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EDUCATION

H ands-on laboratory exercises 
help students internalize 

knowledge so that it can be applied 
in new contexts. Hence, cyberse-
curity educators try to create lab 
exercises that allow students to
explore systems, yet provide suf-
ficient guidance so that students
achieve the desired learning objec-
tives without becoming lost in minu-
tiae. Challenges associated with
developing such exercises include
creating and supporting each lab,
ensuring students do their own work,
and grading exploratory activities.

In many cases, providing labs is 
difficult because access to physical 
lab computers—or remote access 
to institutionally or other cen-
trally provisioned and managed 
resources—is not practical. Bind-
ing students to centralized servers 
can make self-paced, intermittent 
activity more difficult, yet, lacking 
institutional IT equipment and staff, 
instructors may not be able to pres-
ent easily managed and deployed 
fine-tuned lab environments. How-
ever, if students run lab exercises 
directly on their own computers, 
other problems arise: the results 
produced may vary from student 
to student depending on software 
installed on the computer used, and 
all the tools required for an exercise 
may not even execute on certain 
platforms. The solution is tailored 
cybersecurity lab environments that 
eliminate divergent results caused 
by software differences. This can 
be achieved by providing students 

with virtual machine (VM) images 
containing lab-related software.1
Students then run VMs on their 
personal computers or on insti-
tutionally provided computers. 
Through use of VMs, variations 
in the results among students can 
be largely limited to hardware per-
formance differences.

But, use of VMs on student com-
puters has several drawbacks. First, 
exercises involving two or more 
networked computers require mul-
tiple VMs, the hosting of which 
is beyond the performance capa-
bilities of many student comput-
ers. Also, different labs may rely on 
mutually incompatible configura-
tions or software packages, thus 

requiring students to either per-
form complex provisioning steps 
or to install separate VMs for each 
lab. The provisioning and admin-
istration of the execution environ-
ments required by different labs can 
become a significant distraction and 
source of frustration for both stu-
dents and instructors.

Another challenge is that, regard-
less of how they are provisioned,
cybersecurity lab exercises are often
susceptible to students’ sharing solu-
tions and cribbing from each other’s
lab reports. Use of VM images on
individual student computers com-
plicates schemes designed to verify
student performance of their own
lab exercises, for example, logging
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and audit features that might be part
of a remotely accessed cyber range.
Student actions on VMs can be
logged; however, use of a single VM
for multiple labs would require some
method to distinguish the artifacts
of different labs. The alternative of
allocating each lab to a distinct VM
image can be prohibitive in terms of
network bandwidth and disk storage
on the student computer.

The last challenge is encouraging 
students to explore the lab environ-
ment while providing instructors 
with a simple way to determine that 
students have achieved expected 
milestones. How can students “show
their work”? How can instructors
observe what students have done
and provide advice if they are stuck,
yet not have to stand over the stu-
dents while they complete the entire
exercise?

Labtainers: A Practical 
Solution Using 
Docker Containers
Labtainers is a framework for devel-
oping and deploying Linux-based 
labs involving multicomponent net-
work topologies all hosted entirely 
on modestly provisioned student 
computers. Our initial emphasis 
is on cybersecurity. Docker con-
tainers2 are used to standardize 
complete lab execution environ-
ments, thereby reducing lab setup 
and configuration distractions. By 
using containers, labs can incorpo-
rate complex topologies without 
suffering the overhead of running 
multiple VMs. The Labtainer frame-
work supports automated assess-
ment of student work and allows lab 
exercises to be individualized for 
each student, thus discouraging the 
appropriation of others’ work.

The use of Docker containers 
simplifies the Labtainer approach 
to individualizing student labs 
and recording student activity for 
later assessment by instructors. 
The framework automatically col-
lects artifacts from a student lab 

environment into an archive file 
that the student forwards to her 
instructor. Here we describe strat-
egies for ensuring that the artifacts 
in the archive file are the result of 
that student’s efforts. We present 
these strategies in the context of 
two example Labtainer exercises. 
The first provides an introduction to 
network traffic analysis using tshark, 
and the second employs the nmap
utility to locate a selected network 
service.

