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A hierarchy of AI machines by their learning power shows their limits and 
the possibility that general intelligence might not be computational 
 
 
 
FIGURE IDEA: Time line showing boom and bust cycles in AI. The line shows the relative interest 
in supporting research in AI. The two busts (“AI winters”) were the result of disillusionment about 
whether AI researchers could deliver what they promised in the first two booms. The third boom is 
different because AI is now supported by a large, thriving industry. But the boom depends on 
deep learning technologies. Artificial general intelligence, the next major goal, is beyond the 
reach of machine learning. 

 

	
	

	

The	goal	of	artificial	intelligence	(AI)	is	to	construct	machines	that	are	at	least	as	
smart	as	humans	at	their	tasks.	AI	has	been	successful	with	machines	that	learn	how	
to	recognize	speech,	find	new	classes	of	stars	in	sky	surveys,	win	grandmaster	chess	
matches,	recognize	faces,	label	images,	diagnose	diseases,	hail	taxis,	drive	cars,	
navigate	around	obstacles,	and	much	more.	Yet	none	of	these	machines	is	the	
slightest	bit	intelligent.	How	can	they	do	intelligent	things	without	being	intelligent?	
Can	these	machines	be	trusted	when	presented	with	new	data	they	never	saw	
before?	Businesses	and	governments	are	using	AI	machines	in	an	exploding	number	
of	sensitive	and	critical	applications	without	having	a	good	grasp	on	when	those	
machines	can	be	trusted.	

One	way	to	answer	these	questions	is	to	classify	AI	machines	according	to	their	
relative	power	to	learn	and	examine	what	makes	machines	in	each	class	



trustworthy.	This	way	of	classifying	AI	machines	gives	more	insight	into	the	trust	
question	than	the	more	common	classifications	by	domains	including	speech,	vision,	
natural	language,	games,	healthcare,	transportation,	navigating,	and	so	on.	Domain	
overviews	do	not	advise	us	on	which	machines	are	more	powerful.	For	example,	can	
a	machine	that	learns	how	to	win	at	chess	be	adapted	to	be	a	creativity	machine?		Or	
does	a	creativity	machine	require	a	new	power	not	present	in	a	game	machine?	
The	AI	machines	we	are	about	to	discuss	evolved	in	the	AI	field	since	its	beginnings	
in	the	1950s.	The	field	has	experienced	three	periods	of	boom	punctuated	by	two	
periods	of	bust	(often	called	“AI	winters”).	The	first	boom	began	around	1950.	It	
produced	useful	prototypes	of	speech	recognizers,	language	interpreters,	game	
players,	math	word	problem	solvers,	and	simple	robots.	But	the	researchers	were	
not	able	to	deliver	on	their	ambitious	claims	for	production-quality	systems	and	
their	research	sponsors	pulled	back	funds	in	the	mid	1970s.	Funding	returned	in	the	
early	1980s,	when	the	Japanese	Fifth	Generation	Project	poured	large	sums	into	AI	
research	and	high-performance	logic	machines.	Other	countries	followed	suit.	That	
boom	lasted	until	the	late	1980s,	when	again	the	funding	agencies	were	
disappointed	by	lack	of	progress	toward	promised	results.	The	third	boom	began	in	
the	early	1990s	as	technologies	of	machine	learning	began	producing	significant,	
useful,	and	often	surprising	results	–	accompanied	by	large	doses	of	hype	about	the	
future	of	AI.	A	new	bust	is	possible	because	AI	researchers	have	placed	big	bets	on	
achieving	“artificial	general	intelligence”—which	may	be	beyond	the	reach	of	
machines.	
An	aspect	of	the	hype	that	has	been	particularly	troubling	to	us	is	the	claim	that	all	
the	advances	in	computing	are	from	AI.	In	truth,	computing	has	made	steady	
progress	in	power	and	reliability	over	the	past	half	century.	By	2000,	the	available	
computing	platforms	were	sufficiently	powerful	that	they	could	support	AI	
programs:	modern	AI	would	not	exist	except	for	the	advances	in	computing.	A	
recent	report	from	the	Organization	for	Economic	Cooperation	and	Development	
(OEDC),	a	consortium	of	34	countries,	defined	AI	so	broadly	that	any	software	is	an	
AI	and	that	all	progress	in	computing	is	due	to	AI.	Although	that	is	nonsense,	it	
shows	the	political	power	that	can	gather	behind	hype.	

