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1 Introduction

This manual is intended for use by lab designers wanting to create or adapt cybersecurity
labs to use the Docker container-based lab framework known as “Labtainers”. The Labtainer
framework is designed for use with computer and network security laboratory exercises targeting
Linux environments, and it is built around standard Linux Docker containers. A Labtainer exer-
ciese may include multiple networked components, all running locally on a student’s computer,
but without the performance degredation associated with running multiple virtual machines.

While most Labtainer exercises focus on exploring concepts via the Linux command line –
GUI based applications, e.g., browsers and Wireshark are also supported.

1.1 Benefits of Labtainers

Deploying cybersecurity labs using this framework provides three primary benefits:

1. The lab execution environment is controlled and consistent across all student comput-
ers regardless of the Linux distribution and configuration present on individual student
computers. This allows each lab designer to control which software packages are present,
the versions of libraries and specific configuration settings, e.g., /etc file values. These
configurations may vary between labs, and they may vary between multiple computers in
a single lab.

2. Assessment of student lab activity can be automated through a set of configuration files
that identify expected results, thus relieving lab instructors from having to individually
review detailed lab results.

3. Labs may be automatically “parameterized” for each student such that students cannot
easily copy results from another student or from internet repositories.

Labtainers provide the advantages of a consistent execution environment without requiring
an individual Virtual Machine (VM) per lab, and without requiring all labs to be adapted for
a common Linux execution environment. These benefits can be realized whether or not labs
are configured for automatic assessment, or are parameterized for each student.

Figure 1: Example Labtainers network topology
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Exercises that include multiple networked computers illustrate an advantage of using con-
tainers over VMs, namely, containers require significantly less resources than do VMs. A
student laptop that struggles to run two or more VMs can readily run multiple containers
simultaneously, as shown in this 50 second demonstration: https://youtu.be/JDV6jGF3Szw

Lab designers enhance labs to include automated assessment using directives built into
the famework. For example, ten rather simple directives can evaluate the following question
regarding a student’ work on a lab depicted in Figure 1:

“Was there any single iptables configuration during which the student used nmap to demon-
strate that:

• The remote workstation could reach the HTTPS port but not the SQL port, and,

• The local workstation could reach the HTTPS port and the SQL port.”

1.2 Obtaining the Labtainer development kit

Installation of Labtainers is described in the Labtainer Student Guide, which also includes
instructions for installing an Ubuntu VM (if you do not already have a Linux system), and the
Labtainer framework. Our website also distributes pre-packaged VM appliances that already
have Labtainers installed. Labtainers will work with any Linux distribution that supports
Docker containers. If you already have Docker installed on a Linux system, reference the
Student Guide for other dependencies.

The difference between the development kit and the standard Labtainer distribution is
primarily just the lab definition files, which are withheld from the general distribution for
efficiency.

If you have a Labtainer installation (e.g., our pre-packaged VM), you can get the developer
files by going to your labtainers directory, e.g., ~/labtainer/ and running ./update-designer.sh
1 You may then want to logout and login again, or run a new bash shell because that script
sets some environment variables.

It is suggested that you periodically run that update script to get the latest lab definition
files, and to update framework software.

1.3 Content of this guide

This guide describes how to build new labs, but first, section 2 gives an overview of how students
interact with Labtainers. The steps taken to create a new lab are provided in section 3, and
the mechanics of defining the lab execution environment are in section 4.

Individualizing labs to discourage sharing of solutions is described in 5. Section 6 then
describes how to define criteria to enable automated assessment of student work.

Networking considerations are described in 8. Section 9 covers the process of building,
publishing and maintaining labs.

Strategies for creating mulit-user Labtainer exercises are discussed in section 12. Section 13
identifies limitations of the framework and section 14 includes application-specific notes, e.g.,
notes relavent to including Firefox in a lab.

Automated testing of labs is supported using our SimLab tool as described in Appendix A.

2 Overview of the student environment and workflow

Labtainers support laboratory exercises designed for Linux environments, ranging from interac-
tion with individual programs to labs that include what appear to be multiple components and

1The student password for the pre-packaged VM is ”password123”.
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networks. Students see and interact with Linux computers, primarily via bash shell commands
and GUI-based applications. In general, the Labtainer framework implementation is not visible
to the student, and the Linux environment as seen by the student is not noticeably augmented
to support the framework.

Labtainers are intended for use on individual student computers, e.g., a laptop, or potentially
a VM allocated to the student from within a VM farm. 2 The computer utilized by a student
must include the Linux operating system, e.g., as a single VM. This Linux operating system,
referred to herein as the Linux host, can be any distribution and version which supports Docker.
Students download and expand a tarball, and run an installation script as described in the
Labtainer Student Guide 3 Alternately, students can use a Linux VM that is pre-configured
with Labtainers and Docker, and is available at our website.

It is suggested that the student’s Linux host be a virtual machine that is not used for
purposes requiring trust. Software programs contained in cybersecurity lab exercises are not,
in general, trusted. And while Docker containers provide namespace isolation between the
containers and the Linux host, the containers run as privileged.

Labtainer exercises can include networking to external hosts, e.g., a Windows VM running
alongside the Linux host VM, as described in section 8.3.

Students initiate any and all labs from a single workspace directory on the Linux host. To
perform a specific Labtainer exercise, the student runs a labtainer command from the Labtainer
workspace, naming the lab exercise. This results in one or more containers starting up along
with corresponding virtual terminals via which the student will interact with the containers.
These virtual terminals typically present a bash shell. Each container appears to the student
as a separate computer, and these computers may appear to be connected via one or more
networks.

When a student starts a given exercise for the first time, the framework fetches Docker
images from the Docker registry. Docker manages container images as a set of layers, providing
efficient storage and retrieval of images having common components. The initial Labtainer
installation step pulls a few baseline images (about 1.5 GB) from the public Docker registry,
known as the Docker hub. Images for specific labs are pulled from the Docker hub by down-
loading only those additional layers required by that lab, and which had not been previously
pulled from the hub. This is transparent to the student, other than waiting for downloads to
complete.

After the student performs the lab exercise, artifacts from the container environments are
automatically collected into an archive, (a zip file), that appears on the student’s Linux host.
The student forwards this archive file to the instructor, e.g., via email or a learning management
system (LMS). The instructor collects student archive files into a common directory on his or
her own Linux host, and then issues a command that results in automated assessment of student
lab activity, (if the lab is designed for that), and the optional creation of an environment in
which the instructor can review the work of each student.

Many cybersecurity lab exercises are assessed through use of reports in which students
describe their activities and answer specific questions posed by the instructor. Labtainers are
intended to augment, rather than supplant this type of reporting. The framework includes
mechanisms for automating the collection of student lab reports into the artifact archive files
that are collected by instructors.

2Labtainers can also support labs in which students collaborate (or compete) on shared infrastructure. Please
see section 12 for information on multi-user environments.

3This tarball may someday be replaced by standard Linux distribution packages, e.g., Debian and/or RPM
packages.
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3 Creating new labs

The most challenging and critical part of designing a new cybersecurity lab is the design of
the lab itself, i.e., identifying learning objectives and organizing exercises to achieve those
objectives. The Labtainer framework does not specifically address any of that. Rather, the
framework is intended to allow you to focus more time on the design of the lab and less time on
mitigating and explaining system administration and provisioning burdens you would otherwise
place on students and instructors.

Typical steps for developing a new lab are:

1. Give the lab a name and create its computers using the new lab setup.py script;

2. Choose the starting baseline configuration for each computer and add software packages
within a Dockerfile;

3. Define networks and connections to the lab computers in the lab’s start.config file.

4. Populate the user’s HOME directory and system directories with lab-specific files.

The remainder of this section covers the fist step and provides an example. The following section
4, covers the other three steps. After a lab is created, you can then optionally parameterize it
per section 5 and/or define criteria for automated assessment per section 6

3.1 Create the first lab computer

Labtainer exercises each have their own directory under the “labs” directory in the project
repository. The first step in creating a new lab within the framework is to create a directory
for the lab and then cd to it. The directory name will be the name used by students when
starting the lab. It must be all lower case and not contain spaces.

cd $LABTAINER_DIR/labs

mkdir <new lab name>

cd <new lab name>

After the new lab directory is created, run the “new lab setup.py” script. 4

new_lab_setup.py

This will create a set of template files that you can then customize for the new lab. These
template files are referenced in the discussion below. The result of running new lab setup.py

is a new labtainer lab that can be immediately run. While this new lab will initially only
present you with a bash shell to an empty directory on a Linux computer, it is worth testing
the lab to understand the workflow.

3.2 Testing the new lab

Once a new lab directory is created, and the new lab setup.py has been run, then you can
test the new, (currently empty) lab. All student labs are launched from the labtainer-student
directory. Lab development workflow is easiest if at least two terminals or tabs are used, one
in the new lab directory, and one in the labtainer-student directory. So, open a new tab or
window, and then:

4The $LABTAINER DIR will have been defined in your .bashrc file when you installed Labtainers. It should
point to the labtainers/trunk directory. You may need to start a new bash shell to inherit the environment
variable.
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cd $LABTAINER_DIR/scripts/labtainer-student

Then start the lab using the:

rebuild [labname]

command, where labname is the name of the lab you just created.
The rebuild command 5 will remove and recreate the lab containers each time the script

is run. And it will rebuild the container images if any of their configuration information has
changed. 6 This is often necessary when building and testing new labs, to ensure the new
environment does not contain artifacts from previous runs. The progress of the build, and error
messages can be viewed in the labtainer.log file. While developing, it is generally a good idea
to tail this log in a separate terminal:

tail -f labtainer.log

If the rebuild fails with a error reflecting a problem resolving hostnames, e.g., mirror.centos.com,
please see 14.8.

Note the rebuild command is not intended for use by students, they would use the “lab-
tainer” command. The rebuild utility compares file modification dates to Docker image creation
dates to determine if a given image needs to be rebuilt. The rebuild may miss file deletions.
Thus, if files are deleted, you must force the rebuild using the -f option at the end of the rebuild
command. Also, addition of symbolic links will not trigger a rebuild. Rebuild references git
modify dates (vice file modify dates).

Stop the lab with

stoplab

When you stop the lab, a path to saved results is displayed. This is the zip file that the student
will forward to the instructor.

To test adding a “hello world” program to the new labtainer, perform the following steps:

• From the new lab directory window, cd $LABTAINER_DIR/labs/[labname]/[labname]

• Create a “hello world” program, e.g., in python or compiled C.

• From the labtainer-student window, run rebuild [labname]

You should see the new program in the container’s home directory. If you run the program
from the container, and then stop the lab with stoplab, you will see the stdin and stdout results
of the program within the saved zip file.

The “hello world” program was placed in $LABTAINER_DIR/labs/[labname]/[labname].
The seemingly redundant “labname” directories are a naming convention in which the second
directory names one of potentially many containers. In this simple example, the lab has but
one container, whose name defaults to the lab name.

The following sections describe how to further alter the lab execution environment seen by
the student.

5Previously named rebuild.py
6The build process may generate warnings in red text, some of which are expected. These include an

unreferenced “user” variable and the lack of apt-utils if apt-get is used to install packages in Dockerfiles.
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3.3 Multiple containers

The new lab setup.py script can be used to create additional containers for use in the lab.
For example, from your new lab directory:

new_lab_setup.py -a joe_computer

will create a second container for your lab, named “joe computer”. If you again run the rebuild
script, you will see two virtual terminals, each connected to one of your two independent
computers. Use

new_lab_setup.py -h

to view the operations available in that script.
The following sections describe how to configure the execution environments on your com-

ponents, and how to define virtual networks connected to the components.

4 Defining the lab execution environment

A given lab typically requires some set of software packages, and some system configuration,
e.g., network settings, and perhaps some lab-specific files. It can include multiple containers,
each appearing as distinct computers connected via networks. The execution environment
seen by a student when interacting with one of these “computers” is therefore defined by the
configuration of the associated container.

Software packages are defined in each container’s Dockerfile, described in the subsection
below. That is followed by subsection 4.2 describing network definitions, (and other computer
attributes) in the start.config file. The remaining subsections then described populating the
user HOME directory and system directories, and methods for starting system services and
miscellaneous environment settings.

Labtainer containers, by default, present students with a virtual terminal and a bash shell
requiring no login. Alternate initial environments, including use of the login program, are
described in section 4.7.

Section 4.9 describes how to allow students to share tools they’ve developed between different
labs.

4.1 Docker files

A default Labtainer-specific Dockerfile is placed in the new lab’s “Dockerfiles” directory when
the new lab is created. And additional Dockerfiles are added when the new lab setup.py -a

script adds computers to the lab. We use standard Docker file syntax, which is described at
https://docs.docker.com/engine/reference/builder/

Simple labs should be able to use the default Dockerfile copied by the new lab setup.py
script. That Dockerfile refers to a base Labtainer image that contains the minimum set of Linux
packages necessary to host a lab within the framework. The default execution environment
builds off of a recent Ubuntu image.
Each container has its own Dockerfile within the

$LABTAINER_DIR/labs/[labname]/dockerfiles

directory. The naming convention for Dockerfiles is

Dockerfile.[labname].[container_name].student
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The first line of each Dockerfile identifies the baseline Labtainer image to be pulled from the
Docker Hub. The initial default image is a basic Ubuntu system with a minimal set of packages.
To use an alternate image having additional networking packges (e.g., tcpdump, xinetd, sshd),
change the first line to:

FROM $registry/labtainer.network

Base images include:

• labtainer.base – Minimal Ubuntu system.

• labtainer.network – Networking packages installed and xinetd running, but network ser-
vices not activated

• labtainer.network.ssh – Same as network, but with ssh active in the xinetd configuration.

• labtainer.centos – A CentOS server with systemd and the true “init” initial process.

• labtainer.lamp – A CentOS server with Apache, Mysql and PHP, (the LAMP stack)

• labtainer.firefox – An Ubuntu container with the Firefox browser.

• labtainer.wireshark – The labtainer.network with wireshark added.

• labtainer.java – An Ubuntu container with the Firefox browser and the open JDK.

• labtainer.kali – A Kali Linux system with the Metasploit framework.

• labtainer.metasploitable – The Metasploitable-2 vulnerable server.

• labtainer.bird – The Bird router (See the bird labs).

• labtainer.owasp – The firefox base with the OWASP zap toolset.

• labtainer.juiceshop – The OWASP vulnerable Juice Shop web server.

Refer to the Dockerfiles in $LABTAINER DIR/scripts/designer/base dockerfiles to see which
software packages are included within each baseline image.

The Dockerfile is used to add packages to your container, e.g.,

RUN apt-get update && apt-get install -y some_package

You will also see “ADD” commands in the Docker file that populate the container directories
with lab-specific files such as described in section 4.3.

Next, you must also describe your containers within the start.config file as described below.

4.2 Container definitions in start.config

Most single container labs can use the automatically generated start.config file without modifi-
cation. Adding networks to containers and defining users other than the default ”ubuntu” user
requires modification of the start.config file. The following describes the major sections of that
configuration file. Most of the configuration entries can be left alone for most labs.

• GLOBAL SETTINGS – These lab-wide parameters include:

– GRADE CONTAINER – Deprecated
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– HOST HOME XFER [dir name] – Identifies the host directory via which to transfer
student artifacts, relative to the home directory. For students, this is where the zip
files of their results end up. For instructors, this is where zip files should be gathered
for assessment.

– LAB MASTER SEED [seed] – The master seed string for this lab. It is combined
with the student email address to create an instance seed that controls parameteri-
zation of individual student labs.

– REGISTRY [registry] – The id of the Docker Hub registry that is to contain the lab
images. This defaults to the registry value defined in the labtainers.config file.

– BASE REGISTRY [base registry] – The id of the Docker Hub registry that contains
the base image for the container. This defaults to the default registry per the
labtainer.config file. See 9 for details on the use of this keyword.

– COLLECT DOCS [yes/no] – Optional directive to collect lab/docs content as part of
student artifacts. These are then available to the instructor in the labtainer xfer/[lab]/docs
directory. Also see 4.6.

