
> The Cyber-Physical
Systems Revolution

> Automotive Innovations
> Computing Education
> Smart Cities
> Cloud Computing

MAY 2018 www.computer.org

2469-7087/18/$33.00 © 2018 IEEE Published by the IEEE Computer Society May 2018 29

Editors: Melissa Dark, dark@purdue.edu | Jelena Mirkovic, mirkovic@isi.edu | Bill Newhouse, william.newhouse@nist.gov

EDUCATION

H ands-on laboratory exercises
help students internalize

knowledge so that it can be applied
in new contexts. Hence, cyberse-
curity educators try to create lab
exercises that allow students to
explore systems, yet provide suf-
ficient guidance so that students
achieve the desired learning objec-
tives without becoming lost in minu-
tiae. Challenges associated with
developing such exercises include
creating and supporting each lab,
ensuring students do their own work,
and grading exploratory activities.

In many cases, providing labs is
difficult because access to physical
lab computers—or remote access
to institutionally or other cen-
trally provisioned and managed
resources—is not practical. Bind-
ing students to centralized servers
can make self-paced, intermittent
activity more difficult, yet, lacking
institutional IT equipment and staff,
instructors may not be able to pres-
ent easily managed and deployed
fine-tuned lab environments. How-
ever, if students run lab exercises
directly on their own computers,
other problems arise: the results
produced may vary from student
to student depending on software
installed on the computer used, and
all the tools required for an exercise
may not even execute on certain
platforms. The solution is tailored
cybersecurity lab environments that
eliminate divergent results caused
by software differences. This can
be achieved by providing students

with virtual machine (VM) images
containing lab-related software.1
Students then run VMs on their
personal computers or on insti-
tutionally provided computers.
Through use of VMs, variations
in the results among students can
be largely limited to hardware per-
formance differences.

But, use of VMs on student com-
puters has several drawbacks. First,
exercises involving two or more
networked computers require mul-
tiple VMs, the hosting of which
is beyond the performance capa-
bilities of many student comput-
ers. Also, different labs may rely on
mutually incompatible configura-
tions or software packages, thus

requiring students to either per-
form complex provisioning steps
or to install separate VMs for each
lab. The provisioning and admin-
istration of the execution environ-
ments required by different labs can
become a significant distraction and
source of frustration for both stu-
dents and instructors.

Another challenge is that, regard-
less of how they are provisioned,
cybersecurity lab exercises are often
susceptible to students’ sharing solu-
tions and cribbing from each other’s
lab reports. Use of VM images on
individual student computers com-
plicates schemes designed to verify
student performance of their own
lab exercises, for example, logging

Individualizing Cybersecurity
Lab Exercises with Labtainers
Michael F. Thompson and Cynthia E. Irvine | Naval Postgraduate School

30 ComputingEdge May 2018

and audit features that might be part
of a remotely accessed cyber range.
Student actions on VMs can be
logged; however, use of a single VM
for multiple labs would require some
method to distinguish the artifacts
of different labs. The alternative of
allocating each lab to a distinct VM
image can be prohibitive in terms of
network bandwidth and disk storage
on the student computer.

The last challenge is encouraging
students to explore the lab environ-
ment while providing instructors
with a simple way to determine that
students have achieved expected
milestones. How can students “show
their work”? How can instructors
observe what students have done
and provide advice if they are stuck,
yet not have to stand over the stu-
dents while they complete the entire
exercise?

Labtainers: A Practical
Solution Using
Docker Containers
Labtainers is a framework for devel-
oping and deploying Linux-based
labs involving multicomponent net-
work topologies all hosted entirely
on modestly provisioned student
computers. Our initial emphasis
is on cybersecurity. Docker con-
tainers2 are used to standardize
complete lab execution environ-
ments, thereby reducing lab setup
and configuration distractions. By
using containers, labs can incorpo-
rate complex topologies without
suffering the overhead of running
multiple VMs. The Labtainer frame-
work supports automated assess-
ment of student work and allows lab
exercises to be individualized for
each student, thus discouraging the
appropriation of others’ work.

The use of Docker containers
simplifies the Labtainer approach
to individualizing student labs
and recording student activity for
later assessment by instructors.
The framework automatically col-
lects artifacts from a student lab

environment into an archive file
that the student forwards to her
instructor. Here we describe strat-
egies for ensuring that the artifacts
in the archive file are the result of
that student’s efforts. We present
these strategies in the context of
two example Labtainer exercises.
The first provides an introduction to
network traffic analysis using tshark,
and the second employs the nmap
utility to locate a selected network
service.

