Electric Future

Martin Eberhard

Topics

The Problem
Why EVs Make Sense
Electric Vehicle Infancy
An Engineering Example
Technology Heads-Up

The Problem

U.S. Oil Demand

The Problem

Oil for Transportation

The Problem

500 Million cars worldwide in 1986

950 Million cars today

2.4 Billion cars by 2050

Can we really power them all with petroleum?

If not oil, then what?

- Battery-electric?
- Biodiesel?
- Clean diesel?
- Ethanol?
- Hybrid?
- Hydrogen fuel cells?
- Mr. Fusion?

Metric:

Q: What is the net resource consumption per mile?

Preview

A: Electric cars are by far the best choice

Why EVs Make Sense

Don't EVs just move the problem upstream?

Well-to-Wheel Energy Analysis

Pretty Good Gasoline Car: 26 MPG

Production Efficiency
81.7\%

Vehicle Mileage 26 MPG

Well-to-Wheel Energy Consumption 1697 Wh/mi

Best Case Gasoline Car: 41 MPG

Production
Efficiency

81.7%
Gasoline Energy
Content
36066
Wh/gal

Vehicle Mileage

41 MPG

Well-to-Wheel Energy Consumption
 1077Wh/mi

Fuel energy content: Well-to-Wheel Studies, Heating Values, and the Energy Conservation Principle, 29 October 2003, Ulf Bossel Vehicle mileage: US EPA www.fueleconomy.gov
Production Efficiency: Well-to-Tank Energy Use and Greenhouse Gas Emissions of Transportation Fuels - North American
Analysis, June 2001, by General Motors Corporation, Argonne National Laboratory, BP, ExxonMobil, and Shell

Well-to-Wheel Energy Analysis

High Performance Electric Car: 150 Wh/km Legacy Coal Electric Production

Coal Plant Net Energy Ratio $29 \%$${ }^{2}$

US Electric	
Grid	
Efficiency	
92%	Charging Efficiency
90%	

Vehicle Mileage
$250 \mathrm{~Wh} / \mathrm{mi}$
Well-to-Wheel Energy Consumption
1041 Wh/mi

Coal net energy ratio: Life Cycle Assessment of Coal-fired Power Production by Pamela L. Spath, Margaret K. Mann, Dawn R. Kerr, page 41

Well-to-Wheel Energy Analysis

High Performance Electric Car: $150 \mathrm{~Wh} / \mathrm{km}$ State-of-the-Art Coal Electric Production

At 45\% efficiency, the Isogo Power Plant in Japan is among the most efficient coal-fired generators in the world.

Coal net energy ratio: Life Cycle Assessment of Coal-fired Power Production by Pamela L. Spath, Margaret K. Mann, Dawn R. Kerr, page 41

Well-to-Wheel Energy Analysis

High Performance Electric Car: 150 Wh/km State-of-the-Art Natural Gas Electric Production
Recovery, Processing, Transport Efficiency

Electric Generation Efficiency

Well-to-Wheel Energy Consumption
$530 \mathrm{~Wh} / \mathrm{mi}$

"GE's H System is an advanced combined cycle system capable of breaking the 60 percent efficiency barrier integrating the gas turbine, steam turbine, generator and heat recovery steam generator into a seamless system."

Production efficiency and electric grid efficiency: Well-to-Tank Energy Use and Greenhouse Gas Emissions of Transportation Fuels - North American Analysis, June 2001, by General Motors Corp., Argonne National Laboratory, BP, ExxonMobil, and Shell

Well-to-Wheel Energy Analysis

Are EVs more efficient than other "green" cars?

What about Hydrogen Fuel Cells?

Where does hydrogen come from?

What about Hydrogen Fuel Cells?

Q: How far will one unit of electricity power a car?

Photovoltaic

What about Hydrogen Fuel Cells?

Q: How far will one unit of electricity power a car?

A: An electric car will go 3 times as far as a fuel cell car

What about Ethanol?

Q: How far will one unit of biomass power a car?

What about Ethanol?

Silly Q: How far will one unit of biomass power a car?

A: An electric car will go 60\% farther than an ethanol car

1. Iogen enzymatic process, gallons of gasoline equivalent
2. Southern Company Services

What about Ethanol?

Better Q: How far will an acre of land power a car per year?

What about Ethanol?

Better Q: How far will an acre of land power a car per year?

Arable Land ${ }^{2}$

Corn-based Ethanol

Q: What area is required to offset 50% of Passenger car miles driven in the USA? ${ }^{1}$

What about Ethanol?

Better Q: How far will an acre of land power a car per year?

Ethanol Production

Ethanol ICE Car

Energy Conversion (highly optimistic) efficiency $=11,000$ miles per acre per year

Corn Farming 125 bu/ acre per year	
Ethanol Production $1.94 \mathrm{GGE} / \mathrm{bu}^{2}$	IC Engine 45 miles per gallon

2,100 miles

Energy input ${ }^{1}$ 1.91 GGE/BU

1. Estimating the Net Energy Balance of Corn Ethanol, Shapourl, et al, USDA, 1995
2. 2.7 gal ethanol/bu / 1.39 gal ethanol/gge

How about Cellulosic Ethanol?

Better Q: How far will an acre of land power a car per year?