– CHECKWORK [yes/no] – Optional directive to disable (set to “no”) ability of stu-
dent to check their own work from the labtainer-student directory.

• NETWORK [network name] – One of these sections is required for each network within
the lab. The name is used within the start.config file to refer to the network. It is
suggested that this name NOT be used in lab guides since it is not visible to students7.
Where possible, name networks with their subnet mask, e.g., 10.1.0.0/24. In addition to
providing a name for the network, the following values are defined for the NETOWRK:

– MASK [network address mask] – The network mask, e.g., 172.25.0.0./24

– GATEWAY [gateway address] – The IP address of the network gateway used by
Docker to communicate with the host. Please note that to define a different net-
work gateway for the component, you should use the LAB GATEWAY parameter for
containers. This GATEWAY field should not name the IP of any of your other
components.

– MACVLAN EXT [N] – Optional, causes the Docker network driver to create and
use a macvlan tied to the given Nth ethernet interface (in alphabetical order) that
lacks an assigned IP address. The network device is expected to be on a “host-only”
VM network. The VMM should disable the DHCP server on this network. The
network adaptor itself needs to be placed in primiscous mode on the Linux VM,
e.g., using “sudo ifconfig enp0s8 promisc.” These types of interfaces can be used to
communicate with external hosts, e.g., other VMs as described in 8.3

– MACVLAN – Similar to MACVALN EXT, except a macvlan will not be created
unless the Labtainer lab is started as a multi-user lab as descrbed in 12.

– IP RANGE [range] – Optional, allocates an ip range to the network, e.g., 192.168.1.4/30

• CONTAINER [container name] – One of these sections is required for each container in the
lab. Default values for container sections are automatically created by the new lab setup.py

script. In addition to naming the container, the following values are defined:

7You may note several Labtainers labs failed to heed this advise.
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– TERMINALS [quantity] – The number of virtual terminals to open and attach to
this container when a lab starts. If missing, it defaults to 1. Terminal titles are set
to the bash shell prompt. A value of 0 suppresses creation of a terminal, and a value
of -1 prevents the student from attaching a terminal to the container.

– TERMINAL GROUP [name] – All virtual terminals within the same group are or-
ganized as tabs within a single virtual terminal. Terminal group names can be
arbitrary strings.

– XTERM [title] [script] – The named script is executed in a virtual terminal with the
given title. The system will change to the user’s home directory prior to executing
the script. The script should be placed in container bin directory, i.e.,

$LABTAINER_DIR/labs/[labname]/[container]/_bin

If the title is “INSTRUCTIONS”, no script is necessary and the instructions.txt file
in the container home directory will be displayed.

– USER [user name] – The user name whose account will be accessed via the virtual
terminals. This defaults to “ubuntu.”

– PASSWORD [password] – The password for the user name whose account will be
accessed via the virtual terminals. This defaults to the user name defined above.

– [network name] [ip address] – Network address assignments for each network (de-
fined via a NETWORK section), that is to be connected to this container. A sepa-
rate line should be entered for each network. The given ip address can be one of the
following:

∗ An IP address

∗ An IP address with an optional MAC address assignment as a suffix following
a colon, e.g., 172.25.0.1:2:34:ac:19:0:2.

∗ An IP address with an optional clone offset, e.g., 172.25.0.1+CLONE to cause
each clone to be assigned an address from a sequence starting with the given ad-
dress. Only intended for use with containers having the CLONE option described
below.

∗ Similar to the use of the +CLONE suffix, CLONE MAC only takes effect if the lab
is started in multi-user mode. When started with the --workstation switch,
this directs the system to generate a MAC address whose last four bytes match
those of the host network interface. When stated as a multi-user lab with all
containers on one VM, e.g., the --client count switch, then the allocated IP
address is incremeted by one less than the clone instance number.

∗ If AUTO is provided as the address, an address is chosen for you from the subnet
range.

Multiple IP addresses per network interface by appending a :n to the network name,
e.g.,

MY_LAN:1 172.24.0.3

MY_LAN:2 172.24.0.4

– SCRIPT [script] – Optional script to provide to the Docker create command, defaults
to “bash”. This must be set to “NONE” for CentOS-based components, Ubuntu
systemd components, or other images that run a true Linux init process.).

– ADD-HOST [host:ip — network] – Optional addition to the /etc/hosts file, a con-
tainer may have multiple ADD-HOST entries. If a network name is provided, then
every component on that network will get an entry in the hosts file.
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– X11 [YES/NO] – Optional, defaults to NO. If YES, the container mounts the TCP
socket used by the hosts X11 server, enabling the container to run applications with
GUIs, e.g., browsers or wireshark. See sql-inject as an example. See the Notes
section (14) at the end of this manual for tips on using Firefox and Wireshark.

– CLONE [quantity] – optional quantity of copies of this container to create. Each
copy is assigned a monotonically increasing integer starting with one, and this value
can be used for the network address as describe above, and within parameterization
as described in section 5. This option is not intended for use in creating multi-user
labs.

– NO PULL [YES/NO] – Use a local instance of the container image rather than
pulling it from the Docker hub.

– LAB GATEWAY – Optional IP address of the component’s default network gateway.
If set, this will replace the default Docker gateway. Students can toggle between
gateways by using the togglegw.sh command, e.g., to enable communication with the
host VM or the internet8. This option will also replace the components resolv.conf
with the given IP and will cause the static route to the my host address to be deleted.

– NO GW [YES/NO] – Disable the Docker default gateway, preventing network com-
munication with the host or external devices.

– REGISTRY [registry] – The id of the Docker Hub registry that is to contain the lab
images. This overrides the value set in the GLOBAL section.

– BASE REGISTRY [base registry] – The id of the Docker Hub registry that contains
the base image for the container. This defaults to the default registry per the
labtainer.config file.

– THUMB VOLUME – Optional arguments to a mount command that will be exe-
cuted in a GNS3 environment when the student selects insert thumb drive from
a component menu. NOTE: Use of this option will cause the host /dev directory
to be shared with the container. This allows the container to perform all kinds of
mischief.

– THUMB COMMAND – Optional command that will run prior mounting the THUMB
volume defined above.

– THUMB STOP – Optional command that will run when the container is stopped
under GNS3.

– PUBLISH [publish] – Optional arguments to the Docker --publish argument for
making container ports visible at the host interface. For example, a value of

127.0.0.1:60022:22/tcp

will bind host port 60022 to container port 22.

– HIDE [hide] – If YES, the associated node will be hidden in GNS3 environments
when the --student option if

– NO PRIVILEGE – If YES, the container runs without Docker privilege.

– MYSTUFF – if YES, the directory at labtainerstudent/mystuff is shared with
the container in /home/<user>/mystuff. used.

– MOUNT [hostv:containerv] – Intended for use with licensed software installations,
e.g., IDA Free, will cause a directory located at:

8This replaces use of the set default gw.sh script from within fixlocal.sh scripts
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~/.local/share/labtainers/[hostv]

at a mount point on the container at:

~/[containerv]

The purpose is allow that host directory to be reused across labs to avoid re-installing
licensed software, i.e., something where the student takes a distinct action to ac-
knowledge a license.

A simple example of a two-container lab with network settings in the start.config file can
be found in

$LABTAINER_DIR/labs/telnetlab

Entries in the start.config file can be parameterized as described in section 5, e.g., to allocate
random IP addresses to components.

4.3 Lab-specific files in the student’s home directory

Files that are to reside relative to the student’s $HOME directory are placed in the new lab
container directory. For example, if a lab is to include a source code file, that should be placed
in the lab container directory. The file will appear in the student’s home directory within the
container when the container starts. The lab container directory is at:

$LABTAINER_DIR/labs/[labname]/[container name]

The container name in labs with a single container matches the labname by default.
All files and directories in the lab container directory will be copied to the student’s HOME

directory except for the bin and system directories. Each initial Dockerfile from the templates
include this line:

ADD $labdir/$lab.tar.gz $HOME

to accomplish the copying. Except as noted below, Dockerfiles should not include any other
ADD commands to copy files to the HOME directory.

4.3.1 Large or numerous files in the home directory

If there are large sized, or a high quantity of files that are to be placed relative to a container
home directory, those should be placed into a “home tar” directory at:

$LABTAINER_DIR/labs/[labname]/[container_name]/home_tar/

Use of this technique prevents these files from being collected as student artifacts, which oth-
erwise include copies of everything relative to the home directory 9. This can save considerable
time and space, e.g., on the instructor’s computer that must collect all student artifacts. The
individual files should exist in the home tar directory, and the framework automatically creates
the tar file for transfer to the Docker image, (and will do so if an existing tar file is older than
any file in the directory). Manifests can be used for the home tar content as described in 9.3.1.
You can force collection of selected files from the home tar by putting the filename into a file
at:

9Actually, we only collect files whose modify dates are more recent than the container, so use of home tar is
not as important as it previously was.
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$LABTAINER_DIR/labs/[labname]/[container_name]/_bin/noskip

Files whose basenames match any found in noskip will be collected.
Alternately, a file at /var/tmp/home.tar will be expanded into the user home directory. Use

the Docker COPY directive to place a file here. See the

$LABTAINER_DIR/scripts/designer/base_dockerfiles/Dockerfile.labtainer.firefox

for an example. These files will not be collected unless they are newer than the original file, or
if the base file name appears in the noskip list described above.

4.4 Lab-specific system files

All files in the

$LABTAINER_DIR/labs/[labname]/[container name]/_system

directory will be copied to their corresponding paths relative to the root directory. For example,
configuration files for /etc should appear in system/etc/.

The initial Dockerfile from the templates include this line:

ADD $labdir/sys_$lab.tar.gz /

to accomplish the copying. If a lab contains a large quantity of system files, or large files, those
can be placed into the directory named:

$LABTAINER_DIR/labs/[labname]/[container name]/sys_tar

either as individual files, or in a “sys.tar” archive. In the former case, the framework will
automatically create the sys.tar file. This technique can save time in building lab images
because the files do not need to be archived for each build.

In general, files modified and maintained by the designer should go into the system directory
while static system files should go into the sys tar directory.

NOTE: CentOS systems do not have a /bin directory, that is actually a link. If you create
a system/bin directory for the lab, that will trash the /bin link and result in an obscure
Docker build error.

4.5 System services

The general Docker model is that a single Docker container runs a single service started via
the ENTRYPOINT command, with logging being forwarded to the host. Labtainers disregards
this model because our goal is to make a container look more like a Linux system rather than
a conformant Docker container. Labtainer Dockerfiles for Ubuntu and Centos containers use
systemd based images that run the /usr/sbin/init process. 10 The labtainer.network configu-
ration of the baseline Dockerfile also starts xinetd, which will then fork services, e.g., the sshd,
per the /etc/xinet.d/ configuration files.

Services should be added using systemd constructs. For those of us who often forget what
those are, a simple web server service can be added to a container by unpacking this tar from
the witin the container’s directory:

tar -xf $LABTAINER_DIR/scripts/designer/services/web-server.tar

10Now deprecated Ubuntu-based Labtainer Dockerfiles included an ENTRYPOINT command that launches
a faux init script that starts rsyslog, (so that system logs appear in /var/log), and runs rc.local.
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And enable the service in the bin/fixlocal file with:

echo $1 | sudo -S systemctl enable httpserver.service

echo $1 | sudo -S systemctl start httpserver.service

The centos-logs lab provides an example of forcing the student to login using the traditional
login program, as described in section 4.7.

See section 14.9 for guidance on including 3rd party applications within your labs (e.g., ones
that are not simply added to your container via package managers.)

4.6 Lab Text and Instructions for Students

Create a ’docs’ directory in the [labname] directory if there isn’t one there. This is where most
textual information about the lab, as well as the lab manual, should be stored and modified.
The ’about.txt’ is an exception to this.

Use LateX to write and create PDF files in the docs directory. Look at other lab’s docs direc-
tory on how to create a Makefile for the LateX file.

Display a message to the student before any of the lab virtual terminals are created by creating
a read first.txt in the ’docs’ directory. Any text within the

$LABTAINER_DIR/labs/[labname]/docs/read_first.txt

file will be displayed on the Linux host in the terminal in which the student starts the lab.

• Any “LAB MANUAL” string in that file will be replaced with the full path to a [lab-
name].pdf file within that same docs directory. And “LAB DOCS” is replaced by the
path to the lab docs directory.

• One intended use is to prompt the student to open a PDF lab manual and perhaps read
parts of it prior to continuing with the lab. Another intended use is to display the path
to a reporting template that a student is to use for answering lab-specific questions and
note taking.

• If the name of the symbols are prefaced by “file://”, then the paths will display as links
that can be opened via a right click.

An ’about.txt’ file will be present in the ’config’ directory of the lab. Any text inside will
be displayed as a description to the lab when listed from running the ’labtainer’ command in
$LABTAINER DIR/trunk/scripts/labtainer-student. This text will also appear when clicking
on the logo in the GNS3 environment of Labtainers.

If the start.config file includes “COLLECT DOCS YES”, the content of the lab/docs directory
will be included with the student artifacts and available extracted into the instructor’s lab-
tainer xfer/[lab]/docs directory.

A deprecated feature that still exists in a tiny handful of labs: ”Lab instructions for students
can be displayed in a virtual terminal by placing an “instructions.txt” file within the home
directory of one of the containers. Refer to existing labs for conventions.”
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4.7 Running programs in Virtual Terminals

Programs can be started automatically within virtual terminals using two methods. The first
is the “XTERM” directive in the container section in the start.config file described in 4.2. That
is intended for programs whose results are displayed within the virtual terminal, (see the plc
lab for examples). The second method is intended for user authentication and for starting GUI
based programs that will use the Linux host Xserver. If a file exists at:

$LABTAINER_DIR/labs/[labname]/[container name]/_bin/student_startup.sh

it will be executed from each virtual terminal created for the container. See the sql-inject lab
and the centos-log lab examples, with the latter running the login program to require students
to login prior to getting a shell prompt. 11 Note that on CentOS systems, the student startup.sh
script will be executed twice: first as root and then as the default user. Use constructs such as
the following to avoid repeating operations:

id | grep root >>/dev/null

result=$?

if [[ $result -eq 0 ]]; then

# stuff to do as root

else

# stuff to do as default user

fi

4.8 Final lab environment fixup

The initial environment encountered by the student is further refined using the optional bin/fixlocal.sh
script. The framework executes this script the first time a student starts the lab container. For
example, this could be used to compile lab-specific programs afer they have been parameterized,
(as described below in 5). Or this script could perform final configuration adjustments that
cannot be easily performed by the Dockerfile. These scripts are per-container and reside at:

$LABTAINER_DIR/labs/[labname]/[container name]/_bin/fixlocal.sh

Note the fixlocal.sh script runs as the user defined in the start.config for the container, regardless
of whether root is set as the user in the Dockerfile. The fixlocal.sh script is primarily intended
for parameterizing labs. Other initialization and synchronization between multiple components
should be performed as within any Linux system, e.g., via services or rc.local.

12

4.9 Persistent storage

Sequences of labs may benefit from a student’s ability to employ tools they have developed
within more than one lab. For example, a set of data analysis scripts initially developed for
one lab may be a useful starting point when performing a subsequent, more advanced lab. You
can provide students with persistent storage by defining the

MYSTUFF YES

11On CentOS systems, copy the login program from labs/centos-log/centos-log/ system/sbin/login to your
container’s system/sbin directory. The login program from Ubuntu works as is.

12Use of sed -i ... to modify configuration files (e.g., in etc), might result in overwriting symbolic links.
Use sed -i --follow-symlinks ... to avoid that pit.
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attribute for a container in the start.config file. That will cause the associated container to have
a directory at $HOME/mystuff which is mapped to the directory at labtainer-student/mystuff
All labs that employ the MYSTUFF attribute will share the same directory. It is intended that
at most one container in any given lab will use this directory. And it is suggested that these
directories only be used for labs that anticipate evolving development of tools by the student.

Persistent storage is also provided for purposes of re-using licensed software across different
labs. See the use of the VOLUME option in 4.2.