The Labtainer framework sup-
ports three types of users. Lab
designers are responsible for creat-
ing laboratory exercises so that they 
meet intended learning objectives. 
Each lab designer determines if and 
how the lab is parameterized and 
whether automated assessment will 
be supported. Instructors assign labs 
to students and assess their work. 
Instructors may or may not work 
with lab designers to create exer-
cises. Students perform the labora-
tory exercises. They are oblivious to 
the underlying framework that con-
figures and individualizes their labs 
and that gathers artifacts required 
for assessment.

Target Lab Context and 
Automated Assessment
Students start Labtainer exercises 
by executing a Python script on 
a Linux host, typically a VM. The 
script augments the Linux host envi-
ronment with one or more Docker 
containers and a set of virtual termi-
nals. Students use the virtual termi-
nals to interact with the containers, 
which from the students’ vantage 
point appear to be independent 
computers. The execution environ-
ment within each container is pre-
scribed by the designer of the lab. 
In the degenerate case where the 
lab designer provides only a name 
for the lab, the environment seen 
by the student will be a bash shell 
on what appears to the student to 
be an Ubuntu Linux system. The 
Labtainer framework allows the 

lab designer to select from a vari-
ety of Linux distributions for each 
container and to include software 
packages and configuration settings 
as appropriate for the lab. Design-
ers define virtual networks and the 
connections among containers. The 
student sees the resulting network 
topology and has virtual terminals 
connected to only those containers 
indicated by the designer.

After the student performs 
the lab exercise, she runs another 
Python script that terminates the 
lab on the Linux host. This results 
in the collection of artifacts from 
her lab activity. She then provides 
the resulting archive to the instruc-
tor. The instructor can review these 
artifacts on similarly provisioned 
Docker containers. The framework 
includes tools for the lab designer 
to specify expected attributes of 
the student artifacts, which are 
then automatically assessed and 
summarized for the instructor. 
Labtainer support for consistent 
execution environment provision-
ing and automated assessment of 
student work is described in detail 
elsewhere.3,4

Attribution through 
Lab Individualization
Several approaches to ensuring the 
individuality of student work are 
possible in the Labtainer framework:
watermarks, per-student artifacts, and
per-student solutions. Within a par-
ticular lab exercise, these can be 
used separately or in combination.

Per-Student Watermarks
When a student starts a lab, the 
Labtainer framework incorporates 
a student-supplied email address 
into a seed for generation of pseu-
dorandom values. A watermark file 
is automatically created for each 
student lab, and this file becomes 
one of the artifacts in the student’s
archive. The watermark value is
validated as part of the assessment
process initiated by the instructor.
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This simple strategy ensures
(albeit weakly) that the archive
provided by the student originated
with the student who started the
lab. As will be seen in subsequent
sections, the Labtainer framework
allows lab designers to improve
on the assurances provided by the
watermarks.

The simple watermark check 
inherent in all Labtainer exercises 
is readily bypassed by replacing a 
single file in the archive, perhaps by 
an automated script shared among 
students, effective on all Labtainer 
exercises. Variations on the water-
mark strategy can be defeated by 
correspondingly advanced auto-
mations, for instance, scripts that 
replace individual artifacts such as 
the output of a program invocation. 
These automations become spe-
cific to the individual labs and thus 
require more effort by the benevo-
lent cheater to build and maintain. 
A fundamental limitation on the 
robustness of the watermarking 
strategies is that the Labtainer 
framework does not keep secrets 
from the student environment. Our 
design explicitly avoided the large 
step in complexity inherent in main-
taining secrets.