The Labtainer framework sup-
ports three types of users. Lab
designers are responsible for creat-
ing laboratory exercises so that they
meet intended learning objectives.
Each lab designer determines if and
how the lab is parameterized and
whether automated assessment will
be supported. Instructors assign labs
to students and assess their work.
Instructors may or may not work
with lab designers to create exer-
cises. Students perform the labora-
tory exercises. They are oblivious to
the underlying framework that con-
figures and individualizes their labs
and that gathers artifacts required
for assessment.

Target Lab Context and
Automated Assessment
Students start Labtainer exercises
by executing a Python script on
a Linux host, typically a VM. The
script augments the Linux host envi-
ronment with one or more Docker
containers and a set of virtual termi-
nals. Students use the virtual termi-
nals to interact with the containers,
which from the students’ vantage
point appear to be independent
computers. The execution environ-
ment within each container is pre-
scribed by the designer of the lab.
In the degenerate case where the
lab designer provides only a name
for the lab, the environment seen
by the student will be a bash shell
on what appears to the student to
be an Ubuntu Linux system. The
Labtainer framework allows the

lab designer to select from a vari-
ety of Linux distributions for each
container and to include software
packages and configuration settings
as appropriate for the lab. Design-
ers define virtual networks and the
connections among containers. The
student sees the resulting network
topology and has virtual terminals
connected to only those containers
indicated by the designer.

After the student performs
the lab exercise, she runs another
Python script that terminates the
lab on the Linux host. This results
in the collection of artifacts from
her lab activity. She then provides
the resulting archive to the instruc-
tor. The instructor can review these
artifacts on similarly provisioned
Docker containers. The framework
includes tools for the lab designer
to specify expected attributes of
the student artifacts, which are
then automatically assessed and
summarized for the instructor.
Labtainer support for consistent
execution environment provision-
ing and automated assessment of
student work is described in detail
elsewhere.3,4

Attribution through
Lab Individualization
Several approaches to ensuring the
individuality of student work are
possible in the Labtainer framework:
watermarks, per-student artifacts, and
per-student solutions. Within a par-
ticular lab exercise, these can be
used separately or in combination.

Per-Student Watermarks
When a student starts a lab, the
Labtainer framework incorporates
a student-supplied email address
into a seed for generation of pseu-
dorandom values. A watermark file
is automatically created for each
student lab, and this file becomes
one of the artifacts in the student’s
archive. The watermark value is
validated as part of the assessment
process initiated by the instructor.

EDUCATION

www.computer.org/computingedge 31

This simple strategy ensures
(albeit weakly) that the archive
provided by the student originated
with the student who started the
lab. As will be seen in subsequent
sections, the Labtainer framework
allows lab designers to improve
on the assurances provided by the
watermarks.

The simple watermark check
inherent in all Labtainer exercises
is readily bypassed by replacing a
single file in the archive, perhaps by
an automated script shared among
students, effective on all Labtainer
exercises. Variations on the water-
mark strategy can be defeated by
correspondingly advanced auto-
mations, for instance, scripts that
replace individual artifacts such as
the output of a program invocation.
These automations become spe-
cific to the individual labs and thus
require more effort by the benevo-
lent cheater to build and maintain.
A fundamental limitation on the
robustness of the watermarking
strategies is that the Labtainer
framework does not keep secrets
from the student environment. Our
design explicitly avoided the large
step in complexity inherent in main-
taining secrets.

Additional assurances of the
originality of student work rely on
choices made by the lab designer.
In the Labtainer framework, these
schemes typically have one of two
purposes. The first, per-student
artifacts, provides further evidence
that someone performed the exer-
cise on a Labtainer instance that
was initiated using the student’s
email address. This strategy causes
selected artifacts generated by lab
exercise steps to be individual-
ized for each student. The second
approach, per-student solutions,
seeks to ensure that whoever per-
formed the exercise did not sim-
ply reproduce dictated actions. In
the Labtainer framework, these
per-student solutions, when prac-
tical for a given lab, provide more

assurance that students performed
their own work.