5 Parameterizing a lab

This section describes how to individualize the lab for each student to discourage sharing of lab
solutions. This is achieved by defining symbols within source code or/and data files residing on
lab containers. 13 The framework will replace these symbols with randomized values specific to
each student. The config/parameter.config file identifies the files, and the symbols within
those files that are to be modified. A simple example can be found in

$LABTAINER_DIR/labs/formatstring/formatstring/config/parameter.config

That configuration file causes the string SECRET2 VALUE within the file:

/home/ubuntu/vul_prog.c

to be replaced with a hexidecimal representation of a random value between 0x41 and 0x5a,
inclusive.

This symbolic replacement occurs when the student first starts the lab container, but before
the execution of the bin/fixlocal.sh script. Thus, in the formatstring lab, the executable pro-
gram resulting from the fixlocal.sh script will be specific to each student (though not necessarily
unique).

5.1 Parameterization configuration file syntax

Symbolic parameter replacement operations are defined within the config/parameter.config

file. Each line of that file must start with a "<parameter_id> : ", which is any unique string,
and is followed by one of the following operations:

RAND_REPLACE : <filename> : <symbol> : <LowerBound> : <UpperBound>

Replace a symbol within the named file with a random value within a given

range. The random value generator is initialized with the lab instance

seed.

where: <filename> - the file name (file must exist) where <symbol> is

to be replaced. The file name is prefixed

with a container name and a ":", (the container

name is optional for single-container labs).

This may be a list of files, delimited by semicolons.

A file name of "start.config" will cause symbols

in the lab’s start.config file to be replaced, e.g.,

to randomize IP addresses.

<symbol> - the string to be replaced

<LowerBound> and <UpperBound> specifies the lower and upper bound

13An exception is the start.config file, which can be parameterized as described in the syntax description.
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to be used by random generator

example:

some_parameter_id : RAND_REPLACE : client:/home/ubuntu/stack.c

: BUFFER_SIZE : 200 : 2000

(all one line) will randomly replace the token string "BUFFER_SIZE" found in

file stack.c on the mylab.client.student container with a number ranging from

200 to 2000

RAND_REPLACE_UNIQUE : <filename> : <symbol> : <LowerBound> : <UpperBound>

Identical to RAND_REPLACE, except randomly selected values are never resused

within any given upper/lower bound range. This is intended for use on IP

addresses, e.g., 198.18.1.WEB_IP. It is suggested that random ranges be selected

such that they do not intersect any non-random address allocations.

HASH_CREATE : <filename> : <string>

Create or overwrite a file with a hash of a given string and the lab

instance seed.

where: <filename> - the file name that is to contain the resulting hash.

The file name is prefixed with a container name

and a ":", (the container name is optional for

single-container labs).

This may be a list of files, delimited by semicolons

The file name is is optionall, (in cases of a single

container). This may be a

list of files, delimited by semicolons.

<string> - the input to a MD5 hash operation (after concatenation

with the lab instance seed)

example:

some_parameter_id : HASH_CREATE : client:/home/ubuntu/myseed

: bufferoverflowinstance

A file named /home/ubuntu/myseed will be created (if it does not exist),

containing an MD5 hash of the lab instance seed concatentated with the

string ’bufferoverflowinstance’.

HASH_REPLACE : <filename> : <symbol> : <string>

Replace a symbol in a named file with a MD5 hash of a given string

concatenated with the lab instance seed.

where: <filename> - the file name (file must exist) where <symbol> is

to be replaced. The file name is prefixed

with a container name and a ":", (the container

name is optional for single-container labs).

This may be a list of files, delimited by semicolons.

<symbol> - a string that will be replaced by the hash

<string> - a string contatenated with the lab instance seed and hashed

example:

some_parameter_id HASH_REPLACE : client:/root/.secret :
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ROOT_SECRET : myrootfile

The string "ROOT_SECRET" in file /root/.secret will be replaced with an MD5 hash

of the concatenation of the lab instance seed and "myrootfile".

CLONE_REPLACE : <filename> : <symbol> : <ignored>

Replace a symbol with the clone instance number of a container per the CLONE option

in the start.config file. This is intended for use in providing instance-

unique values on cloned containers, e.g., to assign a unique password to

each container based on the clone number. If the container has no clone

instance number then the symbol is replaced with an empty string.

The parameter id fields may be referenced during the automated grading function, described
below in section 6.3.

5.2 Synchronizing startup and parameterization

System initialization should generally occur as with any Linux based system, e.g., using rc.local
or system services. You can enable rc.local by placing RUN systemctl enable rc-local in
the Dockerfile. Parameterizing occurs subsequent to container “boot”, but prior to running
the fixlocal.sh script. The Ubuntu based images include a waitparam.service that delays
reporting its initialization to systemd until parameterization has completed. That service is
configured to run prior to rc.local. The service unit file is at:

trunk/scripts/designer/system/lib/systemd/system

If you have defined system services that should not start until parameterization has occurred,
then add this to the [Unit] section of their service unit file:

After=waitparam.service

Note that if your fixlocal.sh script starts any such service, you must create a flag directory
from within your fixlocal.sh script to unblock the waitparam.service. The following lines
would achieve that:

PERMLOCKDIR=/var/labtainer/did_param

sudo mkdir -p "$PERMLOCKDIR"

5.3 Parameterizing start.config

Parameterizing of the start.config file occurs prior to Docker container creation. The framework
modifies a copy of the file stored in /tmp/start.config and uses that when assigning attributes
to containers, e.g., IP addresses. Currently only IP addresses within the start.config can be
parameteterized (e.g., not user names).

5.4 Simple Parameterization for Checking Own-work

The simplest, though by no means robust, strategy for ensuring students have turned in their
own work, (vice getting a zip file from a friend and simply changing the name of the file), is
to individualize some file on one of the containers, and then check that file and the archive
file names during grading. The framework does this automatically and reports on any student
archive that does not seem to have originated from a Labtainer initiated with that student’s
email address.
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5.5 Debugging parameterizing

The parameterization step occurs the first time each container is started. It occurs by running
the .local/bin/parameterize.sh script on the container. Debugging output from the execution
of this script can be found on the container in /tmp/parameterize*

Within the labtainer.log, you can see the step occur following the log entry that reads:
“About to call parameterize.sh...”. The parameterizing step is preceded by a copying of the
files in the labtainer-student/lab bin directory into the container.

6 Automated assessment of student labs

This section describes how to configure a lab for automated assessment of student work. Note
the framework does not require automated assessment, e.g., the “results” of a lab may consist
entirely of a written report submitted by the student. Support for automated collection of
written reports is described in 4.6 and the use of COLLECT DOCS in the start.config file.

The goal of automated assessment is to provide instructors with some confidence that stu-
dents performed the lab, and to give instructors insight into which parts of a lab students may
be having difficulty with. The automated assessment functions are not intended to standardize
each student’s approach to a lab, rather the goal is to permit ad-hock exploration by students.
Therefore, lab designer should consider ways to identify evidence that steps of a lab were per-
formed rather than trying to identify everything a student may have done in the course of the
lab.

Automated assessment is achieved by first generating artifact files while the student works.
That is described in the first subsection below. Next, artifacts within those files are identified
as described in section 6.2. The values of the resulting artifacts are then compared to expected
values, as per section 6.3.

6.1 Artifact files

The files from which artifacts are derived include persisent data, such as system logs and
.bash history, as well as timestamped snapshots of transitory data such as stdout of a pro-
gram. Lab designers can also generate customized artifacts in response to student actions using
scripts that automatically execute when selected programs or utilities are executed – or when
selected files are accessed. The following paragraphs describe how these artifacts are generated.

The Labtainer framework use of timestamps allows designers to express temporal relation-
ships between artifacts, and thus between events. For example, the designer can determine if
two distinct artifacts were part of the same stdout stream. Or if artifacts in the stdout stream
from one program were occuring during the invocation of a different program that generated
other specific artifacts. The framework also can incorporate timestamps from standard log file
formats, e.g., syslog, allowing the designer to determine if some logfile entry occurred during the
invocation of a program whose stdout stream contains selected artifacts. As a more concrete
example, the use of timestamps allows the designer to determine that a spcific web log record
occurred during invocation of some program that produced a specific artifact.

6.1.1 Capturing stdin and stdout

Each time the student invokes a selected program or utility, the framework captures copies of
standard input and standard output, (stdin and stdout) into timestamped file sets. This is
transparent to the student. (Also see the following section for capturing program output other
than stdout.) These timestamped file sets, selected system logs, and everything relative to
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the student’s home directory, are automatically packaged when the student completes the lab.
These packages of artifacts are then transferred to the instructor, (e.g., via email or a LMS),
and ingested into the instructor’s system where lab assessment occurs. Timestamped stdin and
stdout files are captured in $HOME/.local/result

By default, stdin and stdout for all non-system programs is captured, e.g., the results of an
“ls” command are not captured. The stdin and stdout of system programs14 will be captured
if the program names appear at the beginning of a line in the treataslocal file at

$LABTAINER_DIR/labs/[labname]/[container name]/_bin/treataslocal

The basename of the treataslocal entries are compared to the basename of each command. 15

Non-system programs can be excluded from stdin/stdout capturing by including their names
in a “ignorelocal” file in that same directory. 16

The student commands are parsed to first account for the use of sudo, time, python or
python3. The commands are also processed to account for the use of pipes and redirection.

6.1.2 Capturing program file output

Sometimes program file output is of interest to automated assessment, e.g., the program may
not have useful stdout. The treataslocal entries can include optional output file identifiers that
cause timestamped copies of specified files to be made whenever the named program terminates.
If program file output from local programs is to be captured in timestamp files (in addition
to the stdout and stdin), simply include those program names in the treataslocal file. These
output file identifiers are of the form:

program delim_type:delim_value

where delim_type is one of:

starts -- the output file name is derived from the

substring following the given delim_value within the

command line typed by the student. For example,

"dd starts:of=" for a command line of

"dd in=myfs.img of=newfile" would yield an output

file name of "newfile".

follows -- the output file name is the command line

token following the given delim_value. For example,

"myprogram follows:myprogram" for a command line of

"myprogram outfile" would yield "outfile" as the output

file name.

file -- the delim_value is the output file name

The resulting timestamped files are located with the stdin and stdout files in .local/result

6.1.3 Bash History

The framework collects all student bash history into the $HOME/.bash history and
/root/.bash history files. These files are available for reference as an artifact file.

14The “source” directive is not a system program, and should not be included in a treataslocal file.
15In other words, if the treataslocal entry is: usr/bin/nmap, the path leading to nmap is ignored.
16These should not include path information, just the program name.
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6.1.4 System logs

All files referenced in the results.config file, (described below in section 6.2 will be collected
into the artifact archive.

6.1.5 Capturing information about the environment

Some labs require the student to alter system configuration settings, e.g., using the sysctl
command to affect ASLR. A precheck.sh script in:

$LABTAINER_DIR/labs/[labname]/[container name]/_bin

is intended to contain whatever commands are necessary to record the state of the system at the
time a program was invoked. The stdout of the precheck.sh script is recorded in a timestamped
precheck.stdout file. The timestamp of this file will match the timestamp of the stdin and
stdout artifacts associated with the command that caused precheck.sh to run. The precheck.sh
is passed in the full path of the program as an argument, thereby allowing the designer to
capture different environment information for different commands.

As another example, consider the file-deletion lab precheck.sh script. It mounts a directory,
lists its content, and unmounts it. This all occurs transparently to the student, and, in this
example, helps confirm a specific file was in fact deleted at the time of issuing a command to
recover deleted content from the volume.

In other situations, you may wish to capture environment information when selected com-
mands are executed, even though you have no interest in stdin or stdout of those commands.
For example, imagine you want to capture the file permissions of /usr/bin/tcpdump whenever
that command is executed. This can be achieved by including /usr/bin/tcpdump in a list
within a file at:

$LABTAINER_DIR/labs/[labname]/[container name]/_bin/forcecheck

and then include ls -l /usr/bin/tcpdump in the precheck.sh script. Note that the forcecheck
list of programs must include the full path name. The forcecheck file can be used instead of a
treataslocal file entry for those cases where stdin and stdout are not required for goal assessment.
An example of the use of forcecheck can be found in the capabilities lab.

6.1.6 Capturing file access events

File creation, reading and modification events can be recorded using a combination of a notify

file and an optional notify cb.sh script at:

$LABTAINER_DIR/labs/[labname]/[container name]/_bin/

The notify file will name directory or file paths and the access modes of interest, one entry
per line, having this format:

<file_path> <mode> [output file]

where the file path is the absolute path to the file of interest, and mode is one of the following:

• CREATE Assumes the path is to a directory. This will capture any file or directory creation
within the named directory.

• ACCESS will capture any read of the file named by the path.

• MODIFY will capture any write to the file named by the path.
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• OPEN will capture any open of the file or directory named by the path.

The optional output file will be used for the timestamped filename of the output from the
event (instead of the default notify.stdout.YYMMDDHHMM Each time an event occurs matching
a criteria specified in the notify file, the notify cb.sh script is invoked (if it exists), passing
in the given path and access mode. The script is also provided with the most recent command
issued by either the container user, or the root account (whichever is more recent). If there is
no notify cb.sh script, then the output consists of the file path, the most recent command,
and the associated user (e.g., root). See the acl lab for an example.

The output from the notify event is captured in timestamped files, just as those resulting
from events described in Section 6.1.5. If the optional output file provided in the notify list
is given as precheck, then events resulting from program invocation, e.g., due to use of a
forcecheck file, can be recorded in the very same timestamped file as events resulting from a
notify file. In such cases, output from the former will preceed output from the latter within
the file. The framework will append the notify output to any timestamped precheck.stdout

file that was created up to two seconds prior to the notify event. Inclusion of both outputs
into one timestamped file allows the designer to identify events that occured as part of a single
program invocation. Again, see the acl lab for an example.

6.1.7 Generating results upon stopping the lab

The lab designer can cause a script to run on selected containers whenever the student stops
a lab, or when a student issues the checkwork command per 6.4. This is achieved by creating
an script or executable program at:

trunk/labtainers/lab/<lab>/_bin/prestop

The stdout of any such program will be written to a timestamped file named prestop.stdout.timestamp

The framework ensures that all such scripts on all of the lab containers will complete prior to
shutting down any of the containers, and all the timestamps will be the same. Note the Labtain-
ers framework generally allows students to acheive their goals at any point in their exploration,
and the labs typically do not require the student to leave the system in any particular state.
In other words, students should be free to continue experimenting subsequent to getting the
correct results. Thus, any use of the prestop feature, (other than for current state assessment
per 6.4.1), should be accompanied by a lab manual entry advising the student that they may
restart a lab after issuing the stoplab command. 17

All prestop scripts will timeout after 30 seconds with a SIGTERM. For debugging support,
please consider adding signal handling to your prestop scripts. For example, for a bash script,
include:

trap "echo Timed out; exit" SIGTERM

6.1.8 Artifact archives

Artifacts from student labs are combined into a zip file that is placed in the student trans-
fer directory, typically at /labtainer/xfer/<labname>. Students provide this file to their
instructor for automated assessment, e.g., via email or an LMS.

Other uses for student artifacts are facilitated through use of a script named:

labtainers/labs/<lab>/bin/postzip

If such a script exists, it is executed after all of the student artifacts are zipped up. See the
cyberciege lab for an example of postzip processing.

17Perhaps a goalsmet type of command should be added that does nothing but record prestop results without
actually stopping the lab?
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6.2 Artifact result values

The automated assessment functions encourage labs to be organized into a set of distinct
“goals”. For each goal, the lab designer identifies one or more specific fields or attributes of
artifact files that could be compared to “expected” values. These lab-specific artifacts are
identified within the configuration file at:

labtainer/trunk/labs/<lab>/instr_config/results.config file

Artifact files are identified in terms of:

1. The program that was invoked

2. Whether the artifact is in stdin or stdout or is program output (prgout) as descrbed in
section 6.1.2

3. An explicit file name, either as an absolute path or relative to the user HOME directory.
These are intended to be persistent log files, e.g., syslogs.

