we know what $Q(a_1,s_1)$ should be, we can train the neural net to produce it
• Then we can use the corrected neural net to choose our next action
• As we take actions, see new states, and get rewards, we continue to train the neural net, which will become more and more accurate
• And that’s the principle that makes neural reinforcement learning work!

$$r_1 + f \max_{a} Q(a,s_2)$$
Example of the Algorithm in Action

- https://youtu.be/aX9S6MGh90Y
Superhuman Reinforcement Learners

- **DQN (2015)**
 - Superhuman play in dozens of Atari 2600 games (subhuman in others)
 - Insightful play in Breakout surprised its developers

- **Alpha Go (2016)**
 - Beat Lee Sedol (second in international titles at the time) four games to one.
 - Move 37 of the second game is an example of insightful AI play

- **Alpha Zero (2017-18)**
 - Single system that can learn chess, Shogi, or Go
 - Learns entirely from self-play

- **Alpha Star (ongoing)**
 - Beat a strong professional StarCraft player (Grzegorz “MaNa" Komincz) 5-0

These are all deep reinforcement learners built by Alphabet’s (formerly Google’s) DeepMind.
Fitness for Military Applications

• Input/output matches many military tasks
• Flexibility (e.g. multiple video games/chess, Shogi, or Go)
• Superhuman performance
• Tactics that surprise all human experts
Issues

• Creating the state representation can be difficult
 • Recurrency (to try to capture how the state depends on older information automatically) and cross training on related tasks (including prediction)

• Reliability
 • There are dozens of algorithm variants and each has dozens of consequential parameters whose values must be set (typically by human trail and error)

• Speed
 • One run can take hours or days on a fast computer, and many runs may be required to achieve success
Questions?