Per-Student Artifacts
Introduction of per-student artifacts
makes development of cheating auto-
mations more challenging, because
individual artifacts themselves are
tailored to the individual student.
A simple example is an exercise that
requires the student to display to
standard output the content of a
student-specific file on a server once a
remote shell on the server is obtained.
This would defeat an automation that
simply inserts unmodified artifacts
into the student’s archive. While one
can imagine correspondingly sophis-
ticated automations that are informed
by the particulars of the lab exercise,
at some point, it becomes easier for
enterprising students to publish and
re-perform exact keystrokes neces-
sary to create the desired artifacts.
For some labs, the keystrokes prob-
lem can be addressed by per-student
solutions.

A less trivial example of per-
student artifacts is found in the
Labtainier pcap analysis lab, in
which students are introduced to
basic network traffic analysis tech-
niques using the tshark utility. Each
student’s Labtainer environment
for this lab includes a pcap file tai-
lored to that student. The pcap file
is individualized by truncating a
random quantity of “filler” packets
from the start of a baseline pcap
file. This results in packet numbers
that are unique to the student, while
the content of the non-filler traffic
remains constant for all students.
The student is required to display
the single packet of a specific invalid
login attempt. Hence, the output
of the corresponding tshark com-
mand will include a student-specific
packet number that can be deter-
ministically reproduced by the
assessment function in the instruc-
tor’s environment.

Lab designers individualize labs
using parameterization configuration

files containing commands that
cause the framework to replace sym-
bols in selected files with random val-
ues derived from the student email
address. For the pcap analysis lab, the
target of replacement is a parameter
passed to a utility that truncates the
start of the pcap file. This parameter-
ization utility is invoked the first time
a student runs the lab, resulting in
truncation of the pcap file seen by the
student. (Note: students do not have
to complete a lab in one sitting, and
if the student wishes, the framework
allows her to restart a lab from the
beginning, with complete reinitializa-
tion and consistent personalization.)
The configuration file entry shown in
Figure 1 causes the symbol “START_
FRAME” in the file “fixlocal.sh”
to be replaced by a random value
between 1 and 100.

Lab designers define automated
assessment in assessment configu-
ration files that identify student
artifacts and their expected attri-
butes. The pcap analysis lab assess-
ment configuration files identify the
standard input of the tshark com-
mand as an artifact of interest. The
configuration file includes a direc-
tive to extract the “frame.number”
filter argument provided to tshark.
Labtainer assessment configuration
file directives allow the designer
to symbolically reference symbols
named in parameterization config-
uration files. The expected value of
the frame number is derived by sub-
tracting the random value used dur-
ing parameterization from the value
of the frame number as it existed
before the pcap file was truncated.
The configuration file entry in
Figure 2 subtracts from 190 the

FIRST_FRAME : RAND_REPLACE: .local/

bin/fixlocal.sh : START_FRAME : 1 :

100

Figure 1. Extract from parameterization configuration file.

32 ComputingEdge May 2018

“frame_num” value found in a stu-
dent’s artifact and compares this to
the random value that resulted from
the directive in Figure 1.

Per-Student Solutions
The example pcap analysis lab is
susceptible to one student provid-
ing another with the precise key-
strokes needed to complete the
lab—a problem associated with all
labs that rely only on per-student
results. Per-student solutions defeat
rote repetition of keystrokes. An
example is the nmap-discovery lab,
which presents the student with a
fictional scenario in which he is told
that he has an account on an SSH
server but is given only the server
name (not the network address)
and his password. The student uses
nmap to locate the server IP address
and to discover the SSH port num-
ber that the IT department had set
to an arbitrary value. This exercise
is individualized by assigning a ran-
dom port number, within a range, to
each student. Thus, rote keystroke
repetition fails to complete the lab.

The parameterization configura-
tion file for the nmap-discovery lab
names symbols in Linux system ser-
vices configuration files. These sys-
tem files were modified by the lab
designer to contain symbolic names in
place of the SSH port numbers. These
symbolic names are replaced during
parameterization. As a result, system
networking services on the configured
container will listen to the individual-
ized port number for SSH traffic.

In this particular lab, there is
no need for assessment configura-
tion directives to reference symbols
in parameterization configuration

files, because the student could not
have SSH’d to the server unless the
port number was discovered. This
simplifies automated assessment
and is in contrast to the previous
example in which the assessment
configuration files referenced the
pcap truncation parameter.