One or more properties of each artifact file are assigned symbolic names, referred to herein
as results, which are then referenced in the goals.config file to assess whether results match
expected values. Directives within the results.config file assign each result a value having one
of three types:

• Boolean, e.g., did an artifact file contain a specific string or regular expression?

• String, e.g., the third space-delimited token on the first line containing the string ”Audi-
ence says:”

• Numeric such as the quantity of lines in an artifact file, or the quantity of occurances of
a string in an artifact file.

There are typically multiple instances of each result, each with its own associated timestamp.
The framework automatically associates timestamps with results, thereby allowing the designer
to express temporal relationships between results as introduced in section 6.1 The timestamp
associated with any given result will be derived from different sources depending on the nature
of the results.config directive:

• The timestamp of the artifact file. For example, each stdout artifact file name includes
a timestamp reflecting when the program was invoked, (and its corresponding stdin file
contains an entry reflecting when the program terminated).

• A timestamped entry from a log file, e.g., an entry in a web log, that matches criteria
specified in the results.config directive.

6.2.1 Result field values

Directives within the results.config file each have the following format:

<result> = <file_id> : <field_type> : <field_id> [: <line_type> : <line_id>]

Fields are defined below.

• result The symbolic name of the result, which will be referenced in the goals configuration
file. It must be alphanumeric, underscores permitted.
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• file id Identifies a single file, or the set of files to be parsed. The format of this id is:

[container_name:]<prog>.[stdin | stdout | prgout]

Where prog is a program or utility name whose stdin, stdout, or program output (prgout)
artifacts will include timestamps. The optional container name identifies the container
hosting the file. Labs with a single container can omit this qualifier. Alternately, an
explicit file path is intended for log files of services that persist across multiple student
operations. If the given path is not absolute, it is relative to the container user’s home
directory. The wildcard character ’*’ can be used in place of prog, i.e., *.stdin is for all
stdin artifacts and *.stdout is for all stdout artifacts. Note prestop files are excluded from
wildcard results.

• field type The following field type’s are used to identify fields within a selected line
in the file, as determined by the line type and line id defined further below. Once the
line is found, the field type and the field id locate the value within the line.

– TOKEN Treat the line as space-delimited tokens

– PARENS The desired value is contained in parenthesis

– QUOTES The desired value is contained in quotes

– SLASH The desired value is contained within slashes, e.g., /foo/

– SEARCH The result is assigned the value of the search defined by the given
field id, which is treated as an expression having the syntax of pythons parse.search
function. E.g., frame.number=={:d} would yield the frame number.

– GROUP Intended for use with ”REGEX” line types, the result is set to the value
of the regex group number named by the field id. Regular expressions and their
groups are processed using the python re.search semantics.

• line type Each of the above field type’s require a line type and line id to locate
the line within the file. The line type value is one of the following:

– LINE – The line id is an integer line number (starting at one). Use of this to
identify lines is discouraged since minor lab changes might alter the count.

– STARTSWITH – the line id is a string. This names the first occurrence of a line
that starts with this string.

– HAVESTRING – The line id is a string. This names the first occurrence of a
line that contains the string.

– REGEX – The line id is a regular expression. This names the first occurrence of
a line that matches the regular expression. Also see the ”GROUP” field type.

– NEXT STARTSWITH – the line id is a string. This names the line preceeding
the first occurrence of a line that starts with this string.

– HAVESTRING TS – Intended for use with log files that have timestamped en-
tries. Each entry containing the string identified in line id will have its result stored
as a timestamped value as if it came from a timestamped stdout or stdin file. See
the snort lab for an example.

– REGEX TS – Similar to HAVESTRING TS, but with REGEX semantics, includ-
ing optional use of the GROUP field type.
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• line id can be a parameterized value from the param.config file. Preface these with a
”$”.

• field type (without line id) The following field types operate on the entire file, not
just on selected lines. These entries will have no line type or line id fields.

– LINE COUNT – The quantity of lines in the file. Remaining fields are ignored.

– CHECKSUM – The result value is set to the md5 checksum of the file.

– CONTAINS – The result value is set to TRUE if the file contains the string rep-
resented in field id.

– FILE REGEX – The result value is set to TRUE if the file contains the regular
expression represented in field id. The python findall function is used on the entire
file. See the acl lab for an example of multi-line expressions.

– LOG TS – Used with timestamped log files, this results in a timestamped set of
boolean results with a value of TRUE for each log line that contains the string
represented in the field id.

– FILE REGEX TS Like LOG TS, but uses regular expressions.

– LOG RANGE – Similar to LOG TS, except the timestamped entries are ranges
delimited by the matching log entries.

– STRING COUNT–The result value is set to the quantity of occurances of the
string represented in field id.

– COMMAND COUNT-Intended for use with bash history files, counts the occu-
rances of the command given in the field id. Commands are evaluatd considering
use of sudo, time, etc.

– PARAM – The result value is set to nth parameter (0 is the program name),
provided in the program invocation.

– TIME DELIM – The timestamps of the named files are used to create a set of time
ranges with periods between the timestamps of each file, e.g., for use in time during
goal operators. File identifiers should not include stdin or stdout qualifiers. The file
identifier may be a list of container:file pairs separated by semicolons.

• field id – An integer identifying the nth occurance of the field type. Alternately may
be ”LAST” for the last occurance of the field type, or ”ALL” for the entire line (which
causes the field type to be ignored). Or if field type is SEARCH, the field id is treated as
the search expression. If field type is ”CONTAINS”, the remainder of the line is treated
as a string to be searched for. If field type is ”PARAM”, the field id is the 1-based index
of the parameter whose value is to be assigned, and no other fields should be present. If
field type is ”CHECKSUM”, no other field is required.

6.2.2 Converting artifact file formats

Some artifact file formats are not easily referenced by results.config directives. For example,
a browser history file in the .sqlite format is binary. Such files can be processed into a more
convenient form through use of a script at:

$LABTAINER_DIR/labs/[lab]/instr_config/pregrade.sh

Modify or expand on the default pregrade.sh script. In general, the pregrade.sh script is ex-
pected to extract or convert data from an artifact file, and write it into a new file in the
.local/results directory of the container. The pubkey lab has an example use of pregrade.sh.
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6.3 Evaluating results

Results of student lab activity are assigned symbolic names by the results.config file as described
above. These results are then referenced in the goals.config to evaluate whether the student
obtained expected results. Most lab goals defined in the goals.config file will evaluate to TRUE
or FALSE, with TRUE reflecting that the student met the defined goal. In addition to these
binary goals, the designer can capture and report on quantities of events, e.g., the number
of times a student ran a specific program. Once evaluated, a goal value may affect the value
of subsequent goals within the goals.config file, i.e., through use of boolean expressions and
temporal comparisons between goals. The evaluated state of each goal can then contribute to
an overall student assessment.

Student results may derive from multiple invocations of the same program or system utility.
The framework does not discourage students from continuing to experiment and explore aspects
of the exercise subsequent to obtaining the desired results. In general, Labtainer assessment
determines if the student obtained expected results during any invocation of a program or
system utility, or during a time period delineated by timestamp ranges described in 6.3.2. 18

The goals.config file contains directives, each of which assigns a value to a symbolic name
referred to as the goal id. Each goal id may have multiple instances of timestamped values,
with their associated timestamp ranges inherited from results. Examples of assigning values to
a goal id include:

• A goal id is automatically created for each boolean result from the results.config file. The
timestamps are directlly inherited from the results.

• The value of a specific result is compared (e.g., do two strings match?) to a literal expected
value. A boolean goal id value is generated for each referenced result’s timestamp.

• The value of a specific result is compared to a parameterized value generated from the
student email address as described in section 5. A boolean goal id value is generated for
each referenced result’s timestamp.

• A keyed hash of a specific result is compared to the keyed hash of an expected value – to
avoid publishing the actual value of the expected result. See 6.3.3.

• Timestamps and boolean values of two different goal id’s are compared. For example,
“was a TRUE value for result A generated while a TRUE value for result B was being
generated?” A boolean goal id is generated for each timestamp range of result B within
which falls at least one result A timestamp.

• A boolean expression consisting of multiple goal id’s and boolean operators such as OR,
AND, NOT AND. A boolean goal id is generated for each timestamp range for which
there is an instance of every goal id named in the expression.

6.3.1 Goal definitions

The following syntax defines each goal within the goals.config file. While the syntax may appear
complex, most goals can be expressed simply as can be seen in section 6.6 and in the Labtainer
exercises distributed with the framework.

<goal_id> = <type> : [<operator> : <resulttag> : <answertag> | <boolean_expression>

| goal1 : goal2 | <resulttag> | value : subgoal_list]

18In those cases where the student is required to obtain the expected results during the final invocation of a
program, the matchlast goal type may be specified as described below.
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Where:

<goal_id> - An identifer for the goal. It must be alphanumeric

(underscores permitted).

<type> - must be one of the following:

matchany - Results from all timestamped sets are evaluated.

If the answertag names a result, then both that

result and the resulttag must occur in the same

timestamped set. The ’matchany’ goals are treated

as a set of values, each timestamped based on the

timestamp of the reference resulttag.

matchlast - only results from the latest timestamped set are

evaluated.

matchacross - The resulttag and answertag name results. The

operator is applied against values in different

timestamped sets. For example, a "string_diff"

operator would require the named results to have

at least two distinct values in different

timestamped sets. Note: ’matchacross’ cannot

be used within the boolean expression defined below.

boolean - The goal value is computed from a boolean expression

consisting of goal_id’s and boolean operators, ("and",

"or", "and_not", "or_not", and "not"), and parenthisis

for precedence. The goal_id’s must be from goals defined

earlier in the goals.config file, or boolean results

from results.config. The goal evalutes to

TRUE if the boolen expression evaluates to TRUE for any

of the timestamped sets of goal_ids, (see the ’matchany’

discussion above). The goal_id’s cannot include any

"matchacross" goals. NOTE: evaluation is within

timestamped sets. If you want to evaluate across

timestamps, use the count_greater_operator below.

count_greater The goal is TRUE if the count of TRUE subgoals in the

list exceeds the given value. The subgoals are

summed across all timestamps. The subgoal list is

comma-separated within parenthesis.

time_before - Both goal1 and goal2 must be goal_ids from previous

matchany, or boolean values from results.config

A timestamped goal is created for each goal2

timestamped instance whose timestamp is proceeded

by a goal1 timestamped instance. The goal for that

timestamp will be TRUE if the goal2

instance is TRUE, and at least one of the goal1

instances is TRUE. These timestamped goals can

then be evaluated within boolean goals.

time_during - Both goal1 and goal2 must be goal_ids from previous

matchany goal types, or boolean values from

results.config. Timestamps include a start and end

time, reflecting when the program starts and when it

terminates. A timestamped goal is created for each
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goal2 range that encompasses a goal1 timestamp.

The goal for that timestamp will be TRUE if the

goal2 instance is TRUE, and at least one goal1 instance

is TRUE. These timestamped goals can then be

evaluated within boolean goals.

time_not_during Similar to time_during, but timestamped goals are

always created for each goal2. Each such goal is True

unless one or more goal1 times occur within a True goal2

range.

execute - The <operator> is treated as a file name of a script to

execute, with the resulttag and answertag passed to the

script as arguments. The resulttag is expected to be

one of the symbolic names defined in the results.config

file, while the answertag is expected to be a literal

value or the symbolic name in the parameters.config file

Note: the answertag cannot be a symbolic name from

results.config

count - If the remainder of the line only includes a resulttag,

then the goal value is assigned the quanity of

timestamped files containing the given resulttag.

Otherwise the goal value is assigned the

quantity of timestamped files having results

that satisfy the given operator and arguments.

value - The goal value is assigned the given resulttag value from

the most recent timestamped file that contains the resulttag.

<operator> - the following operators evaluate to TRUE as described below:

string_equal - The strings derived from <answertag> and <resulttag>

are equal.

hash_equal - The resulttag value is hashed using the Lab Master Seed

defined in the start.config. That is compared with

the answertag, which should have been generated by

the hash-goals.py utility (see below).

string_diff - The strings derived from <answertag> and <resulttag>

are not equal.

string_start - The string derived from <answertag> is at the start of

the string derived from <resulttag>.

example: answertag value = ’MySecret’

resulttag value = ’MySecretSauceIsSriracha’

string_end - The string derived from <answertag> is at the end of

the string derived from <resulttag>.

example: answertag value = ’Sriracha’

resulttag value = ’EatMoreFoodWithSriracha’

string_contains The string derived from <answertag> is contained within the

string derived from <resulttab>.

integer_equal - Integers derived from <answertag> and <resulttag>

are equal.

integer_greater - The integer derived from <answertag> is greater than

that derived from <resulttag>.

integer_lessthan- The integer derived from <answertag> is less than
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that derived from <resulttag>

<executable_file> - If the type is ’execute’ then <operator> is a filename of

an executable.

<resulttag> -- One of the symbolic names defined in the results.config file.

The value is interpreted as either a string or an integer,

depending on the operator as defined above. Alternately,

for integer operators within matchany types, this

may be an arithmetic expression within parentheses. For example,

"(frame_number-44)".

<answertag> -- Either a literal value (string, integer or hexidecimal), or a

symolic name defined in the results.confg file or the

parameters.config file:

answer=<literal> -- literal string, integer or hex value

(leading with 0x), interpretation depending

on the operator as described above.

result.<symbol> -- symbol from the results.config file

parameter.<symbol> -- symbol from the parameters.config file

parameter_ascii.<symbol> -- same as above, but the value parsed as

an integer or hexidecimal and converted to an

ascii character.

Note that values derived from the parameters.config file are assigned the same values as were
assigned when the lab was parameterized for the student.

6.3.2 Distinguish between results generated before and after configuration changes

Some labs direct students to configure a system so that it is “secure”, or meeting some criteria
germane to lab learning objectives. Once the system is so configured, the student is then
directed to perform a specific set of actions to demonstrate the correctness of the configuration.
For purposes of automated assessment, we would like evidence that the student performed
all the prescribed demonstration steps without intervening configuration changes. In other
words, though the student may perform a myriad of configuration changes and demonstrate
steps (encourage experimentation!), we’d like to know if there ever was a single configuration
in which all of the demonstration steps were performed.

Labtainers provides the LOG RANGE and TIME DELIM result types to establish time
ranges over which we can assert that no configuration changes were made. Once those time
ranges are established, i.e., as a set of results with a single tag, the time during and time not during

goal operators bin other results into those time ranges. Once so binned, the boolean operator
can be used to determine if the desired conditions were met within a single configuration state.
See sections 6.6.6 and 6.6.7 for examples.

6.3.3 Replace answers with hashes

Automated assessment files include expected results, which sometimes reflect “answers” to
problems that instructors would prefer not to publish, e.g., how many packets did source X
send? While automated assessment can help the instructor confirm that the student ran a
program that generated the desired output, not all instructors use automated assessment. For
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example, they may simply review lab reports. Note this is not an issue when parameterization
individualizes the expected result for each student.

Labtainers allows designers to include keyed hashes of answers within the published files
rather than the answers themselves. The hash equal operator used in a goals.config file
functions like the string equal operator, except the comparison is made on a hash of the
named result value, generated using the Lab Master SEED as the key.

Instead of creating a goals.config file directly, the designer creates a goals.answers file
that contains the intended content of the goals.config file, but with the actual answers, e.g.,:

ipv4_count = matchany : hash_equal : _ipv4_count : answer=2029121

The hash-goals.py utility is then used to generate the goals.config file, replacing the plain
text answers with the appropriate hashes.

It is intended that the goals.answers files will not be distributed, e.g., they would be main-
tained with the SimLab solutions repo.