A: An electric car will go 35 times as far as an ethanol car

1. Dr. Madhu Khana, University of Illinois
2. logen enzymatic process, gallons of gasoline equivalent
3. Wikipedia: Nevada Solar One: 300 acres of collectors, $134,000 \mathrm{MWh} / \mathrm{year}$

Photovoltaic

Best-case
 Cellulosic Ethanol

Arable Land ${ }^{2}$

Q: What area is required to offset 50% of Passenger car miles driven in the USA? ${ }^{1}$

Photovoltaic

Best-case Cellulosic Ethanol

Arable Land ${ }^{2}$

Q: What area is required to offset 50% of Passenger car miles driven in the USA? ${ }^{1}$

California Desert Solar Thermal 354 MW ~230,000 cars

California Desert Solar Thermal (under construction) 553 MW ~360,000 cars

German Photovoltaic 10 MW ~4,000 cars

San Diego Parking Structure 924 kW ~400 cars

WalMart Rooftop
 605 kW ~260 cars

Silicon Valley Parking Lot 205 kW ~ 90 cars

Individual Choice

3 kW
1 car

What about Diesel (Bio or Otherwise)?

Q: How many miles will one gallon of diesel power a car?

What about Diesel (Bio or Otherwise)?

Q: How many miles will one gallon of diesel power a car?

A: An electric car will go about twice as far as a diesel car

1. 2006 VW Diesel Beetle (EPA)
2. e.g. Anguilla Electric Company, 2001 average

If not oil, then what?

■ Battery-electric?

- Biodiesel?
- Clean diesel?
- Ethanol?
- Hybrid?
- Hydrogen fuel cells?
- Mr. Fusion?

As I said...

A: Electric cars are by far the best choice

Electric Vehicle Infancy

Baby steps so far

Electric Vehicle Infancy

Of course, early EVs will have some missteps

Electric Vehicle Infancy

And.. not every EV will be a success

Electric Vehicle Infancy

But... every car company is launching EVs

Electric Vehicle Infancy

And the numbers are beginning to add up
BEV Sales Worldwide

Electric Vehicle Infancy

And the numbers are beginning to add up

Barrels of Oil Saved/Year

An Engineering Example: Battery System Safety

Assumption:

Commodity cells are not safe enough for cars (or planes)

Lesson:

Safety is a System Design Issue

Instructive Example

Plug-in Hybrid conversion with A123 (LiFePo) cells

A123-based conversion battery pack
"Safe" LiFePo Cells inside

Instructive Example

Connection failure caused by incorrect installation

Instructive Example

Fire propagated through "safe" LiFePo battery pack

"Report of Investigation: Hybrids Plus Plug In hybrid Electric Vehicle Prepared for National Rural Electric Cooperative Association, inc. and U.S. Dept. of Energy, Idaho National Laboratory by ETEC" June 26, 2008, by Garrett P. Beauregard

Instructive Example

Full vehicle fire caused by "safe" LiFePo battery pack

For any type of cell, for any battery system

- All energy cells have a non-zero chance of runaway
- Thermal runaway is less likely with some cells than others
- Unless the chance is ZERO, we must prevent propagation
- i.e. energy released by any cell must not ignite neighbors
- This is a system design issue:
\square Minimize energy released
ه Absorb energy
a Engineered cell spacing
\square Ensure adjacent cells are not overcharged
\square Shield and deflect heat
Fact: small cells release less energy
A safe pack is easier with small cells

Instructive Example

 787 Dreamliner Battery
Rapid Corrosion

Instructive Example

Large-format "safe" aviation cells

Comprehensive Set of Solutions. Ratterv

Prevent Issues, Reduce Impact of Issues

Cells packed closely together

Instructive Example

Looks like the plug-in Prius failure

Instructive Example

examination of the flight recorder data from the JAL B-787 airplane indicate that the APU battery did not exceed its designed voltage of 32 volts. -NTSB Press Release

What about individual cell voltages??
Some cells may have been overcharged

Boeing's Battery Fix

Boeing outlines fix for 787 batteries

The U.S. Federal Aviation Administration (FAA) has approved Boeing's proposal to fix battery issues on the 787 Dreamliner. The aircraft uses two 32 -volt lithium-ion batteries primarily for ground operations

Main battery in forward Electronics Equipment Bay: Used during refuelling, powering navigation lights and applying brake power while towing

Monitor and control every cell's voltage!

Tesla Model S Battery

Small 12 Wh cells

Engineered cell spacing

Welded contacts (not bolted)
© 2013 EVSE Upgrade

Tesla Model S Battery

Tesla's 18650 cells

Weld contact closeup

Tesla's Battery Safety Record

Technology Heads-Up

Technology Heads-Up 1

Mechanical complexity gets replaced with software

Software

Technology Heads-Up 1

Mechanical complexity gets replaced with software

Technology Heads-Up 2

Battery prices are dropping quickly

Technology Heads-Up 2

Deutsche Bank revises li-ion battery cost forecasts downward to $\$ 250 / \mathrm{kWh}$ by 2020

Technology Heads-Up 3

Resource Availability will Impact Scalability

Technology Heads-Up 3

Resource Availability will Impact Scalability

As hybrid cars gobble rare metals, shortage looms

-Reuters, August 31, 2009

Toyota Tries to Break Reliance on China
Company Seeks to Develop Electric Motor Without Costly, Tightly Controlled Rare Earth Metals
-Wall Street Journal, January 14, 2011

Conclusion

- Electric Vehicles are the best choice for cars
- Not many EVs so far, but the change is inevitable
- EVs pose unique engineering challenges

Thank you