The	term	machine	learning	refers	to	machines	that	learn	their	function	from	many	
examples	rather	than	from	rules	set	by	programmers.		Machine	learning	has	proved	
extremely	useful	and	successful	not	only	because	of	scientific	advancement	but	also	
because	of	cheap,	fast,	hardware.	In	the	task	we	set	for	ourselves	--	classifying	these	
machines	and	defining	their	limits	–	we	struggled	against	two	impediments.	One	is	
that	there	is	no	scientific	definition	of	intelligence.	Arthur	C	Clarke’s	admonition—
“Any	sufficiently	advanced	technology	is	indistinguishable	from	magic”—captures	a	
well-known	phenomenon	in	AI:	once	we	succeed	at	building	an	intelligent	machine,	
we	no	long	consider	it	intelligent.	As	soon	as	the	magic	is	explained,	the	allure	fades.	
The	second	impediment	is	our	tendency	to	anthropomorphize	–	to	project	our	
beliefs	and	hopes	about	human	intelligence	on	to	machines.	For	example,	we	believe	
intelligent	people	think	fast,	and	yet	supercomputers	that	run	a	billion	times	faster	
than	humans	are	not	intelligent.	We	believe	that	interacting	communities	of	AI	



machines	will	be	collectively	smart,	and	yet	massively	parallel	computers	and	
networks	are	not	intelligent.		We	hope	for	creative	machines	that	make	new	
discoveries	but	do	not	know	how	to	tell	whether	a	Eureka	come	from	a	machine	or	
from	a	human	using	it.	

The	hierarchy	we	will	discuss	does	not	rely	on	any	definition	of	intelligence	to	
classify	AI	machines.		What	differentiates	the	levels	of	the	hierarchy	is	simply	that	
the	machines	at	a	lower	level	cannot	learn	functions	that	higher	level	machines	can.	
This	is	scientifically	quantifiable.	No	anthropomorphizing	is	needed.	

In	1988,	AI	pioneer	Hans	Moravec	offered	a	paradox:	that	the	hard	problem	of	
general	intelligence	seemed	to	require	much	less	computation	than	easy	problems	
such	as	motor	skills	or	recognizing	faces.	Moravec’s	paradox	has	been	explained	by	
experience	with	AI	systems:	building	machines	to	behave	like	humans	is	far	harder	
than	anyone	thought.	Intelligence	might	not	even	be	a	computation	at	all.	

	
A	Hierarchy	of	Learning	Machines	

There	are	three	main	ways	that	AI	machines	have	been	classified:	by	domains,	by	
apparent	intelligence,	or	by	programming	method.	These	approaches	are	
insufficient	for	our	purpose	of	defining	the	limits	and	capabilities	of	machines.	The	
domains	approach	begins	with	a	domain	of	human	activity	such	as	vision,	speech,	or	
gaming	and	discusses	the	kinds	of	machines	that	have	been	built	for	those	domains.		
This	approach	is	not	useful	for	classification	because	there	has	been	little	machine	
transfer	between	domains:	it	is	hard	to	tell	if	a	machine	for	one	domain	(say	vision)	
could	be	adapted	for	another	(say	speech).	

The	intelligence	approach	puts	machines	into	categories	depending	on	the	degree	of	
human	intelligence	apparently	needed	to	do	tasks.	Because	there	is	no	scientific	
definition	of	intelligence,	classifications	based	on	apparent	intelligence	are	
controversial.	
The	programming	approach	considers	how	much	programming	a	machine	needs	
compared	with	self-learning.	The	programming	approach	has	received	a	lot	of	
attention	in	recent	years.	Some	AI	researchers	make	a	distinction	between	an	
externally	programmed	machine	and	self-programming	machine.		Externally	
programmed	means	that	human	programmers	design	software	(and	hardware)	that	
carries	out	the	specified	function	of	the	machine.		Self-programming	means	that	the	
desired	behavior	emerges	as	the	machine	modifies	itself	while	observing	itself	and	
its	environment,		For	example,	expert	systems	are	programmed	by	designers	who	
specify	the	inference	rules	of	the	system;	neural	nets	are	“trained”	by	showing	them	
examples	of	proper	input-output	pairs	and	adjusting	internal	parameters	so	that	the	
network	provides	the	right	output	for	each	input.	Unfortunately,	this	distinction	is	
not	as	clear	in	practice	as	it	sounds.	For	example,	the	training	of	a	neural	network	is	
done	by	an	algorithm	called	back	propagation,	which	works	backward	from	the	
output,	adjusting	network	parameters	for	least	error	between	the	actual	and	desired	
outputs.		Learning	systems	based	on	statistical	inference	are	considered	more	
powerful	than	neural	networks	because	they	can	discover	classes	of	input	objects	



whereas	the	trainer	of	a	neural	network	needs	to	know	the	classes	before	training	
starts.		However,	advanced	statistical	inference	algorithms	are	programmed	by	
humans;	no	self-programming	is	involved.	
We	propose	a	classification	based	on	learning	power	–	empirically	verifiable	
assessments	of	the	learning	capabilities	of	machines.	This	is	not	a	classification	by	
computing	power	–	all	levels	can	be	shown	to	be	Turing	complete.	The	hierarchy	
shows	that	none	of	the	machines	so	far	built	has	any	intelligence	at	all,	leading	to	the	
tantalizing	possibility	that	human	intelligence	is	not	computable.	
	