6.3.4 Assessment Report

Evaluation of student results occurs on a grading container that starts when the instructor
runs the gradelab <lab> command. A report is generated and displayed on the screen. A
copy of the report is also placed in the latainer xfer directory. Debugging your assessment
configuration an be aided by using gradelab -d <lab>, which will start the grading container
and give you a shell into it. From there, run the script named instructor.py. There is a log
in /tmp/instructor.log in addition to diagnostics that might be generated on the terminal.
See section 6.7 for additional information on debugging grading.19. By convention, all goals and
boolean results whose symbolic names are not prefaced with an underscore ( ) or an cw (see
6.4), will have corresponding entries in the assessment report, located in the home directory in
a file named <lab name>.grades.txt>

6.3.5 Document the meaning of goals

Instructors will see descriptions of lab goals when they start the lab using gradelab. These
descriptions are embedded within directives within the goals.config and results.config files. The
descriptions are associated with symbolic names that immediately follow the documentation
directives as described below:

# SUM: -- The remainder of the line and comment lines that immediately

follow are displayed independent of any goal symbols.

# DOC: -- The remainder of the line and comment lines that immediately

follow are displayed for the symbolic name that follows

the comment lines.

# GROUP:-- The remainder of the line and comment lines that immediately

follow are displayed for the group symbolic names that

follows the comment lines. The group ends on a blank line, or

new comment.

See existing labs for examples. Also see the 6.4 for additional directives.

19Be sure to run stoplab after use of the -d option to shut down the grading container when you are done
with it
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6.4 Student self-assessment

The checkwork command allows students to assess their own work against the criteria used by
instructors for automated assessment of lab performance. This can be disabled on a deployment-
wide basis using the CHECKWORK no directive in the config/labtainers.config file. Of course
this assumes you have separately provided access control over that file, e.g., through use of a
custom VM appliance.20

6.4.1 Current state assessment

The lab designer can define a subset of goals and results that inform the student whether the
current system state is as desired. This greatly differs from typical Labtainer goal assessment,
which measure whether the student ever achieved expected results, regardless of the system’s
current state. These current state goals are intended to guide the student with potentially more
information than is found (or is practical) in the standard goals. The current state goals are
not intended to replace other goals, and they are not displayed to instructors.

The current state goals and results must have a prefix of cw , and they are required to have
documentation directives of CHECK TRUE or CHECK FALSE. Text included within a directive will
be displayed to students if the value of the associated goals at the time checkwork was run
does not match the directive value. In the example below the documentation directive will be
displayed if the cw ssh open value is False.

#CHECK_TRUE: The SSH port is not open.

cw_ssh_open = client:prestop.stdout : FILE_REGEX : 22/tcp.*open

A CHECK OK documentation directive can be added display text in the event that all of the cw

goals match their documentation directives.
Current state goals are expected to reflect the current state of the computers as described

below.

6.5 Current state artifacts

Results and goals used for current state assessment should primarily be derived from artifacts
generated by prestop scripts described in 6.1.7. The system uses the most recent timestamp
found for any files named by current state results, i.e., those with the cw prefix. The designer
can name any file for a current state result – but note it may be difficult to divine current state
solely from previous artifacts, e.g., the state may have changed. For this reason, we suggest
use of prestop scripts.

To highlight the differences between current state assessment and standard Labtainers as-
sessment, consider an example lab that requires the student to enforce an access control policy
on a database having several users with differing authorizations. To support the instructor,
we’d like to report on whether the student ever managed to configure the database permissions
within a single configuration such that all users were prevented from exceeding their authoriza-
tion and yet were able to access data to which they were authorized. Providing the instructor
with point details of whether individual modes of access were permitted or denied at any time
in the lab might not be very helpful because the context of such access would not be known.
For example, a goal might reflect that John was denied access to some table at some point, but
was it due to everyone being denied access? Or due to John being denied access to everything?
Such intermediate results can be presented to instructors (or they can delve into intermediate
results themselves on the grader container), but those results lack context within the grading

20 Disabling self-assessment might be useful if Labtainers was repurposed for skills assessment testing.
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report. On the other hand, when the student runs checkwork, the context is clear and we can
provide feedback to the student about the current state of the system relative to the goals.
Now the questions are better formed, e.g., does John currently have access to the expected
table columns?.

The above discussion is not intended to dissuade lab designers from informing instructors
about partial success. If goals can be defined to show the student was able to provide most of
the desired access controls though unable to enforce the entire policy, that is to be encouraged.
But that can also be hard to do. It is often far easier to provide the student with information
about partial goal achievement because the context is now.

6.6 Assessment examples

The following examples illustrate some typical assessment operations as they would be defined
in the results.config and goals.config files.

6.6.1 Did a program output an expected answer?

Often, the easiest approach to such an assement is to simply use a FILE REGEX field type within
the results.config – and not bother with the goals.config.

got_x = *.stdout : FILE_REGEX : X is:.*347

The lab goals will include a boolean named got x, which will be true if any stdout file contained
a string matching that REGEX.

6.6.2 Do artifact files contain one of two specific strings?

Consider the labs/formatstring/instr config/results.config file for a few examples. The first
non-comment line defines a result having the symbolic name “ crash sig”:

_crash_sig = vul_prog.stdout : CONTAINS : program exit, segmentation

_crash_smash = vul_prog.stdout : CONTAINS : *** stack smashing detected

This result is TRUE for each timestamped stdout file resulting from running the vul prog
program in which the file contains the string “program exit, segmentation”. The goals.config
includes this goal:

crash = boolean : ( _crash_smash or _crash_sig )

The value of the crash goal is TRUE if either result was ever true. Use of the count greater

operator in the above example would also provide the desired assessment. Note that the boolean
operator only assesses values within timestamped sets. For example, if the result values came
from different program outputs, then they may not be within the same timestamp, and thus
would not compare. In such a case, the count greater operator should be used.

6.6.3 Compare value of a field from a selected line in an artifact file

Again refrence the labs/formatstring/instr config/results.config file. The third non-comment
line defines a result having the symbolic name “origsecret1value”:

origsecret1value = vul_prog.stdout : 6 : STARTSWITH : The original secrets:

newsecret1value = vul_prog.stdout : 6 : STARTSWITH : The new secrets:
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The timestamped results are found by looking at stdout from the “vul prog” program, and
finding the first line that starts with: “The original secrets:”. The result is assigned the value
of the sixth space-delimited token in that line. The “newsecret1value“ assignment is similar.
The goals.config file includes:

modify_value = matchany : string_diff : newsecret1value : result.origsecret1value

, which will be TRUE if any of the vul prog stdout files include a “newsecret1value” that differs
from its “oldsecret1value“.

6.6.4 Was a log entry written while some command executed?

Consider these two entries in results.config:

# Time stamp of log entry containing IP address

log-from-w1 = w3:/var/log/myhttplogfile.txt : LOG_TS : 202.25.4.2

# Use of wget -- will result in time stamp range: start-finish

wget-w1 = w1:wget.stdin : CONTAINS : 202.25.4.2

The following goals.config entry will be true if the log entry was ever generated using wget
from the w1 computer:

didit = time_during : log-from-w1 : wget-w1

6.6.5 My desired artifacts are not in stdin or stdout, the program outputs a file

See section 6.1.2

6.6.6 Delimiting time using log file entries

The LOG RANGE result type generates a set of results having timestamp ranges that cover
the period between specified log entries. For example, a results.config directive of:

syslog_slices = server:/var/log/messages : \

LOG_RANGE : Started System Logging Service

would create a set of time ranges with periods between each start of the system logging service.
The use of time during and/or time not during and boolean in the goals.config could then
assess whether two or more events occurred during a given system log configuration. For
example, assume the results.config file also included these directives:

_did_first_thing = client1:did_this.stdout : CONTAINS : Did that thing

_did_second_thing = client2:did_other.stdout : CONTAINS : Did that other thing

We’d like to know if the above two results were ever achieved within one configuration of
the logging system. This can be determined by first binning the above two results into the
time ranges established by the syslog slices result through use of time during within the
goals.config as follows.

_did_first_during = time_during : _did_first_thing : syslog_slices

_did_second_during = time_during : _did_second_thing : syslog_slices

That yields two sets of goals having time ranges defined by the LOG RANGE results. We can
then use a boolean operator to determine if those two goals were ever achived within the same
established time range21:

did_both = boolean : (_did_first_during and _did_second_during)

See the centos-log2 lab for an example.

21Recall that the use of the boolean operator only makes sense for goals/results having matching timestamps
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6.6.7 Delimiting time via program invocations

The TIME DELIM result type is intended to identify some program whose invocation times will
be used to create a set of time ranges. These results, like those from LOG RANGE differ from
other result types in that they define ranges between events. For example, a CONTAINS result
set from stdout files would have timestamps reflecting the corresponding program start and
stop time, while a TIME DELIM result would have timestamps reflecting the periods between
invocations of the program named in the directive.

Consider a lab that directs students to alter iptables on a component. The student is
required to demonstrate a desired iptables configuration by running nmap on various other
components. The instructor wants to confirm that some set of expected stdout from nmap
running on different components all occurred within a single configuration of iptables, delimited
by the running of the iptables command. In other words, the student cannot succeed by altering
iptables between invocations of nmap on different components.

Note, that to be generally useful, we do not wish to simply look for invocations of iptables
by the student. For example, using the command to view the configuration does not represent
a change to the configuration. Also, the iptables may be called from a script, e.g., rc.local, and
our typical use of stdout files would not see the running of iptables. It is therefore suggested
that TIME DELIM results be tied to files created as an effect of notify events described in 6.1.6.
In this example, the notify event would be execution of /sbin/iptables, and the notify cb.sh

script would determine if a change were being made to the configuration.
Then, if the lab results.config were:

iptables = firewall:iptables : TIME_DELIM

_remote_nmap_443 = remote_ws:nmap.stdout : CONTAINS : 443/tcp open https

_remote_nmap_sql = remote_ws:nmap.stdout : CONTAINS : 3306/tcp open mysql

_local_nmap_443 = ws1:nmap.stdout : CONTAINS : 443/tcp open https

_local_nmap_sql = ws1:nmap.stdout : CONTAINS : 3306/tcp open mysql

The iptables result set would then include up to N+1 timestamped instances, where N is
the quantity of times that iptables was executed to change the configuraion. The first possible
timestamp would have a starting time of zero and an ending time of the very first consequential
invocation of iptables. The nmap results would each have timestamps corresponding to their
times of execution. Note the nmap results include results from two different computers, ws1
and remote ws.

A goals.config file of:

remote_nmap_443 = time_during : _remote_nmap_443 : iptables

remote_nmap_sql = time_during : _remote_nmap_sql : iptables

local_nmap_443 = time_during : _local_nmap_443 : iptables

local_nmap_sql = time_during : _local_nmap_sql : iptables

remote_correct = boolean : ((remote_nmap_443 and_not remote_nmap_sql) \

and local_nmap_443 and local_nmap_sql)

would generate sets of nmap goals with timestamp ranges corresponding to the iptables

results. The remote correct boolean expression could then be read as: “Was there any single
iptables configuration during which the student used nmap to demonstrate that:

• The remote workstation could reach the HTTPS port but not the SQL port, and,

• The local workstation could reach the HTTPS port and the SQL port.

The file identifiers for TIME DELIM commands can be lists of container:file pairs separated by
semicolons. This is useful when configuration changes are delimited by modifications made on
more than one component or by more than one program
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6.7 Debugging automated assessment in labs

Developing automated assessment for a new lab typically requires some amount of debugging.
This section is intended to guide new developers through the process.

When the gradelab script is run from labtainers-instructor, the configuration files in labs/[lab
name]/instr config are validated. If syntax errors are found, error messages are displayed at
the terminal and processing halts. The error messages identify the offending results.config or
goals.config entry. Refer to sections 6.2 and 6.3 for the expected syntax of these files.

Once initial syntax checking is passed, the lab is graded for each student. If the grading
table does not display, or it displays incorrects values, then find run the gradelab command
with the -d option. At the resulting terminal, enter the instructor.py command. That may
display diagnostics at the terminal. It will also generate a /tmp/instructor.log file of debugging
messages.

At this point, the workflow is easiest if you edit/test from that container – just remember
to transfer your revised .config files from the container before doing a gradelab [lab] -r! A
copy of your config files are in ~/.local/instr\_config. You can edit those and try running
instructor.py again. The [lab].grades.json contains the results of the goals assessment. You can
find the results assessment for each student beneath the directory whose name is prefaced with
the student email. From there, look in .local/result to find json files reflecting intermediate
results of assessing the student results. The actual student result arifacts can be found in
~/[student dir]/[lab].[container].student/.local/result.

The mechanics of performing the lab (so that you can test grading for different outcomes)
can be automated using the SimLab tool described in Appendix A.

7 Quizzes

Labs may include simple quizzes intended to re-enforce a student’s understanding of concepts
necessary to perform the lab. The quizzes are not intended to be a primary source of student
assessment, rather, they are intended to help the student understand if they understand. No
attempt is made to protect quiz answers, or to randomize or parameterize quizzes. An example
application of quizzes is to allow the student to confirm his or her understanding of a security
policy prior to trying to implement enforcement of that policy.

Quizzes are performed on the Labtainer host from within the labtainer-student directory
using the quiz command. Use the -h option to see its usage.

A lab may have multiple quizzes. Each is defined in a file in the lab config directory within
a file having an extension of .quiz. Each quiz includes a set of questions. Each question is
defined by a comma separated list. If a line terminates without a comma or a backslash, it is
treated as the end of the question, and the next line is treated as the beginning of the next
question. Question types include the following:

7.1 True or False

A question whose answer is either true or false.

ID, TrueFalse, question, answer, right_response, wrong_response, prerequisit

Where:

• ID – any string identifier, must be unique. Currently only used to identify prerequisites
as described below.

• TrueFalse – identifies this as a True or False question.
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• question – The question, in double quotes.

• answer – Ether T or F.

• right response – Message to display if a correct response is provided. All correct responses
cause the word Correct to be display in bold font. Use empty double quotes of if that
should be the only message.

• wrong response – Message to display if a incorrect response is provided. All incorrect
responses cause the word Incorrect to be display in bold font. Use empty double quotes
of if that should be the only message.

• prerequisite – Optional ID of a another question. If provided, and that question was
answered correctly, then this question will be skipped. This is intended to re-enforce
concepts that the student previously answered incorrectly.

7.2 Preface

Text to display, e.g., prior to a set of questions.

ID, preface, text

Where:

• ID – any string identifier, must be unique.

• preface – identifies this as a preface whose text will be displayed.

• text – The text to be displayed. This text is intended to provide context for whatever
questions follow.

Here is an example quiz question and prefix:

0, Preface,

"The following quiz is intended to help you determine if you are \

ready to perform the lab."

1, TrueFalse,

"In this lab, you will configure a firewall to use malware signatures to block \

traffic destined for a server.", F,

"This lab will use iptables to filter network traffic destined for a server.",

"This lab will use iptables to filter network traffic destined for a \

server based on IP packet addresses and port numbers."

8 Networking

Most networking is simply a matter of defining networks and assigning them to containers as
described in 4.2.

In addition to networks properties defined in the start.config file, each container /etc/host
file includes a “my host entry” that names the host Linux. By Docker default, each container
includes a default gateway that leads to the Linux host. This allows students to scp files
to/from the container and host. It also allows the student to reach external networks, e.g., to
fetch additional packages in support of student exploration.
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In many instances, the lab designer will want to define a different default route for a con-
tainer. The start.config definitions for each container include an optional LAB GATEWAY param-
eter that, if set, will replace the default Docker gateway with the given gateway, and it will
replace the resolv.conf entry and delete the route to the my host address. That configuration
setting is implemented using a set default gw.sh, which designers can optionally chose to di-
rectly use instead of LAB GATEWAY in order to get more control over the setting of a default
gateway, e.g., as part of parameterization. This script will automatically retain a route table
entry so that the student can reach the “my host” address. Additionally, those baseline images
include a togglegw.sh script that the student can use to toggle the default gateway between one
that leads to the host, and one defined for the lab. This allows students to add packages on
components having lab-specific default gateways.