Additional assurances of the 
originality of student work rely on 
choices made by the lab designer. 
In the Labtainer framework, these 
schemes typically have one of two 
purposes. The first, per-student 
artifacts, provides further evidence 
that someone performed the exer-
cise on a Labtainer instance that 
was initiated using the student’s 
email address. This strategy causes 
selected artifacts generated by lab 
exercise steps to be individual-
ized for each student. The second 
approach, per-student solutions, 
seeks to ensure that whoever per-
formed the exercise did not sim-
ply reproduce dictated actions. In 
the Labtainer framework, these 
per-student solutions, when prac-
tical for a given lab, provide more 

assurance that students performed 
their own work.

Per-Student Artifacts
Introduction of per-student artifacts
makes development of cheating auto-
mations more challenging, because
individual artifacts themselves are
tailored to the individual student.
A simple example is an exercise that
requires the student to display to
standard output the content of a
student-specific file on a server once a
remote shell on the server is obtained.
This would defeat an automation that
simply inserts unmodified artifacts
into the student’s archive. While one
can imagine correspondingly sophis-
ticated automations that are informed
by the particulars of the lab exercise,
at some point, it becomes easier for
enterprising students to publish and
re-perform exact keystrokes neces-
sary to create the desired artifacts.
For some labs, the keystrokes prob-
lem can be addressed by per-student
solutions.

A less trivial example of per-
student artifacts is found in the 
Labtainier pcap analysis lab, in 
which students are introduced to 
basic network traffic analysis tech-
niques using the tshark utility. Each 
student’s Labtainer environment 
for this lab includes a pcap file tai-
lored to that student. The pcap file 
is individualized by truncating a 
random quantity of “filler” packets 
from the start of a baseline pcap 
file. This results in packet numbers 
that are unique to the student, while 
the content of the non-filler traffic 
remains constant for all students. 
The student is required to display 
the single packet of a specific invalid 
login attempt. Hence, the output 
of the corresponding tshark com-
mand will include a student-specific 
packet number that can be deter-
ministically reproduced by the 
assessment function in the instruc-
tor’s environment.

Lab designers individualize labs
using parameterization configuration

files containing commands that
cause the framework to replace sym-
bols in selected files with random val-
ues derived from the student email
address. For the pcap analysis lab, the
target of replacement is a parameter
passed to a utility that truncates the
start of the pcap file. This parameter-
ization utility is invoked the first time
a student runs the lab, resulting in
truncation of the pcap file seen by the
student. (Note: students do not have
to complete a lab in one sitting, and
if the student wishes, the framework
allows her to restart a lab from the
beginning, with complete reinitializa-
tion and consistent personalization.)
The configuration file entry shown in
Figure 1 causes the symbol “START_
FRAME” in the file “fixlocal.sh”
to be replaced by a random value
between 1 and 100.

Lab designers define automated 
assessment in assessment configu-
ration files that identify student 
artifacts and their expected attri-
butes. The pcap analysis lab assess-
ment configuration files identify the 
standard input of the tshark com-
mand as an artifact of interest. The 
configuration file includes a direc-
tive to extract the “frame.number” 
filter argument provided to tshark. 
Labtainer assessment configuration 
file directives allow the designer 
to symbolically reference symbols 
named in parameterization config-
uration files. The expected value of 
the frame number is derived by sub-
tracting the random value used dur-
ing parameterization from the value 
of the frame number as it existed 
before the pcap file was truncated. 
The configuration file entry in 
Figure 2 subtracts from 190 the 

FIRST_FRAME : RAND_REPLACE: .local/

bin/fixlocal.sh : START_FRAME : 1 : 

100

Figure 1. Extract from parameterization configuration file.
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“frame_num” value found in a stu-
dent’s artifact and compares this to 
the random value that resulted from 
the directive in Figure 1.

Per-Student Solutions
The example pcap analysis lab is 
susceptible to one student provid-
ing another with the precise key-
strokes needed to complete the 
lab—a problem associated with all 
labs that rely only on per-student 
results. Per-student solutions defeat 
rote repetition of keystrokes. An 
example is the nmap-discovery lab,
which presents the student with a 
fictional scenario in which he is told 
that he has an account on an SSH 
server but is given only the server 
name (not the network address) 
and his password. The student uses 
nmap to locate the server IP address 
and to discover the SSH port num-
ber that the IT department had set 
to an arbitrary value. This exercise 
is individualized by assigning a ran-
dom port number, within a range, to 
each student. Thus, rote keystroke 
repetition fails to complete the lab.

