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Introduction

What I’m really going to talk about today is the ability of an unmanned mobile system to operate independently in
a potentially unknown, dynamic environment.

The talk reflects the impact that Al/ML has had on robotics from the NPS CAVR lab historical perspective

I’ll provide overviews of what | believe are the Al/ML mathematical constructs that are currently the basis for
achieving greater autonomy for these robotic systems.

As you see the presentation, I'd encourage you to think critically — what are going to be the limitations of this
approach?


https://nps.edu/web/cavr

Components of Robotic Autonomy
Function
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AUV Obstacle detection and avoidance (2005)
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Sensor Processing

Detected ocean floor and
navigational hazard
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Importance of simulation: What is an obstacle
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New autonomy example — Undersea Active Terrain Aided Nav (2020)

Description:

o GPS degraded or denied navigation solutions are
required for current operational environments.

o Traditional Terrain Aided Navigation (TAN) is limited due
to a requirement for a prior bathymetric map.

o This is limiting since frequently there is no prior map.
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Solution:

o Active TAN - Dynamically build a map simultaneous with
a bathymetric coverage mission.

o Balance exploration/exploitation using an information
theoretic framework

o Exploration — emphasize search when confident about
vehicle position.

o Exploit — emphasize localization on features when AUV
position is poor

Application:

o Under ice — Use the ice topology as a map that can be
used for position estimation.

o ICEX — Navy exercise run by the Arctic Submarine Lab
once every two years

o 200 miles North of Prudhoe Bay, AK Northern most
point of Alaska.

o Moving ice flow — 1 m/s, 24NM per day, non-linear
motion



Evaluating the impact of Al/ML on robotic autonomy

Path Planning

Informational
Entropy

* Exploration
* Exploitation

Partially Observable Monte Carlo Planning
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Partially Observable Monte Carlo Planning (POMCP) = POMDP + MCTS
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Back to the future — integration of multiple behaviors i
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So far, I've shown 2 examples of autonomy. Each could be considered a behavior — one for obstacle detection and avoidance
and a second for area coverage.

How does a control/software architecture handle prioritization of multiple (potentially competing) behaviors?

Historically Approaches with Al/ML

* Multi-objective Optimization
* Integration of ML techniques with Semantic Inference
e Contextual Adaptation

igator

Plan

Sense

Act | ‘ Behavior1
it Xk 1i
Rodney Brooks MIT Behavior, Action
mediation >
Behavior-based architectures
e Subsumption Behavior,

* Action selection
e Motor schemas


https://spectrum.ieee.org/what-is-a-robot-rodney-brooks-sonnet
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Conclusions

* Inthe last 15 years Al/ML techniques have infiltrated the robot autonomy feedback
e Sensor processing
* Mapping
* Position Estimation
* Self-awareness
e Path planning
* On the importance of data and simulation
* Limitations associated with current Al/ML techniques
* On the importance of operational context and data inference
* A final comment on networked systems