8.1 Network Taps

In general, Docker containers will only see network traffic addressed to the specific container, (or
broadcast traffic). The behavior is consistent with use of a layer 2 network switch to interconnect
containers on the same subnet. In some labs, the designer may wish to provide students with
copies of all network traffic that occurs on one or more subnets. Labtainers supports network
taps through use of two container base images: tap and netmon. The tap component should
not be visible to the student, it exists to collect traffic off of all networks whose start.config

definitions include the TAP YES attribute. The netmon component should be defined with a
single network interface to a network called TAP LAN. The netmon component should be the
only one on the TAP LAN network, (do not add the tap component to any network). The tap

component must have the TAP YES attribute. A service runs on the netmon component that
will receive network traffic sent by the tap component, and store it into the /taps directory
within PCAP files named using the network name. See the plc-traffic lab as an example.

The netmon base is derived from the wireshark base. You may add other tools to that
container as needed.

All containers attached to tapped networks will not be started until the tap and netmon
containers are up and ready. This ensures that all startup traffic is captured in the PCAPs.

8.2 Realistic Network Routing and DNS

Some labs will strive to represent realistic networking environments, e.g., several networked
components including gateways and DNS servers. To achieve that, you must override Docker,
which automatically sets the container’s /etc/resolv.conf file to use the host system DNS res-
olution. This is in addition to the default routes described above. While convenient, these
mechanisms can distract and confuse students, particularly when routing and DNS resolution
are central to the point of the exercise, (e.g., a DNS cache poisoning lab).

These Docker defaults can be easily overridden to present a more realistic networking envi-
ronment. A worked example of such a topology can be seen in the routing-basics lab. This lab
includes the following properties that can be reproduced in other labs:

• Default routes to gateway components.

• DNS definitions in /etc/resolv.conf that name gateway components.

• Use of iptables in gateway components to implement NAT.

• A hidden ISP component that exchanges network traffic with the host Linux system,
thereby allowing all visible components to include routing, DNS and iptables entries that
do not expose virtual networking tricks. See section 14.6 for additional information.
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8.3 Communicating with external hosts or VMs

A container can be configured to support network communication hosts external to Labtainers.
For example, consider a VirtualBox VMM that hosts a Linux VM that runs Labtainers and a
Windows VM. Assume the Windows VM has a fixed IP of 192.168.1.12 and the container will
be assigned a network address of 192.168.1.2. To permit network communication between a
container on the Linux VM and the Windows VM:

• Define a host-only network in VirtualBox with ip address/mask 192.168.1.1/24, and assign
that to the two VMs, configuring the VM network links to use promiscuous mode.

• Start both VMs. On the Linux VM, make note of the ethernet interface associated with
the host-only network (assumed to be enp0s8 below).

• On the Linux VM, ensure the network interface is in promiscuous mode, sudo ifconfig

enp0s8 promisc

• In the container start.config file, define a network as:

NETWORK LAN

MASK 192.168.1.0/24

GATEWAY 192.168.1.1

MACVLAN_EXT 1

IP_RANGE 192.168.1.0/24

where the MACVLAN value is the Nth network interface (alphabetically ordered), that
lacks an assigned IP address.

• Assign 192.168.1.2 to the container in the start.config

Figure 2: Networking with external hosts.

Also see the description of Multi-user labs in 12.
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8.4 Network interface assignments

Docker appears to assign network connections to containers in alphabetical order. E.g., con-
necting networks LAN1 and LAN2 to a container would result in LAN1 being connected to
device eth0 – regardless of the order in which LANs are defined within the start.config file.
Understanding this ordering may be helpful for networking labs, e.g., when defining routes.

9 Building, Maintaining and Publishing Labs

This section describes how labs are built, maintained and published. Additional information
on tools and strategies intended for use by outside developers are described in section 10

Typically, when a Labtainer is started, the container’s associated Docker images are pulled
from the Docker Hub if they are not already local on the Linux host. When building and editing
labs, the designer desires to run images reflecting recent changes that have been made. The
framework includes logic to identify dependencies within containers whose image content has
changed, and it will rebuild those images, (using the Docker build command). The framework
will only rebuild those images that have changed. The designer can force the rebuild of all
images within a lab by appending the “-f” switch to the end of the “rebuild.py” command.
That switch is not intended for routine use because it wastes time and masks errors in our
dependency logic.

If you build a new Labtainer exercise, the container images will not be on the Docker
Hub unless you put them there. If you create your own public repository on the Docker
Hub (https://hub.docker.com/), you can populate that with your lab(s) by setting the “REG-
ISTRY ID” value in the start.config file for the lab(s). You would then use the distrib/publish.py
script to build, tag and push your lab container images to your registry. Please refer to the
section 10.

9.1 NPS Development Operations

When building lab images at NPS, please set the LABTAINER NPS environment variable to
”YES”, e.g.,

export LABTAINER_NPS=YES

This will force packages to be retrieved from the local NPS mirrors (centosmirror.uc.nps.edu or
ubuntumirror.uc.nps.edu). Refer to section 9.4 for additional information. If builds fail with
this environment set, it is likely due to trying to install packages not present in the mirror. In
those cases, edit the Dockerfile to remove this line:

ENV APT_SOURCE $apt_source

That will force use of the original apt-sources for that container.
Labs must be checked into the local Git repository in order to be distributed. After creating

and testing a new lab, use the scripts/designer/bin/cleanlab4svn.py script to remove temporary
files that do not belong in git. Use the publish.py script (described above) to publish the lab
containers. The distrib/mkdist.sh script is used by NPS to create the distribution tar file. This
script relies on your local Git repository as the source to the Labtainer scripts and labs. Use
the mk-devel-distrib.sh script to publish the developer configuration of the tar file.

The mkdist.sh and mk-devel-distrib.sh scripts include ”myshare” variables that define a path
to a directory shared with the development VM’s host. The scripts will place the resulting tar
files in this directory. You must then manually transfer the updated tar files (including the
labtainer pdf.zip file) to the Liferay server at
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davs://my.nps.edu/webdav/c3o-staging/document_library/labtainers

After transfering the files, use the Liferay “Publish to Live” function to make the files available
on the Labtainers website (which is also where they are pulled from when a student runs
update-labtainer.sh).

Be sure to push your Git repository updates to the GitHub master.
The distrib/publish.py script is used to rebuild and publish individual labs, or optionally all

of the Labtainer exercises managed by NPS. The publish.py (without the -l option) script will
only rebuild labs that have changed. After pushing a new lab container image to the Docker
hub, the script deletes the image from the local system. The intent is to ensure that future
testing of the lab is done on the authoritative copy, i.e., from the hub.

Labtainer base images are built and published from the scripts/designer/bin directory. Prior
to publishing baseline images, it is suggested that all local images be purged from the develop-
ment machine, e,g.,

/trunk/setup_scripts/destroy-docker.sh

This will ensure that new baseline images do not incorporate layer remnants.
All new images should be first built and pushed onto the test registry, i.e., using the

./publish image.sh <image> -t

Framework modifications made to support changed or new functions within container images
must be evaluated with respect to their impact on compatibility. If a new lab image requires
an updated Labtainers framework, then the ”framework version” must be incremented within
the bin/labutils.py script before the image is built and published. This will prompt users to
run update-labtainer.sh prior to running any newer lab image. Also insure that these lines are
present in the container dockerfile:

ARG version

LABEL version=$version

And, be sure to publish the revised framework before publishing the revised lab(s).

9.2 Alternate registry for testing

If the environment variable TEST REGISTRY, is set to TRUE, labs to be pulled and pushed into an
alternate registry defined in the trunk/config/labtainer.config file test registry entry. Also, the
build lab.py, labtainer, and publish.sh scripts include -t flags to force the system to refer-
ence the test registry instead of the Docker Hub. It is easy to set up a registry (it is a container!),
https://docs.docker.com/registry/deploying/ Use the trunk/setup scripts/prep-testregistry.sh

script to prepare a test system to use a test registry.

9.3 Large lab files

Consider storing the authoritative source of large files (e.g., pcaps) or directories in external
locations, e.g., nps.box.com. This has two advantages: 1) Reduces the size of the lab designer
distribution tar; 2) avoids putting large files into github. Note this issue does not affect container
images, which will always include the large files regardless of how they are stored. The question
is simply the location of the source of the large files for purposes of rebuilding a specific lab. Our
model is to provide potential lab developers with a distribution that is not gigabytes, but also
contains whatever is needed to rebuild existing labs – or at least links that are automatically
followed when building the lab.

A file named <lab>/config/bigexternal.txt with entries as follows:

42

https://docs.docker.com/registry/deploying/


<url> <relative_path>

will cause a rebuild to look for a file at relative path relative to the lab directory, and fetch
it from the url if it is missing. Note that the date/times of these files are not referenced for
rebuild dependencies due to limitations in product such as box.com which fails to provide file
modification times. Instead, the modification time of the bigexternal.txt file is used to control
rebuilds. Thus, if you update one of the large files, you will want to make a gratuitous change
to the bigexternal.txt file to force a rebuild (for you and others who may extend your lab.)

9.3.1 Reuse of large file sets

The use of “sys tar” and “home tar” described in 4.3.1 facilitates sharing of common baselines
of large or numerous files. New labs can incorporate tar files from existing labs through the
use of “external-manifest” files, (see the xsite/victim/home tar as an example). The syntax of
the external-manifest is shown below, and it may contain multiple entries, one per line:

lab:container

Where “lab” is the name of the lab, and “container” is the name of the container whose tar file
is to be included.

The framework will include content of tar archives referenced within these files when creating
an archive for the new lab. This allows the sys tar to include lab-specific files as well as files
from other labs. Designers should avoid adding duplicate tar files to the SVN repository. This
will avoid duplication of the files when a new distribution is created.

9.4 Package sources for apt and yum

Labtainer base images include configuration files to use local NPS mirrors when creating deriva-
tive images. The original apt or yum sources are restored to an image if it is built without an en-
vironment variable of LABTAINER NPS=YES The original sources are also restored when any con-
tainer is first run. See the baseline Labtainer Dockerfiles in trunk/scripts/designer/base dockerfiles

to understand how the sources files are manipulated.
The apt source entry in the trunk/config/labtainer.config file will set the $apt source

environment variable in a Dockerfile, and this can be used by lab designers to force image
builds to use alternate sources. By default, the value of the variable is “archive.ubuntu.com”.
This hostname can be overridden via the trunk/config/labtainer.config file apt source entry,
and having the following in your Dockerfile:

RUN sed -i s/archive.ubuntu.com/$apt_source/ /etc/apt/sources.list

9.5 Locale settings

The locale settings, (e.g., used when interpreting character encodings) are set to en US.utf-8
as can be seen in

trunk/scripts/labdesigner/base_dockerfiles/Dockerfile.labtainer.base

Similar Dockerfile entries in new or existing labs can provide alternate locale settings.
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9.6 Lab versions

Substantive changes to an existing published lab should be made in a new named lab. A
substantive change is defined as one that would break any existing installation in a manner
that could not be corrected with a framework update. Issues with compatibility between two
lab versions is often due to there being lab-specific files on the framework, (i.e., from where the
lab is run) as well as within the Docker images that make up the lab. When a newer version
of a lab image is published, it must be able to work with existing installations. If that requires
an update to the framework, then that update cannot break any existing labs present in that
installation, i.e., labs that have already been started.

For example, never change container names for existing labs. If such a change is needed,
create a new lab, and assign version numbers to it and the old lab.

Lab version numbers are kept in the optional labs/[lab]/config/version file. There is
no need to have such a file until there are two or more versions of the same lab. (Note if you
want two versions of a given lab to be runnable and to appear in the list of labs, then they are
not versions of the same lab. They are different labs.) The format of a lab version file is:

lab-base version

where lab-base is a name to associate with the multiple versions. It can be anything and does
not appear at the user interface. The version is an integer.

To create a new version of a lab:

• Create a new lab using new lab setup.py (perhaps with the clone option).

• Create a version file for the old lab (if it does not already have one).

• Create a version file for the new lab, giving it a version numerically greater than the old
version.

• Add the old lab name to the trunk/publish/skip-labs list.

When the user types the labtainer command with no arguments, the list will then only
include the latest version of that lab. An exception is if the old lab already has been run in
this installation, in which case both lab versions will display.

9.7 Creating new base images

Labtainer base images are managed using scripts and configuration files in the scripts/designer
directory. The bin subdirectory includes a set of scripts that create various base images, and
the base dockerfiles contain their Dockerfiles. Use those as a template.

Typically, new base images are created to support a new lab. Proper Labtainer lab Docker-
files have FROM directives that include the $registry/ qualifier, however your new base image
might not yet be published to a registry as you test it, and tagging the new base image with
the registry name may complicate your desired workflow. Use the -L option to the rebuild

command to direct the build to use unqualified image names if needed.

9.8 Importing labs: Warning!

Avoid the use of “shared folders” in VMWare and VirtualBox as a means of copying lab
directories. Use tar and/or scp instead. Otherwise permissions of directories may be changed,
e.g., no x access to /etc for other.
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10 Labtainer Instructor Modules (IModules)

This guide describes how instructors can add content to Labtainers. Instructors extend Lab-
tainers with new labs or customized versions of existing labs by defining IModules and directing
their students to enable the IModules within their individual Labtainers instances.22 Students
simply type: imodule <path> to add a given URL to their Labtainers instance. The scope of
instructor-generated extensions can range from modified lab manuals to new Labtainer exer-
cises. The Labtainers framework provides tools to assist instructors in creating and publishing
these extensions.

10.1 Labtainers distribution strategy

To understand how IModules are distributed, it is helpful to first review the general Labtainers
distribution strategy. A Labtainers installation, (e.g., the initial content of a Labtainers VM
appliance, or the results of installing from the distribution), includes the scripts and configura-
tion files needed to run all Labtainers exercises. The installation initially only includes a small
number of Docker container images that provide the core of container images for each of the
labs. When a student first starts a given lab, the framework retrieves all Docker image layers
required for that lab. These layers are retrieved from the Docker Hub, and build upon the core
images present in the initial distribution. The scripts and configuration files are published as
a tar archive on the Labtainers website. Whenever a Labtainers installation is updated, the
archive is retrieved from the website and used to update the installation.

Files needed to create Docker images are typically not distributed in Labtainers distribu-
tions, but are installed when the user runs the update-designer script. These files are drawn
from a separate tar archive on the Labtainers website.

10.2 Imodule distribution strategy

Instructors place archives on a web server and student instances of Labtainers retrieve those
archives from the web server while retrieving other Labtainer updates. When creating new
labs, instructors publish the lab Docker images to DockerHub, where they’ll be retrieved by the
framework when students run that lab. While the publishing of extensions does not depend on
any particular source control system, supporting tools that simplify archive creation are built
around git.

Archives published by instructors are tar files that include only changed and new files,
relative to the Labtainers baseline. Inclusion of unchanged (relative to the Labtainers baseline)
files is discouraged, as is publishing only deltas from previous IModule publications. Put
another way, an IModule will contain any and all files necessary for running, (not building),
all new labs – or to modify existing labs, relative to the Labtainers baseline as defined by the
GitHub master repository.

Support tools simplify creation of IModule tar files through use of git attributes. Instructors
who chose not to use git are responsible for creating a tar of selected files – which may be trivial,
e.g., if the IModule consists of lab manual modifications or new lab guides. Paths within tar
files will be relative to the labtainers/lab directory. For example, a revised telnet-lab manual
would have the path:

telnet-lab/docs/telnet-lab.pdf

Note the modified source, e.g., docx files, need not be included in the IModule archive, though
the support tools do include them.

22Or, instructors can enable IModules in VMs, and direct students to use those.
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Typically, each participating instructor will publish a single archive (i.e., a tar file) at a
publically accessible URL specific to the instructor or institution. The URL is distributed
to students and entered into their Labtainers instance using the imodule command 23. For
example, if the instructor publishes at https://myschool/mystuff/labtainers/imodule.

tar, the students would each issue this command to Labtainers:

imodule myschool/mystuff/labtainers/imodule.tar

The student labs will be updated to include those IModules. Student labs will be updated
whenever the student runs either update-labtainer.sh or imodule -u.