	

Table	1.	A	Machine	Intelligence	Hierarchy	

0 Basic automation 

1 Rule based systems 

2 Supervised learning 

3 Unsupervised learning 

4 Multi-agent interactions 

5 Creative AI 

6 Aspirational AI 

	

	
Level	0—Automation	

The	baseline	of	the	hierarchy	is	basic	automation—designing	and	implementing	
automata	that	carry	out	or	control	processes	with	little	or	no	human	intervention.	
The	purpose	of	automation	is	to	take	the	human	out	of	the	loop	by	substituting	an	
automaton	to	do	the	work.	Automation	frequently	includes	simple	feedback	controls	
that	maintain	stable	operation	by	adjusting	and	adapting	to	readings	from	sensors	–	
for	example,	a	computer-controlled	thermostat	for	regulating	the	temperature	of	a	
building,	an	autopilot,	or	factory	assembly	robot.	The	automaton	cannot	learn	any	
new	actions	because	its	feedback	does	not	change	its	function.	By	taking	over	tasks	
that	humans	do	poorly,	these	machines	amplify	and	extend	human	performance.	
This	kind	of	automation	is	not	a	form	of	machine	intelligence	because	the	automata	
do	not	learn	anything	beyond	what	they	were	built	to	do.	

Nonetheless,	automation	is	difficult	to	define	precisely.	There	is	a	continuum	from	
fully	manual	performance	of	a	task	to	fully	automated.	Many	automated	systems	do	
not	fall	at	the	extremes	of	this	spectrum	–	for	example,	an	autopilot	has	an	off	switch	
that	enables	the	human	pilot	to	take	manual	control	when	the	conditions	are	not	
safe	for	autopiloting.	In	recent	years,	AI	systems	have	enabled	previously	impossible	
automations	–	for	example,	speech	recognizing	robots	regularly	replace	human	
operators	in	call	centers.	For	these	reasons,	we	say	that	AI	is	an	enabler	of	
automation,	but	not	a	form	of	automation.	



	
Level	1—Rule-based	systems	

Philosophers	through	the	centuries	rated	reasoning	power	as	the	highest	
manifestation	of	human	intelligence.	Rene	Descartes	and	later	Gottfried	Leibniz	
argued	that	many	disputes	could	be	resolved	if	only	people	could	learn	to	be	logical	
and	rational	and	keep	emotion	out	of	their	discourse.	They	argued	that	reasoning	is	
a	process	of	making	logical	deductions	from	given	axioms	and	facts.	Within	this	
background,	AI	researchers	were	attracted	to	programs	capable	of	imitating	the	
rational	reasoning	of	humans.	These	were	called	“rule	based	programs”	because	
they	made	their	logical	deductions	by	applying	programmed	logic	rules	to	their	
inputs	and	intermediate	results.	
Board	games	were	early	targets	for	rule-based	programs.	Arthur	Samuel	of	IBM	in	
1952	demonstrated	a	competent	checkers	program.	AI	researchers	turned	their	
attention	to	the	much	harder	game	of	chess,	which	they	thought	could	be	
mechanized	by	brute-force	searching	through	thousands	of	future	board	positions	
and	picking	the	best	moves.	That	long	line	of	work	climaxed	in	1997	when	an	
advanced	chess	program	running	on	an	IBM	Deep	Blue	computer	beat	Garry	
Kasparov,	the	world’s	grandmaster	at	Chess.	Computer	speed	is	the	major	reason	
for	success	–	the	computer	can	search	through	billions	of	moves	in	the	same	time	a	
human	can	search	through	perhaps	hundreds.	

Another	early	target	for	rule-based	programming	was	expert	systems	--	programs	
that	solve	problems	requiring	expertise	in	a	domain.	Their	logical	rules	are	derived	
from	the	knowledge	of	experts.	The	first	prototypes	were	developed	by	Edward	
Feigenbaum	at	Stanford	University	in	1965:	“Dendral”	is	a	system	for	identifying	
unknown	organic	molecules,	and	“Mycin”	is	a	system	for	diagnosing	infectious	blood	
diseases.	In	1980	John	McDermott	of	Carnegie	Mellon	University	developed	an	
expert	system	(XCON)	for	the	Digital	Equipment	Corporation.	Given	customer	
requirements,	XCON	recommended	configurations	of	their	VAX	computer	systems	
and	by	1986	was	reckoned	to	have	saved	the	company	$25M	annually.	

The	builders	of	expert	systems	soon	discovered	that	getting	experts	to	state	their	
expertise	as	rules	was	an	impossible	task:	experts	seem	to	know	things	that	cannot	
be	described	as	rules.	Hubert	Dreyfus,	a	philosopher	and	an	early	critic	of	expert	
systems,	argued	that	much	of	what	we	call	expertise	is	not	rule	based,	and	a	
machine	limited	to	rule-based	operations	might	be	competent	but	could	not	be	
expert.	Although	a	few	systems	such	as	Mycin	and	XCON	proved	to	be	competent,	no	
one	has	built	a	true	expert	system.	