The parameterization configura-
tion file for the nmap-discovery lab
names symbols in Linux system ser-
vices configuration files. These sys-
tem files were modified by the lab
designer to contain symbolic names in
place of the SSH port numbers. These
symbolic names are replaced during
parameterization. As a result, system
networking services on the configured
container will listen to the individual-
ized port number for SSH traffic.

In this particular lab, there is 
no need for assessment configura-
tion directives to reference symbols 
in parameterization configuration 

files, because the student could not 
have SSH’d to the server unless the 
port number was discovered. This 
simplifies automated assessment 
and is in contrast to the previous 
example in which the assessment 
configuration files referenced the 
pcap truncation parameter.

The nmap-discovery lab auto-
mated assessment reveals whether
the student was able to use SSH
to connect to the target server and
the number of times the student
invoked the nmap command. The
assessment configuration file iden-
tifies standard output from the SSH
command as an artifact of interest—
specifically any output that contains
a constant string within a file pres-
ent on the target SSH server. If this
string appears in the artifacts, the
student is assumed to have discov-
ered the SSH port number.

Beyond the primary motivation 
of not rewarding rote replays of lab 
steps, per-student solutions have 
an advantage from the perspec-
tive of the lab designer. Because 
the parameterization need not be 
reproduced in the assessment step, 
the expected results as represented 
in the student artifacts can be con-
firmed without reference to any 
specific parameterized values gen-
erated for that student. Although 
making a tie between a parameter-
ized value and the expected results 
in the assessment configuration files 
is often relatively straightforward, it 
can become tedious and error prone 
for some exercises. Consider a 
forensics-oriented lab that requires 
students to recover a deleted file 
from a virtual file system. A simple 
way to individualize the lab is to 
add a randomly determined num-
ber of filler files into the file system 
prior to creating the files of inter-
est. The filler files force file offsets 
and inode numbers of the target 
files to be a function of the student’s
email address. Assessing per-student 
results for this lab (for instance, 
comparing student-provided inode 

values with expected values) is chal-
lenging because the effects of filler 
files on inodes and offsets depend 
on file system implementation vaga-
ries, and these are not easily pre-
dicted. The assessment step for this 
forensics lab need not be concerned 
with what the values are for any 
given student; rather it can rely only 
on whether the deleted file was in 
fact recovered. Thus, a per-student 
solution assumes the student could 
not have recovered the file content 
without discovering the offset or 
inode specific to that student.

Status and Availability
More than 35 labs are available 
to students and instructors in the 
Labtainer framework (https://my
.nps.edu/web/c3o/labtainers). Each
includes a student lab manual, and 
most include automated assessment 
and perform per-student individu-
alization. The website also includes 
a developer package for use by lab 
designers when creating new labs 
or transitioning existing labs into 
the Labtainer framework. The con-
tainers themselves are hosted on the 
public Docker hub (https://hub
.docker.com) and are transparently
loaded onto a student’s computer
when the corresponding lab is first
started. The “Labtainer Lab Designer
User Guide”4 describes how lab
designers can publish their own
Labtainers-based labs on the Docker
hub, thus making them available to
their students.

F uture work we hope to pursue on
Labtainers includes GUI-based, 

integrated lab-authoring tools as 
well as additional features to sup-
port instructors. These include 
HTML-based reporting of student 
assessment results and integration 
into learning management systems. 
We would also like to convert our 
development and publishing work 
flow to a collaborative environ-
ment to simplify the integration of 

view_frame  matchany : integer_

equal : (190-frame_num) : parameter.

FIRST_FRAME

Figure 2. Extract from assessment configuration file.
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contributions by a community of 
lab designers. 
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