IModule support tools rely on instructor contributions existing in local git repositories.
The tools do not reference remote repositories. IModule repositories have no relationship to
the main Labtainers repository, and should be managed within Labtainer distributions rather
than within local repo copies of the main Labtainer repository. 24

10.3 Testing IModules

Use a separate VM to test your IModules, i.e., not the VM used to develop the lab. A separate
Labtainer VM is suggested. Use this independent VM to mimic what a student will see and
do. If you’d prefer to test an IModule prior to publishing the imodule.tar file, place the file on
the test system and use the file:// URL syntax, e.g.,

imodule file://home/student/imodules/imodule.tar

Use of SimLab, as described in A is encouraged to ensure the lab behaves as intended.

10.4 Custom lab manuals

The easiest way to provide your students with a custom version of a lab manual that they can
reference from Labtainers is described below. This does not require that you use the Labtainer
VM or git. The example assumes you are customizing the telnet-lab manual.

• Create your version of the manual in the pdf format (if the manual source is docx, export
it as pdf).

• Put that manual in a file with the original name, in a directory whose name is the lab,
e.g.,

telnet-lab/telnet-lab.pdf

• Create a tar file of the manual including the lab name in the path.

• Publish that tar file onto a web server, i.e., something that responds to http get com-
mands.

• Instruct your students to provide that URL to the imodule command.

If you wish to publish multiple custom lab manuals, put them all in the same tar file.

23The full URL is published because many web hosting systems, e.g., box.com make it impossible to construct
URLs from relative paths

24In general, instructors and lab designers are encourage to work from Labtainer distributions rather than
repos pulled from the Labtainers repo at GitHub to avoid git repository conflicts.

46

https://myschool/mystuff/labtainers/imodule.tar
https://myschool/mystuff/labtainers/imodule.tar


10.5 Imodule examples

These examples assume the instructor is working from a Labtainers distribution, e.g., one of
the VM appliance.

10.5.1 Modify a lab manual for the telnet-lab

In this example, the instructor wants his or her students to work with a customized version of
the telnet-lab manual.

• Change directory to $LABTAINER DIR/labs

• Initialize the git archive:

git init

(Do this only once, no need to repeat for each IModule.)

• Add the original Labtainer file as the baseline:

git add telnet-lab/docs/telnet-lab.docx

• Edit the telnet-lab/docs/telnet-lab.docx file

• Commit your change:

git commit telnet-lab/docs/telnet-lab.docx

This change has no effect on any Docker container, so we need only generate the updated
tar:

create-imodules.sh

Then publish the imodule.tar to the website.

10.5.2 Create a new lab

In this example, the instructor wants to create a new lab for use by his or her students. This
example assumes the instructor has created a DockerHub registry that is publicly accessible.

• Change directory to labtainer/labs

• Initialize git archive: git init (Do this only once, no need to repeat for each IModule.)

• Create the lab per the Lab Designer User Guide, for this example, we assume the lab is
my-new-lab.

• Include the name of your Docker Hub registry the lab config/start.config file REGISTRY

attribute.

• Complete development and testing of the lab, e.g., build a SimLab test.

• While in the my-new-lab directory, run cleanlab4svn.py to remove temporary files that
should not be under source control.

• While in the lab directory (parent of my-new-lab), add the lab to source control:
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git add my-new-lab

git commit my-new-lab -m "Adding an IModule"

• Publish the lab container images:

cd $LABTAINER_DIR/distrib

./publish.py -d -l my-new-lab

This will rebuild the lab container images and publish them to your DockerHub registry.
Your start.config files for your labs name this registry, and that allows student Lab-
tainer implementations to retrieve your lab images without having to rebuild them. Note
the -d option directs the function to publish to the DockerHub registry named in your lab
start.config file. Otherwise, it will try to publish to a test registry. Use of test registries
is optional, and are described in the Lab Designer User Guide.

• Generate the updated IModule tar:

create-imodules.sh

This creates a tar that contains all of your IModule labs, i.e., those you have added to
your git repo. If you do not use git to manage your lab source, you will have to create
the IModule.tar yourself.

• Then publish the imodule.tar to your website and distribute the URL to whoever you
want to have access to your labs.

11 Remote access and control of Labtainer exercises

This section describes features intended for use within structured environments in which one
or more students are performing a lab exercise under supervision of an instructor or red-team
member. This does not apply to environments in which students individualy run Labtainers
on dedicated computers at their own pace.

The environment may have one of two forms:

1. Each student has a dedicated computer upon which a Labtainer VM resides, and the
instrutor has network access to each computer; or,

2. Multiple Labtainer VMs (or custom-built VMs containing Labtainers) run on one or more
servers that are networked together. Students interact individually with their allocated
VM using a tool such as VMWare Horizon or Apache Guacamole, which presents the
student with the Linux desktop of their allocated VM via a browser or client application.

We assume that something within the infrastructure allows remote network access by an in-
structor to each VM, e.g., via port forwarding. The instructor will use this network access
to manage aspects of the lab exercise, and/or remotely access selected containers, e.g., as a
red-team activity.
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11.1 Remote management

Labtainer remote management functions allow instructors to query and change the state of the
Labtainers exercise currently running on each VM. The remote access functions available to
instructors currently include:

• status – Display the name of the lab running on a specific VM.

• copy – Copy files into a Labtainer container per a copy directive defined in:

<lab>/config/copy.config}

11.1.1 File copying

The copy.config file contains one or more directives, one per line as follows:

<directive> <container> <source> <destination>

Where:

• directive is a arbitrary string identifier that names the directive.

• container is the name of the container into which the files are to be copied.

• source is a source path upon the VM. If this path starts with $LAB, the path is relative
to the lab directory. Otherwise, a full pathname is expected, e.g., the path to a folder
shared with all VMs on a host.

• destination is the destination path upon the target container. Permissions are retained if
possible, e.g, if the source files are owned by root:root, that will be maintained on the
destination.

The semantics of source and destination are per the Unix cp -a command. Please see the dis-
cussion of SRC PATH and DEST PATH in https://docs.docker.com/engine/reference/commandline/

cp/

11.1.2 Client and server setup

The python service at scripts/remote/remote.py should be started on each Labtainers VM
with the --daemon option.

The python client at host scripts/remote/remote.py should be copied to whatever host
the instructor will work from.

Port forwarding for each VM should be defined such that some host port is forwarded to
port 60000 on the VM. You would assign each VM on a given host a different host port number.
That host port number will be how the instructor names different VMs on the same host. For
example, on VirtualBox, the port forwarding entry for one VM might look like:

Host IP Host Port Guest IP Guest Port

0.0.0.0 60003 0.0.0.0 60000

Then, if the instructor is working from the computer that hosts the VM, the following
command would cause a copy directive named one to occur on that VM if it is running a lab
named tlab:

./remote.py -l tlab -c one -p 60003
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11.2 Remote access to containers

This section describes environments in which an instructor or red team member is to interact
with containers within the lab, e.g., to perform penetration testing. This interaction would
occur via computers external to the lab exercise, e.g., networked to a server hosting VMs. The
strategy employed to achieve this depends on whether the lab utilizes GNS3, (which manages
the virtual networks without relying on Docker networking).

11.2.1 Remote access without GNS3

Docker port publishing provides external network access to containers. For example, remote
ssh access to a specific container within the lab can be achieved as follows:

• Use the PUBLISH directive in the start.config to bind a container port to a host VM port,
e.g.,

PUBLISH 0.0.0.0:60020:20/tcp

• Use port forwarding to bind the VM port to a server port. Here, the host port would
differ for each VM on a server as a means of naming the VM whose lab is to accessed.
For example, on VirtualBox, a port forwarding entry might be:

Host IP Host Port Guest IP Guest Port

0.0.0.0 61022 0.0.0.0 60022

The above example would then allow an external computer to ssh into the selected container
using port 60122, assuming the container has SSH enabled (see the telnet-lab server container
for an example). Authentication to control who can SSH into a given container could be
provided through use of SSH keys. This remotely accessed container can be hidden from the
student, and provide the instructor or red-team participant with a means to probe and attempt
to compromise the other computers within the Labtainers exercise network.

11.2.2 Remote access with GNS3

For labs that run in the GNS3 environment, remote network access is provided through use of
the GNS3 cloud endpoint device, which interacts with an Ethernet network interface. In this
example, access is provided from external to the VM – with no network access to the container
from within the VM.

The following assumes your VM has a virtual Ethernet interface named enp0s3, with IP
an address on the 10.0.2.0/24 subnet. On your VM, find the Ethernet interface that has an
assigned IP address. Alternately you could define the VM to share a physical host network,
but that is outside the scope of this example.

Define a component within your Labtainers lab that is be remotely accessed, e.g., a work-
station or router, and assign it an IP address on the enp0s3 interface subnet, e.g., 10.0.2.100.
Within the start.config file, provide the container with the KICK ME <LAN> attribute, where
LAN is the name of the network intended to be connected to the cloud component. Then,
when defining the GNS3 network topology, i.e., creating and connecting links:

• Select a Cloud component from the Browse End Devices menu, and drag it to the desk-
top. (computer terminal icon).
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• Right click, select Configure and confirm that the Ethernet interface that you selected
(e.g., enp0s3) is in the list. If it is not there, select the device from the pull-down list and
click the Add button. Then click OK.

• Use the network links to connect the cloud to the desired component.

• Use port forwarding as described earlier to map host ports to ports on the VM. When
defining port forwarding, enter 0.0.0.0 as the “Host IP”, and the container IP address,
e.g., 10.0.2.100 as the “Guest IP”.

• You should now be able to ssh to the container from outside of the VM using the mapped
port.

Alternately, to provide access from the VM (but not from external sources), pick virbr
Ethernet interface and:

• Select a Cloud component from the Browse End Devices menu, and drag it to the desk-
top. (computer terminal icon).

• Right click, select Configure and delete the default Ethernet interface if any is selected.

• Click the Show special Ethernet interfaces checkbox in the lower left. That should
add devices to the pull-down list.

• Select the virbr0 device from the pull-down list and click the Add button. Then click OK.

• Use the network links to connect the cloud to the desired component.

• When the lab is started, you should be able to ping the connected container from the
VM.

• Use port forwarding as described earlier to map host ports to ports on the VM. When
defining port forwarding, enter the container IP address as the “Guest IP”.

Note that the subnet used for this remote access is defined by the VM’s Ethernet device.
Putting multiple lab computers on that subnet as part of the lab network topology may be
awkward and confusing to students since 192.168 addresses are private.

When a GNS3 Labtainer is run with the --student option, the Cloud components are
hidden, as are any Labtainer components whose start.config entries include HIDE YES. Links
to hidden devices are also hidden.

12 Multi-user Labtainers

Labtainer exercises can support multiple concurrent users, such as students collaborating or
competing on a shared set of networked components. A multi-user lab can be operated in any
one of three modes:

1. Dedicated to a single student, e.g., on a laptop or a VM allocated to the student from a
VM farm.

2. Shared by multiple students, each running Labtainers on a per-student VM with shared
componets running on separate Labtainers VM. This is illustrated in Figure 3

3. Shared by multiple students, each SSHing from a non-Labtainer VM into a per-student
Labtainer computer on a single VM running Labtainers. This is illustrated in Figure 4
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Figure 3: Multi-user Labtainers with multiple instances of Labtainers.

Figure 4: Multi-user Labtainers via SSH.

Both of the multiuser modes require a host-only network defined by the VMM. This network
should be defined before it is allocated to any VM, and the DCHCP server on the host-only
network should be disabled within the VMM.

12.0.1 Multi-user Labtainers, one Labtainer VM per student

In this approach, each student is assumed to have been allocated an individual VM upon which
Labtainers is installed. The student has access to that VM, e.g., via ssh or a vSphere client.
Each student VM runs a single per-student workstation Labtainer component. The remaining
containers, e.g., vulnerable servers, all run on a single VM, which we refer to herein as the
“server VM”. Provisioning a lab to run in this mode is summarized below.

• Allocate the host-only network to each Labtainers VM. Be sure to disable the IPv4
networking for this network on each Labtainers VM, and set the network interface to
promisuous mode (within the Linux host as well). For example:

sudo ifconfig ethx 0.0.0.0

sudo ifconfig ethx promisc
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• Start the lab on the server VM using the labtainer command with the –server (-s)
switch. This causes Labtainers to start each container in the lab that is not tagged
as a “CLIENT”.

• Students then start the lab on their individual VMs using the labtainer command with
the –workstation switch, which will cause the student VM to only start the container
identified as the “CLIENT” in the start.config file.

When conformant labs (see 12.1) are started, the workstation containers use DHCP to
optain IP addresses from a Labtainers DHCP server. The MAC address of the workstation
container is derived from the MAC address of the Linux VM host-only network interface (to
avoid duplicate MAC addresses on the host-only network).

12.0.2 Single Labtainers VM with multiple students

In this approach all the Labtainer containers will run on a single VM. Students have access to
one or more other VMs hosted on the same VMM as the VM that hosts Labtainers. Students
will SSH from these VMs into the container workstation allocated to the student via the host-
only network. The ssh command may include the “-X” option to permit X11 forwarding, thus
allowing students to run GUI-based applications on their workstation containers.

• Allocate the host-only network to the Labtainers VM. Be sure to disable the IPv4 network-
ing for this network on the Labtainers VM, and set the network interface to promisuous
mode (within the Linux host as well).

• Allocate the host-only network to each VM used by students to SSH into their Labtainers
workstation. Configure the network on the VM to use DHCP (the host-only DHCP server
should be disabled, the VM will get an IP from a Labtainer DHCP server.)

• Start the lab on the server VM using the labtainer command with the –clone count (-n)
switch, specifying the quantity of per-student client containers to start.

• Students then ssh into their respective containers over the host-only network.

Conformant labs will assign each student workstation component an IP address in a se-
quence, starting from a fixed value. These IP addresses are allocated to the students.

12.1 Creating conformant multi-user labs

The following suggestions are intended to yield labs that can be started in any of the three
operating modes.

• The lab should include a “client subnet” via which multiple VMs will communicate.

• Within the start.config file, identify this subnet as either a MACVLAN or a MACVLAN EXT.
The MACVLAN EXT option will create a MACVLAN for this interface regardless of what
mode the lab is started in, and is only intended for use if the lab includes an external
host as described in 8.3.

• Itentify the client component within the start.config file using:

CLIENT YES
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• Define the client component network address for the client subnet using the +CLONE MAC

option, e.g.,

LAN 192.168.1.10+CLONE_MAC

When run in single user mode, the +CLONE MAC suffix is ignored. When run with multiple
Labtainer instances, the last four bytes of the network MAC address for each client is
cloned from the network interface tied to the MACVLAN. When all multi-user Labtainer
workstations run on a single VM, then the IP address is incremented by one less than the
clone instance number.

• Include a dhcp server as one of your containers, e.g., per the dhcp-client lab. The lab-
tainer.network base includes the dnsmasq service, which includes a DHCP server. Recon-
figure dnsmasq to start the DHCP service, e.g., in your fixlocal.sh script.

• Edit the dhcp container’s system/etc/dnsmasq.conf file to include the range of DHCP
addresses you wish to allocate to the clients. When multiple instances of Labtainers
are run, then “client” is the per-student Labtainer workstation. When there is a single
Labtainers VM, then “clients” are the VMs from which students SSH into their Labtainer
workstations. An example dnasq.conf entry is:

dhcp-range=192.168.1.10, 192.168.1.99, 12h

• Enable dhcp on the client workstation components by installing isc-dhcp-client (via the
Dockerfile), and putting this in the workstation system/etc/rc.local:

/sbin/dhclient-labtainer eth0

Note the dhclient-labtainer invokes the dhclient program and then manually sets the ip
address. This is a workaround for a Docker limitation.

• Include an SSH server in the workstation container, e.g., by deriving it from the lab-
tainer.network base. Include a system/etc/ssh/sshd config file for the workstation
container that permits X11 forwarding (if desired), e.g., by copying the file from the
kali-test lab.