	



	
Figure	1.		An	artificial	neural	network	(ANN)	is	a	network	of	nodes,	each	
an	electronic	component	reminiscent	of	a	logic	gate.		Nodes	are	arranged	
in	a	series	of	layers,	each	providing	the	input	for	the	next.	The	input	
layer	drives	one	or	more	hidden	layers,	the	last	of	which	drives	an	
output	layer.	A	node	“fires”	(enters	the	“1”	state)	when	the	weighted	sum	
of	its	inputs	from	the	previous	layer	exceeds	a	threshold.	The	weights	
are	parameters	that	can	be	adjusted	by	a	training	algorithm	so	that	the	
output	for	a	given	input	matches	the	desired	output.	In	this	example,	the	
network	takes	5	input	bits	and	produces	4	output	bits.	Whereas	training	
a	network	is	usually	expensive	and	time	consuming,	the	trained	network	
is	lightning-fast.	

	

	

Level	2—Supervised	Learning	
At	this	level	the	machines	computes	outputs	not	by	applying	logic	rules	to	inputs	but	
by	remembering	in	their	structure	the	proper	outputs	for	each	of	a	set	of	inputs	
shown	it	by	a	trainer.	The	artificial	neural	network	(ANN)	is	a	common	example	(see	
Figure	1).	The	neural	network	is	so	named	because	its	design	loosely	imitates	the	
structure	of	a	brain	with	many	neurons	interconnected	by	axons	and	dendrites.	
Natural	neural	networks	from	brains	were	studied	by	biologists	in	the	late	1800s;	
artificial	neural	networks	were	studied	in	the	1940s	because	some	engineers	
believed	that	a	computer	structured	like	a	brain	might	be	able	to	perform	like	a	
brain.	

The	trainer	of	an	ANN	works	with	a	set	of	data	consisting	of	input-output	pairs.		
These	pairs	are	numerous	examples	of	the	function	the	trainer	desires	the	ANN	to	
learn.		The	outputs	are	often	called	labels,	because	neural	network	is	asked	to	
recognize	and	label	the	data	presented	at	the	input.	For	example,	the	inputs	may	be	
bitmaps	of	photographs	of	faces,	and	the	outputs	are	the	names	of	the	people	in	the	
photos.	The	trainer	hopes	that	the	trained	ANN	will	correctly	recognize	all	the	faces	
in	the	training	set.		The	trainer	also	hopes	that	the	trained	ANN	will	correctly	
recognize	faces	in	photos	that	were	not	part	of	the	training	set.	



The	network	trainer	uses	an	algorithm	called	“back	propagation”	to	set	the	inter-
node	connection	weights.		Back	propagation	means	that	the	algorithm	works	
backwards	from	the	desired	output,	adjusting	weights	for	inter-node	connections	
until	it	finds	a	least-error	set	of	weights.	Because	the	errors	between	actual	and	
desired	outputs	may	not	be	zero	once	the	weights	are	chosen,	there	is	a	chance	that	
the	network	may	produce	incorrect	outputs.	Because	of	the	sheer	number	of	nodes	
and	links	in	a	useful	network,	ANNs	can	take	days	to	train	but,	once	trained,	they	
compute	their	outputs	within	milliseconds.	

Today’s	ANNs	suffer	from	two	main	limitations.	One	is	fragility.	When	presented	
with	a	new	(untrained)	input,	the	ANN’s	output	may	deviate	significantly	from	the	
desired	output.	Moreover,	when	a	small	amount	of	noise	disturbs	a	valid	input,	the	
ANN	may	label	it	incorrectly.	For	example,	a	road-sign	recognizer	for	a	driverless	
car	can	be	fooled	into	labeling	a	stop	sign	as	a	speed	limit	sign	simply	by	placing	
spots	of	masking	tape	at	strategic	locations	on	the	stop	sign.		Two	ANNs	trained	
from	different	data	samples	of	the	same	population	may	give	very	different	outputs	
for	the	same	input.		All	these	behaviors	reduce	the	trust	that	users	are	willing	to	
place	in	ANNs.	
The	other	ANN	limitation	is	inscrutability.	It	is	very	difficult	to	“explain”	how	an	
ANN	reached	its	conclusion.	This	problem	does	not	exist	with	conventional	
programs,	because	we	can	trace	the	execution	of	the	program	and	pinpoint	the	
portion	of	code	that	causes	the	erroneous	output.	The	only	visible	result	of	training	
an	ANN	is	a	very	large,	gigabyte-sized	matrix	of	connection	weights	between	nodes.	
It	may	not	be	possible	to	explain	a	problematic	ANN	because	the	“explanation”	is	
diffusely	distributed	among	thousands	of	weights.	
Training	ANNs	is	expensive.		Some	of	the	expense	is	in	the	training	process,	which	
can	take	several	days	of	back-propagation	computation	on	a	large	data	set.		But	
there	is	also	an	expense	in	getting	training	sets.	There	are	commercial	companies	
that	hire	armies	of	people	to	manually	label	images	in	their	spare	time.	Because	
quality	control	may	not	be	rigorously	enforced	in	the	army	of	labelers,	these	labeled	
image	sets	can	not	only	be	expensive	to	obtain,	but	may	not	be	accurate	examples	of	
the	desired	function.	