The nmap-discovery lab auto-
mated assessment reveals whether
the student was able to use SSH
to connect to the target server and
the number of times the student
invoked the nmap command. The
assessment configuration file iden-
tifies standard output from the SSH
command as an artifact of interest—
specifically any output that contains
a constant string within a file pres-
ent on the target SSH server. If this
string appears in the artifacts, the
student is assumed to have discov-
ered the SSH port number.

Beyond the primary motivation
of not rewarding rote replays of lab
steps, per-student solutions have
an advantage from the perspec-
tive of the lab designer. Because
the parameterization need not be
reproduced in the assessment step,
the expected results as represented
in the student artifacts can be con-
firmed without reference to any
specific parameterized values gen-
erated for that student. Although
making a tie between a parameter-
ized value and the expected results
in the assessment configuration files
is often relatively straightforward, it
can become tedious and error prone
for some exercises. Consider a
forensics-oriented lab that requires
students to recover a deleted file
from a virtual file system. A simple
way to individualize the lab is to
add a randomly determined num-
ber of filler files into the file system
prior to creating the files of inter-
est. The filler files force file offsets
and inode numbers of the target
files to be a function of the student’s
email address. Assessing per-student
results for this lab (for instance,
comparing student-provided inode

values with expected values) is chal-
lenging because the effects of filler
files on inodes and offsets depend
on file system implementation vaga-
ries, and these are not easily pre-
dicted. The assessment step for this
forensics lab need not be concerned
with what the values are for any
given student; rather it can rely only
on whether the deleted file was in
fact recovered. Thus, a per-student
solution assumes the student could
not have recovered the file content
without discovering the offset or
inode specific to that student.

Status and Availability
More than 35 labs are available
to students and instructors in the
Labtainer framework (https://my
.nps.edu/web/c3o/labtainers). Each
includes a student lab manual, and
most include automated assessment
and perform per-student individu-
alization. The website also includes
a developer package for use by lab
designers when creating new labs
or transitioning existing labs into
the Labtainer framework. The con-
tainers themselves are hosted on the
public Docker hub (https://hub
.docker.com) and are transparently
loaded onto a student’s computer
when the corresponding lab is first
started. The “Labtainer Lab Designer
User Guide”4 describes how lab
designers can publish their own
Labtainers-based labs on the Docker
hub, thus making them available to
their students.

F uture work we hope to pursue on
Labtainers includes GUI-based,

integrated lab-authoring tools as
well as additional features to sup-
port instructors. These include
HTML-based reporting of student
assessment results and integration
into learning management systems.
We would also like to convert our
development and publishing work
flow to a collaborative environ-
ment to simplify the integration of

view_frame matchany : integer_

equal : (190-frame_num) : parameter.

FIRST_FRAME

Figure 2. Extract from assessment configuration file.

EDUCATION

www.computer.org/computingedge 33

contributions by a community of
lab designers.

Acknowledgments
This work was supported by NSF grant
DUE-1438893. The views expressed in
this material are those of the authors
and do not reflect the official policy or
position of the National Science Foun-
dation, Department of Defense or the
US Government.

References
1. W. Du, “SEED: Hands-On Lab

Exercises for Computer Security
Education,” IEEE Security & Pri-
vacy, vol. 9, no. 5, 2011, pp. 70–73.

 2. A. Arvam, “Docker: Automated and
Consistent Software Deployments,”
27 Mar. 2013; https://www.infoq
.com/news/2013/03/Docker.

 3. C.E. Irvine et al., “Labtainers:
A Docker-Based Framework for

Cybersecurity Labs,” Proc. 2017
USENIX Workshop on Advances in
Security Education, August 2017.

 4. M.F. Thompson, “Labtainer Lab
Designer User Guide,” 27 Oct. 2017;
http://my.nps.edu/documents
/107523844/109121513/labdesigner
.pdf.

Michael F. Thompson is with Naval
Postgraduate School. Contact him
at mfthomps@nps.edu.

Cynthia E. Irvine is with Naval Post-
graduate School. Contact her at
irvine@nps.edu.

stay connected.

Keep up with the latest IEEE Computer Society
publications and activities wherever you are.

| IEEE Computer Society
| Computing Now

| facebook.com/IEEEComputerSociety
| facebook.com/ComputingNow

| @ComputerSociety
| @ComputingNow

| youtube.com/ieeecomputersociety

This article originally appeared in
IEEE Security & Privacy, vol. 16, no. 2, 2018.

got
flaws?

Find out more
and get involved:

cybersecurity.ieee.org