• Password management (only has an effect in multiuser mode when all Labtainers com-
ponents are on a single VM). Assuming you’d like to allocate each student a unique
(insecure) password for purposes of further ensuring one student does not accidently ssh
into some other student’s workstation, put this in the workstation’s bin/fixlocal.sh file:

newpwd=studentCLONE\_NUM

user=$2

/usr/bin/passwd $user <<EOF

$1

$newpwd

$newpwd

EOF

Add, this in the labs/[your lab]/config/parameter.config

PASSWD : CLONE_REPLACE : .local/bin/fixlocal.sh : CLONE_NUM : CLONE
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13 Limitations

The labtainers framework limits labs to the Linux execution environment. However, a lab
designer could prescribe the inclusion of a separate VM, e.g., a Windows system, and that
VM could be networked with the Linux VM that hosts the Docker containers as described in
8.3. Future work would be necessary to include artifacts from the Windows system within the
framework’s automated assessment and parameterization.

The user does not see the /etc/fstab file. Only virtual file systems can be mounted (or those
mounted when the container is created.)

Kernel logs do not appear in /var/log/kern.log. For logging events such as iptables,
consider using ulogd and a “NFLOG” directive in place of a “LOG” directive. See the dmz-lab
as an example.

The available Docker network drivers do not permit IP address overlap between virtual
networks. For example, you cannot define two 192.168.1.0/24 LANs.

Student use of the shell directive ”source” will cause stdin/stdout to not be captured.
Inquisitive students will see evidence of artifact collection. Home directories on containers

includes a .local directory that includes Labtainer scripts that manage capturing and collec-
tion of artifacts, and that directory contains the stdin and stdout files generated by student
actions. Additionally, when the student starts a process that will have stdin and stdout cap-
tured, the student will see extra processes within that process tree, e.g., the tee function that
generates copies of those data streams. All of the containers share the Linux kernel with the
Linux host. Changes to kernel configuration settings, e.g., enabling ASLR, will be visible across
all of the containers.

14 Notes

14.1 Firefox

14.1.1 Profile and configuration changes

The labtainer.firefox image includes a /var/tmp/home.tar which is expanded into the user home
directory when parameterize.sh is run. This tar includes a profile in .mozilla that avoids firefox
starting with its welcome pages and privacy statements. The labtainer.firefox image includes
a customized /usr/bin/firefox that starts the browser in a new instance so it does not share
existing browsers. The about:config was altered to disabled insecure field warnings for the
labs that do not use SSL connections to web servers.

14.1.2 Browser history

If you wish to assess places a browser has visited, e.g., use a pregrade.sh to extract sites from
the firefox places.sqlite file, put places.sqlite into the lab’s / bin/noskip file.

14.1.3 Slow browser startup

Some html, e.g., for the softplc, want to visit fonts.googleapis.com. If no gateway/dns is
available, there is a long timeout. Try adding

ADD-HOST fonts.googleapis.com:127.0.0.1

to start.config to avoid the timeout.
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14.1.4 Crashes in SimLab

See A.4 for information on avoiding firefox crashes when it is restarted in SimLab.

14.2 Wireshark

Wireshark will not run as root in Labtainer containers. The wireshark installion in the lab-
tainer.wireshark image is configured to not require root to collect network packets:

When using the wireshark image, after the existing

RUN adduser $user_name sudo

add:

RUN adduser $user_name wireshark

14.3 Elgg

The xsite/vuln-site/myelgg.sql file needs to be loaded for elgg to run. First edit it to change xss-
labelgg.com to your site name (two changes). Copy the sys tar/var/www/xsslabelgg.com/elgg
to your new lab. Note the elgg/views/default/output files have been modified to permit cross
site scripting.

14.4 Host OS dependencies

On rare occations, performance of a lab may depend on the host Linux OS. An example is
some kernel tuning parameters viewed and set via sysctl are not visible within containers on
eariler versions of Ubuntu. If your lab has such OS dependencies, you can check the OS and
warn the student/instructor via a script named ”hostSystemCheck.py” placed withe the bin
directory of any of the lab’s containers. This script shall return the value ’0’ if dependencies
are met, and ’1’ if dependencies are not met. In the latter case, the startup.py will prompt the
use to continue or abort. Your script should explain the situation to the student. An example
of such a script is in the labs/tcpip/server/ bin directory.

14.5 Login Prompts

See the centos-log lab for an example of a lab that prompts users to login to the virtual terminal.
In particular, you will need the bin/student startup.sh script, and the system/sbin/login

program and the system/etc/login.defs and securetty files.

14.6 Networking Notes

14.6.1 SSH

The labtainer.network baseline Dockerfile includes the following:

ADD system/var/run/sshd /var/run/sshd

RUN sudo chmod 0755 /var/run/sshd

For containers derived from the kali base, and others non-labtainer bases, use this line in
your dockerfile to enable ssh into the box.

RUN sed -i ’s/UsePAM yes/UsePAM no/’ /etc/ssh/sshd_config
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14.6.2 X11 over SSH

The scripts/designer/system/etc/ssh/sshd conf allows X11 tunneling over ssh, e.g., from a re-
mote VM connected to the same host-only lan as a container running the GUI application. Use
ssh -X container ip to enable X11 tunneling in the ssh session.

14.6.3 Traffic mirroring

Send copies of traffic from one ethernet port to another using the iptables TEE operation, e.g.,

iptables -t mangle -A PREROUTING -i eth1 -j TEE --gateway 172.16.3.1

will send copies of all incoming traffic on eth1 to the component with address 172.16.3.1. Note
that gateway must be a next hop, or you will have to configure the nexthop to forward it further.
This is useful for IDS labs, e.g., snort. Mirroring all incoming traffic into a component will let
you reconstruct TCP sessions within that component. Mirroring output from components is
not always reliable. Besides potential for duplicate traffic, Docker networks seem to sometimes
gratuitously replace destination addresses with those of the Docker network gateway, i.e., the
gateway to the host.

14.6.4 DNS

Install bind9 in Dockerfile. Add zone files to /etc/bind and db files to ../ system/var/cache/bind/.
Add reference to the /etc/bind/named.conf.local as seen in local-dns/ bin/fixlocal.sh

14.6.5 Overriding Docker routing and DNS

Realistic network topologies require components to have /etc/resolv.conf and routing table
entries that do not depend on Docker gateways and related magic. However, at some point you
may want components to be able to reach the outside world. If you’ve fiddled resolv.conf and
routing, you likely broke the default Docker method for doing this. One solution is to define an
isp component that has a default gateway and resolv.conf as Docker defines them. Then route
all traffic and DNS queries to that (making use of dnsmasq and your own resolv.conf entries).
Note you will also have to set up your own NAT on that ISP component. See the dmz-example
lab ISP component .local/bin/fixlocal.sh as a worked example of a simple NAT setup.

As a worked example, the dmz-example lab components (other than the ISP), typically use
the .local/bin/fixlocal.sh script to delete the Docker-generated route:

sudo route del -host 172.17.0.1

And the fixlocal.sh also replaces the resolv.conf entry with either a local DNS component,
or a gateway running the dnsmasq utility. The /etc/rc.local script generally sets the default
gateway, and configures iptables.

14.7 User management and sudo

The Dockerfile should make the initial user, i.e., the user named in the start.config file, a member
of sudoers. Otherwise, the fixlocal.sh script will not be unable to modify the environment. If
desired, that user can be removed from sudoers at the end of the fixlocal.sh script.

Only the initial user (and that user’s actions taken as root) are monitored. Additional
users can be added, e.g., in the Dockerfile, but their actions are not monitored or recorded in
artifacts.

57



14.8 DNS fixes for rebuild problems

When building a container, Docker uses its Daemon’s default DNS addresses, which are the
external Google DNS. Some sites disallow use of external DNS, and this results in rebuilds failing
when yum/apt are unable to resolve host names. The script at setup scripts/dns-add.sh

will update those default DNS entres to include the DNS used by the host.

14.9 Suggestions for Developers

14.9.1 Testing assessment directives

The result and goals configuration files can be revised and tested within a running grader
container by starting grader with the -d option. This saves time because you do not need to
rebuild the container for each iteration of the development of configuration files. However, be
sure to scp the configuration files from the container to your host Linux system. The files are
in .local/instr config. See the tt /tmp directory for logs.

Most result and goal assessment can occur once you have generated a suitable sample of
expected student artifacts. In other words, adding new goal does not typically require that you
go back and re-perform student actions. Exceptions to this are:

1. Adding new system commands to a “treataslocal” file;

2. Identifying new system files to be parsed as results. For example, results in a log file will
not be collected unless that log file has been named in the results.config file.

14.9.2 3rd party applications

Some applications that you may wish to include in your lab may already have Docker container
instances. Bringing those into Labtainers can sometimes be challenging because such containers
often lack execution environment elements required by Labtainers for configuration steps, e.g.,
sudo. Most such applications are traditional Docker images whose purpose is to package an
application. In contrast, Labtainer Docker containers are intended to look like computers
running applications – not as applications packaged as containers. Is is therefore often easier,
(and less disruptive to what students see), to include the 3rd party installation procedures,
(e.g., what they publish to allow you to install their application on a Linux system), within
your lab’s Labtainer Docker file.

14.9.3 Msc

Use TERMINAL GROUPS in the start.config file to organize terminals if you have more than a few.
Otherwise the student will spend time trying to find each terminal.

14.9.4 Docker cache

By default, a rebuild will make use of the Docker cache to speed up the image building process.
Use the -N option to supress use of the cache. This may be needed if you expect the results
of a RUN command within a Dockerfile to change between builds. When using the publish.py

command, the cache is disabled by default.
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14.10 Container isolation

Docker provides namespace isolation between different containers, and between the containers
and the host platform. Note however, that all containers and the host share the same operating
system kernel. Some kernel configuration changes will affect all containers and the host. For
example, use of sysctl to modify Address Space Layout Randomization (ASLR) will effect all
containers and the effects will persist in the host after the containers are stopped. However,
some tuning parameters such as net.ipv4.ip forward are isolated, i.e., local to the container.
These do get reset in ways that are hard to predict, so it is suggested that sysctl tuning be
done in rc.local scripts so that they happen on each boot.

Note also, that the Docker group (in which containers execute) is root equivalent, and thus
a hostile container can do damage to the Linux host.

14.11 Test registry setup

The test registry is a Docker container that runs on the host, i.e., native OS upon which the
VMs run. The same test registry is shared by multiple development VMs. The test registry is
created via host scripts/registry/start reg.sh. It listens to port 5000 on the localhost.

A VM is configured to use the test registry via setup scripts/./prep-testregistry.sh

The test registry is populated using publish.py -t

14.12 CentOS containers

CentOS base containers do not run 32-bit binaries. Add the following to your dockerfile to do
that:

RUN yum install -y compat-libstdc++-296.i686 compat-libstdc++-33.i686
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A

SimLab for testing labs

SimLab is a testing tool used to simulate a user performing a lab. It utilizes the xdotool utility
to generate keyboard input and window selections. The SimLab tool is driven by a sequence
of directives stored in a file at this location:

labtainer/simlab/<labname>/simthis.txt

The simlab directory is at the same level as $LABTAINER DIR, i.e. at $LABTAINER DIR/../simlab.
Note that simlab files are not in the github repository. These files essentially contain lab solu-
tions, and thus should not be openly published. files essentially contain lab solutions, and thus
should not be openly published. 25

With SimLab, you can fully automate the performance of a lab, including the use of GUIs.
This facilitates regression testing, and the initial development of labs – particularly the debug-
ging of automated assessment.

Full automation of regression testing is achieved using the smoketest.py utlity described
below in A.5

A.1 Preparations Before Running SimLab

• Ensure that you have ’xdotool’ install. Run this to install if you haven’t :
sudo apt-get install xdotool

• Ensure your system’s $PATH includes $LABTAINERS DIR/testsets/bin

• Ensure the saved email used for each lab is ’frank@beans.com’. You can do this by
modifying ~/.local/share/labtainers/email.txt with only ’frank@beans.com’ at the
top.

A.2 Running SimLab

This is all run from the ’../scripts/labtainer-student’ directory.

1. Start targeted lab with the redo flag, ’-r’.

2. Run SimLab.py on targeted lab.

3. Do not click or type anything on the computer. This will disrupt the simulation.

4. The process ends when the user prompt comes back. If the simulation hangs up, ’ctrl +
C’ and run stoplab.

A.3 SimLab Directives

Directives within a simthis.txt file name windows to select, (i.e., gain focus), and keystrokes
to generate as described in the list below. The SimLab utility includes limited synchronization
features to pause the input stream. These currently include a directive to wait until some
named process has completed execution; and a directive to wait until network connections with
a given host have terminated.

The SimLab directives are as follows:

25If you require simlab files for existing labs, contact me and try to convince me you actually need them
(mfthomps@nps.edu).
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• window <text> – Selects the window having a title that contains. Note that tabs within
windows are selected by first selecting the window, and then use key "ctrl+Next" to tab
over to the desired terminal tab. the given text. Will timeout and fail after 20 seconds.

• window wait <text> – Like window, but no timeout. Intended for use when the xterm
title is changed by a program.

• type line <text> – Types the given text followed by a newline.

• type lit <text> – Types a sequence of keys, replacing grave, minus and space with X11
keysims. Followed by a newline.

• key <keysym> – Performs a keypress for the given X11 keysim, see http://xahlee.

info/linux/linux_show_keycode_keysym.html and https://www.in-ulm.de/~mascheck/

X11/keysyms.txt

• rep key <count> <keysym> – Repeats a keypress for the given X11 keysim <count>
times.

• sleep <seconds> – Sleeps for the given number of seconds.

• wait proc <text> – Delays until a ps au <text> returns nothing. Intended for use
to wait for a command to complete. This runs on the Linux host, so do not be vauge,
or it may never return. Note: If the command was added to the keyboard buffer, then
wait proc may not catch a command.

• type command <text> – Types the given text and uses wait proc to wait for the
command to finish.

• wait net <container>:<text> – Delays until network connections to a given remote host
have terminated. The given <text> is searched for as a substring within the host name
ouput from a netstat command run on the given container.

• type file <file name> – Reads and types each line in the named file. Blank lines will
cause a 2 second sleep. Note: Each line is typed into a keyboard buffer and a line commnd
will not wait for the previous line to complete its process before running itself. Refer to
command file for this function.

• command file <file name> – Intended for use in issuing a series of commands from the
shell. This reads and types each line in the named file. A wait proc function is then
automatically performed on the line.

• key file <file name> – Reads each line in the named file, and performs a keypress. The
lines should contain X11 keysims. Blank lines cause a 2 second sleep.

• replace file <source file> <container>:<dest file> – Copies content of a source file on
the Linux host relative the simlab directory, to a destination path on the named selected
container.

• add file <source file> <dest file> – Will append text from the source file to the end
of the destination file. The destination file will be accessed from the currently selected
virtual terminal. This uses a simple VI scheme to append text, and thus assumes the
window and cwd are as needed.
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• include <file> Reads the named file and treats each line as a SimLab directive, and then
continues processing the next directive in the source file. This is similar to the C include
directive.

• type function <command> – Will execute the given command, read stdout from the
command and then type that.

A.4 SimLab application notes

Most GUI’s have shortcut keys that can be used to automate their inclusion in a lab.
Firefox is brittle when it restarts. See the fixfirefox.txt SimLab script for the snort lab

for an example of avoiding errors when Firefox restarts.

A.5 Regression testing with smoketest.py

The smoketest.py utility automates regression testing of labs. It will automatically:

• Start a lab

• Use SimLab to perform the lab

• Stop the lab

• Use gradelab to assess the lab

• Compare the results of gradelab to those stored in the directory at:

labtainer/simlab/<labname>/expected/

Populate the expected results with the results from the labtainer xfer directory after you’ve
manually determine the results you desire. If smoketest.py is started with no parameters,
it will iterate through each lab in the labs directory. The that lab lacks simthis.txt file,
then the lab is simply started and stopped (hence the tool’s name). The tool will stop upon
encountering the first error. If a lab’s simlab includes an expected directory it will compare
the results and report on whether they match. If no expected results are found, no status is
displayed (unless an error is encountered.)
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