	
Level	3—Unsupervised	learning	

Machines	at	this	level	learn	to	improve	their	performance	by	making	internal	
modifications	without	the	assistance	of	an	external	training	agent.	They	are	
attracting	more	research	attention	because	they	can	potentially	eliminate	the	large	
cost	of	obtaining	training	sets.	
An	early	example	is	a	program	called	AUTOCLASS,	built	in	1988	by	Peter	
Cheeseman.	AUTOCLASS	computed	the	most	probable	classes	of	5,425	experimental	
observations	from	the	NASA	infrared	telescope;	with	one	exception	it	agreed	with	
the	classification	already	determined	by	astronomers,	and	the	exception	was	seen	as	
a	new	discovery.	AUTOCLASS	accurately	inferred	the	classes	of	the	infrared	objects	



without	any	advance	knowledge	of	how	professional	astronomers	had	classified	the	
objects.	

To	do	this,	Cheeseman	used	Bayesian	Learning,	an	advanced	method	from	statistics	
that	creates	a	hypothesis	(in	this	case,	a	proposed	set	of	classes)	and	computes	the	
conditional	probability	of	that	hypothesis	given	the	data.		It	then	iteratively	modifies	
the	hypothesis	by	exchanging	objects	between	proposed	classes,	seeking	a	higher	
probability	hypothesis.		This	iteration	ends	when	the	highest	probability	hypothesis	
is	found.	

Another	example	where	there	is	no	training	set	arises	in	the	play	of	strategy	games	
such	as	Chess	and	Go.	The	recent	success	of	a	machine	called	AlphaGo	at	the	game	of	
Go	demonstrated	the	approach.	Go,	an	ancient	game	very	popular	in	Asia,	is	
considered	orders	of	magnitude	more	difficult	than	Chess.	AlphaGo	made	a	dramatic	
debut	in	2016,	beating	Go	grandmaster	Lee	Sedol	of	South	Korea.	The	AlphaGo	
machine	was	trained	by	playing	against	another	AlphaGo	machine.		The	two	played	
a	massive	number	of	rounds,	recording	all	their	moves	in	each	round.		When	one	
won	a	game,	it	earned	a	reward,	which	was	propagated	back	to	all	the	moves	that	
led	to	the	win,	thus	reinforcing	those	moves	in	the	next	round.		At	the	start,	the	only	
prior	information	given	to	the	machines	was	the	statement	of	the	rules	of	Go	–	but	
no	examples	of	Go	games.	
AlphaGo	was	built	by	the	Google	subsidiary	DeepMind.	After	their	success	with	Go,	
they	wondered	if	the	AlphaGo	platform	could	be	modified	to	learn	Chess	and	
another	two-player	strategy	game	Shogi.	They	renamed	their	machine	AlphaZero	
because	it	was	more	general	than	AlphaGo.		Using	the	two-machine	training	method	
outlined	above,	AlphaZero	learned	to	play	grandmaster	Chess	in	9	hours,	Shogi	in	12	
hours,	and	Go	in	13	days.	

This	short	learning	timeframe	is	significant;	Chess	programs	took	30	years	to	
develop	to	the	point	where	they	could	beat	a	Chess	grandmaster.	AlphaZero,	about	
six	years	in	development,	took	9	hours	for	the	same	accomplishment.	No	one	had	
previously	been	able	to	build	a	grandmaster	Go	playing	machine;	AlphaZero	did	that	
in	13	days.	
The	most	common	speculations	for	what	AlphaZero	might	be	used	for	next	involves	
extending	the	term	“game”	to	include	not	only	games	such	as	chess	or	Go,	but	also	
business	games,	marketplace	games,	or	war	games.	These	generalized	games	all	
have	well	defined	rule	sets	describing	reward	functions,	allowable	moves,	and	
prohibited	moves.	The	AlphaZero	method	may	not	work	with	social	systems	where	
the	game	is	not	well	defined	but	must	be	inferred	by	observing	the	play.	

These	two	examples	–	AUTOLCASS	and	AlphaZero	–	illustrate	the	principle	of	
unsupervised	learning.		Machines	can	learn	complex	tasks	without	being	shown	
examples	of	those	tasks.		They	do	so	without	expensive,	difficult-to-obtain	training	
sets.	
	

Level	4—Multiagent	interactions	



At	this	level,	machine	intelligence	emerges	from	the	interaction	of	thousands	or	
millions	of	agents,	each	with	a	specific	function.	An	agent	is	an	autonomous	machine	
or	code	segment.	The	machine	learning	capability	arises	from	the	collective.		This	
idea	was	discussed	by	AI	researchers	beginning	in	the	1960s	and	was	the	basis	of	
HEARSAY,	a	speech-recognition	system,	in	the	1970s.	It	morphed	into	“blackboard	
systems”	in	the	1980s	and	was	epitomized	by	the	late	AI	pioneer	Marvin	Minsky	in	
his	theory	on	Society	of	Mind.	A	blackboard	is	a	shared	knowledge	space	that	agents	
continually	read	and	update	until	they	converge	on	a	collective	solution	to	a	
problem.	Since	then	a	large	amount	of	AI	research	has	focused	on	building	large	
networks	of	interacting	agents.	So	far,	nothing	close	to	human	intelligence	has	
emerged	when	the	agents	are	all	machines.	
The	story	is	different	when	some	of	the	agents	are	humans.	In	the	1960s	Doug	
Englebart	of	SRI	International	proposed	that	computers	are	most	useful	when	they	
amplify	human	intelligence	by	supporting	collaboration	among	humans.	He	
invented	a	bundle	of	key	tools	that	are	in	common	use	today,	including	the	mouse,	
windows,	hypertext	lists,	real	time	voice	and	video,	video	inset	windows,	and	shared	
desktop	screen-spaces	seen	by	all	participants	in	a	meeting.	These	tools	are	not	AI	
tools	per	se,	but	they	supported	Englbart’s	objective	of	amplifying	human	
intelligence	by	enabling	teams	of	humans	and	machines	to	work	together.	
This	is	not	the	only	successful	example	of	human-machine	agent	teams.	After	IBM	
Deep	Blue	beat	him	in	1997,	Garry	Kasparov	invented	a	new	kind	of	chess	that	he	
called	Advanced	Chess,	where	a	“player”	is	a	team	consisting	of	a	human	augmented	
by	a	computer.	It	was	soon	found	that	the	teams	of	competent	players	and	good	
chess	programs	were	able	to	defeat	the	best	machines.	
Another	example	of	successful	teaming	can	be	found	of	all	places	in	high	school	
robotics	competitions,	where	teams	of	human	navigators	augmented	with	
autonomous	function	agents	are	the	most	frequent	winners.	
Another	example	is	web	surfing,	the	navigational	process	of	using	web	searches	to	
find	answers	to	questions.	Humans	interact	via	a	browser	with	a	network	of	servers	
in	the	Internet.	The	servers	locate	web	pages	that	may	answer	the	question	posed	
by	the	human,	and	the	human	selects	the	best	response	and	follows	up	with	more	
searches	to	refine	the	answer.	
Although	it	is	possible	that	a	cacophony	of	interactions	among	agents	could	
overwhelm	the	network	connecting	them,	the	successful	examples	of	human-
computer	teaming	show	that	a	well-designed	system	of	human	and	machine	agents	
can	perform	their	functions	more	effectively	than	any	human	or	machine	acting	
alone.	
These	examples	show	that	human-machine	teaming	is	a	rich	area	and	can	often	be	
achieved	with	simple	interfaces	that	do	not	rely	on	AI	tools.	

The	success	of	human-machine	teams	has	exposed	a	rift	among	AI	researchers.		
Some	want	machines	that	are	intelligent	on	their	own,	with	no	human	assistance.		
Others	believe	that	a	team	of	a	machine	and	humans	can	outsmart	the	same	
machine	operating	alone.	



	
Level	5—Creative	AI	

This	level	is	intermediate	between	machines	that	support	creative	teams	and	
machines	that	demonstrate	general	intelligence.	The	question	is:	can	there	be	a	
machine	that	is	creative	on	its	own	without	the	benefit	of	a	team?	At	the	current	
stage	of	the	technology,	there	are	no	working	machines	that	demonstrate	either	this	
level	or	the	next.	We	can	discuss	proposals,	but	they	are	speculations	about	
machines	that	have	not	been	built.	

Creativity	means	to	open	new	possibilities	in	social	space	that	did	not	exist	before.	It	
is	not	the	same	as	surprise,	which	means	that	something	unexpected	happened	–	we	
can	be	blind	to	a	possibility	that	already	exists.		Humans	exhibit	creativity	all	the	
time.	Can	machines	do	it?	This	is	a	controversial	topic.	

Jeff	Dean,	head	of	AI	division	at	Google,	says,	echoing	Englebart,	“We	want	to	use	AI	
to	augment	the	abilities	of	people,	to	enable	us	to	accomplish	more	and	to	allow	us	
to	spend	more	time	on	our	creative	endeavors.”	He	sees	AI	as	the	source	of	ever	
more	powerful	tools	that	enable	greater	heights	of	human	creativity.	He	has	not	
commented	on	whether	a	machine	can	be	creative	on	its	own.	
Some	AI	researchers	have	speculated	that	creativity	is	recombination	of	existing	
ideas	and	have	experimented	with	machines	that	do	that.	An	early	example	is	the	
TRIZ	algorithm,	invented	around	1946	by	Genrich	Altshuller,	Soviet	inventor	and	
science-fiction	writer.	TRIZ	searched	a	patent	database	and	proposed	new	
combinations	of	patent	claims,	many	of	which	led	to	new	patents.	Another	example	
is	the	genetic	algorithm,	popularized	around	1975	by	John	Holland	at	University	of	
Michigan	to	find	near-optimal	solutions	to	problems	by	simulating	genetic	mutation	
and	cross-combination.	An	early	example	was	a	US	Navy	robot	that	could	find	its	
way	through	a	mine	field	without	being	blown	up.	The	robot	programs	started	as	
random	strings.		Each	program	was	rated	with	a	fitness	value	based	on	its	
demonstrated	ability	to	guide	the	robot	safely.	Through	generations	of	refinement	in	
the	genetic	algorithm,	they	evolved	into	programs	that	succeeded	in	navigating	
safely	through	mine	fields.	
Artists	and	musicians	have	experimented	with	AI	tools	to	produce	new	art	forms.		
The	Prisma	app,	which	transforms	photographs	into	art	images	in	the	style	of	
famous	painters,	is	an	early	example.	Ahmed	Elgammal	of	Rutgers	University	
demonstrated	works	of	art	generated	by	a	neural	network	machine	called	AICAN,	
which	generated	new	images	of	paintings	that	resembled	some	existing	paintings	
but	differed	in	significant,	novel	ways.	Some	of	those	images	fetched	handsome	
prices	at	auction.	He	cautioned	that	AICAN	produces	new	art	in	comparison	to	a	
database	of	art	images;	it	is	not	sensitive	to	context	and	cannot	create	art	that	helps	
people	find	meanings	in	the	issues	and	concerns	lurking	in	the	unstated	background	
of	their	experience.		His	conclusion	was	that	while	the	AI	appeared	artistically	
creative,	it	was	not	as	creative	as	an	artist	armed	with	an	AI	tool.	In	effect	the	artists	
working	with	AI	tools	are	human-machine	teams	of	greater	artistic	creativity	than	



machines	alone.	A	similar	conclusion	applies	for	music	and,	indeed,	for	other	
domains	of	art.	

These	examples	of	creative	machines	appear	as	unsupervised	learning,	as	for	
genetic	algorithms	and	other	recombinant	machines,	or	as	human-machine	teaming.	
We	do	not	know	of	an	example	of	a	creation	machine	that	is	more	powerful	than	
unsupervised	learning	or	human-machine	teaming.	
If	creativity	could	be	interpreted	as	a	mechanical	process,	it	could	certainly	be	
realized	by	a	machine.	However,	creativity	seems	to	be	a	deeply	social	process	
involving	many	human	assessments	about	new	possibilities	and	contexts.	It	may	not	
be	possible	to	build	a	machine	that	rises,	on	its	own,	to	this	kind	of	creativity.	

	
Level	6—Aspirational	AI	

This	level	includes	a	variety	of	speculative	machines	that	represent	the	dreams	of	
many	AI	researchers.	The	most	ambitious	dreams	feature	machines	that	think,	
reason,	understand,	and	are	self-aware,	conscious,	self-reflective,	compassionate,	
and	sentient.	No	such	machines	have	ever	been	built	and	no	one	knows	whether	
they	can	be	built.	
Early	on,	AI	researchers	realized	that	AI	machines	lacked	common	sense.	Early	
medical	expert	systems,	for	example,	were	prone	to	make	mistakes	no	doctor	would	
make.	Researchers	thought	that	the	solution	was	to	gather	a	large	compendium	of	
common-sense	facts	and	rules	in	a	very	large	database	for	use	by	the	expert	system.	
In	1984	Douglas	Lenat,	CEO	of	Cyc	Corporation,	set	out	to	build	such	a	machine,	
which	he	called	Cyc.	His	project	continues	to	this	day.	The	machine,	which	now	
contains	millions	of	common-sense	facts,	has	never	succeeded	in	helping	an	expert	
system	behave	like	a	human.	Dreyfus	was	not	surprised.	He	wrote,	“Al	researchers	
have	been	working	to	solve	the	problem	of	getting	computers,	which	are	syntactic	
engines	sensitive	only	to	the	form	or	shape	of	their	input,	to	behave	like	human	
beings	who	are	sensitive	to	semantics	or	meaning.”	For	example,	we	know	from	
experience	that	we	cannot	chew	gum	and	whistle	at	the	same	time.	There	is	no	rule	
that	states	this.	We	know	it	because	we	can	imagine	trying	to	do	it.	Dreyfus	believed	
that	it	is	an	impossible	task	to	formalize	for	machines	the	understanding	of	the	
world	we	have	by	virtue	of	being	able	to	imagine	what	our	bodies	can	do.	
Much	of	AI	research	has	been	predicated	on	the	assumption	that	the	brain	is	a	
computer	and	the	mind	is	its	software.	It	follows	that	creating	an	artificial	
intelligence	is	a	programming	problem.	As	early	as	the	1970s,	some	AI	researchers	
challenged	this	assumption.	Cognitive	scientists	now	believe	that	the	structure	itself	
of	the	brain—intricate	folds,	creases,	and	cross	connections—gives	rises	to	
consciousness	as	a	statistical	phenomenon	of	brain	activity.	Therefore,	the	“mind”	
cannot	be	separated	from	a	particular	brain	or	transported	to	another	kind	of	
computer.		Commenting	on	this,	brain	neuroscientist	Christof	Koch	says:	“To	create	
human-level	consciousness	in	a	machine,	the	intrinsic	causal	powers	of	the	brain	
must	be	instantiated	at	the	level	of	the	transistors	and	wiring	making	up	the	
hardware.	The	intrinsic	causal	power	of	contemporary	computers	is	puny	compared	



to	those	of	brains.	Thus	artificial	consciousness	calls	either	for	computer	
architectures	radically	different	from	today’s	machines	or	for	a	merging	of	neural	
and	silicon	circuits	as	envisioned	by	transhumanists.”	
The	obvious	implication	is	that	intelligence	is	biological,	not	just	a	computation.	But	
even	this	explanation	is	insufficient.	It	appears	that	much	of	what	we	think	we	know	
is	actually	distributed	in	the	social	networks	of	which	we	are	a	part;	we	“recall”	it	by	
interacting	with	others.	Most	of	what	we	“know”	is	not	in	our	heads,	but	is	in	our	
surrounding	social	communities.	Chilean	Biologists	Humberto	Maturana	and	
Francisco	Varela	argued	that	biological	structure	determines	how	organisms	can	
interact	and	that	consciousness	and	thought	arise	in	human	networks	of	
coordination	of	actions.	A	conclusion	is	that	software	and	biologically	constructed	
machines	will	not	be	sufficient	to	generate	machine	intelligence.	In	ways	we	still	do	
not	understand,	our	social	communities	and	interactions	in	language	are	essential	
for	general	intelligence.	
	

Unsolved	Questions	

By	considering	a	hierarchy	of	AI	machines	focused	on	demonstrated	capacities	to	
learn	to	solve	problems,	we	have	sought	to	create	a	framework	to	understand	the	
powers	and	limitations	of	the	AI	machines	we	now	have.	The	greatest	successes	
have	come	from	neural	networks,	Bayesian	learning	machines,	and	reinforcement	
learning	machines	at	Levels	2	and	3.	Human-machine	teaming	at	level	4	shows	great	
promise.	Automatic	recombination	at	level	5	is	useful	but	in	the	known	examples	it	
appears	as	unsupervised	learning	or	human-machine	teaming,	and	does	not	
reproduce	human	creativity.	
Level	6	expresses	the	fictionalized	ideals	of	AI.	Its	speculations	about	future	
machines	are	often	enchanting	and	engaging.	But	there	are	serious	problems	with	
the	assumptions	behind	these	speculations.	For	example,	the	assumption	that	
human	behavior	is	ultimately	rule-	and	fact-based	is	false.	The	assumption	that	
structuring	a	machine	like	a	human	neural	network	will	generate	human	behavior	is	
false.	The	assumption	that	human	intelligent	behavior	arises	in	the	mind	associated	
with	a	brain	has	been	called	into	question	partly	because	a	mind	does	not	behave	
like	software	and	partly	because	many	aspects	of	mind	arise	from	social	interactions	
and	conversations.	We	can	expect	continued	advances	in	the	tasks	that	machines	
can	do	as	long	as	we	do	not	ask	the	machines	to	understand	relevance	or	meaning.	
These	problems	may	bring	on	another	bust	cycle	for	general	artificial	intelligence.	
New	applications	of	AI	are	announced	every	day.	This	does	not	mean	AI	technology	
is	yet	advancing	toward	Levels	5	and	6	as	described	here.	AI	is	getting	better	at	
Levels	2	through	4.		We	need	to	separate	excitement	over	new	or	improved	
applications	from	true	advancement	in	the	power	of	an	algorithm	to	solve	a	certain	
class	of	problems.	The	AI	hierarchy	described	here	makes	this	possible	by	ranking	
according	to	learning	power	demonstrated	in	applications.	This	is	a	way	to	measure	
true	progress.	



At	the	start	of	this	essay	we	suggested	there	are	dangers	in	the	growing	dependence	
on	AI	when	its	operations	and	trustworthiness	are	not	well	understood.	The	
hierarchy	gives	a	way	to	understand	the	principles	of	operation	and	limits	of	
existing	AI	technologies.	It	gives	you	a	way	to	recognize	hype	and	resist	its	lures.	
Recent	examples	where	unquestioning	faith	in	claims	about	AI	has	led	to	serious	
problems	include	healthcare,	fire	insurance,	and	even	deciding	jail	times	for	
convictions	in	court.	

The	hierarchy	leads	to	the	tantalizing	–	though	likely	unpopular	–	conclusion	that	
human	intelligence	is	not	computable.	Three	aspects	support	this	conclusion.	First,	
nothing	remotely	resembling	an	intelligent	machine	has	ever	been	built	with	
electronics	despite	70	years	of	trying,	or	with	mechanical	automata	despite	250	
years	of	trying.	Second,	machines	are	designed	to	work	locally	–	each	move	depends	
only	on	the	local	configurations	and	forms	of	signals	and	symbols.	The	sacrifice	of	
sensitivity	to	context	is	rewarded	with	extreme	speed	of	calculation,	but	speed	is	not	
intelligence.	Third,	machines	do	not	have	flesh-and-bone	bodies	and	therefore	
cannot	have	any	understanding	that	comes	through	our	bodies	such	as	language,	
imagination,	history,	concerns,	anxiety	over	health,	or	relationships.	It	may	be	that	
the	epitome	of	machine	AI	is	to	support	human-machine	teaming.		And	that	is	
perfectly	OK.	
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