
Labtainers: A Framework for Parameterized Cybersecurity Labs
Using Containers

Cynthia E. Irvine
Naval Postgraduate School

irvine@nps.edu

Michael F. �ompson
Naval Postgraduate School

m�homps@nps.edu

Jean Khosalim
Naval Postgraduate School

jkhosali@nps.edu

ABSTRACT
We have created a framework to simplify creation, deployment, and
assessment of stand-alone cyber security lab exercises, intended
for use on individual student computers. We are implementing
this framework using Linux Docker containers. Each lab has one
or more associated containers that ensure an execution environ-
ment consistent with the requirements of the so�ware elements
and activities within the lab. Lab-speci�c containers are automat-
ically installed and con�gured on the student’s Linux computing
platform, (e.g., a VM) when the student starts the lab. Results of
student lab activity are automatically collected and packaged when
the student completes the lab, and these results are automatically
evaluated on an instructor’s computer, using similar Docker con-
tainers. Automated assessment of student labs makes it practical,
(from an instructor’s perspective), to individualize every instance
of each lab such that students cannot easily submit results either
created by another student or mined from the Internet.

KEYWORDS
Computer security education, laboratory exercises, containers, pa-
rameterization

1 INTRODUCTION
Laboratory exercises provide students with experiential learning
opportunities that reënforce concepts presented in readings and
lectures. In addition, they allow students to learn how many tools
and techniques can be used to solve problems. In the context of
cybersecurity, laboratory exercises must cover a wide range of
topics and need to be organized so that their learning outcomes
progress from fundamental concepts to in-depth understanding.

Despite the acknowledged value of experiential learning [9],
cybersecurity educators o�en face a number of challenges when
a�empting to provide worthwhile laboratory exercises for classes.
First, they may lack the institutional infrastructure required to host
complex lab exercises that may involve networked systems. Second,
they may not have the time or expertise required to develop high
quality exercises. Just as educators o�en rely upon good textbooks
that contain well-ve�ed homework problems, and that may be
accompanied by slides and other materials, so can over-worked
instructors bene�t from materials that will help them provide use-
ful laboratory activities. �ird, operating system and application
con�guration is a signi�cant source of frustration and distraction
for students and instructors when working with computer science
labs. When students are required to use their personal systems,

�is work was supported by NSF grant DUE-1140938. �e views expressed in this
material are those of the authors and do not re�ect the o�cial policy or position of
the National Science Foundation, Department of Defense or the U.S. Government.

the consequent platform diversity can force instructors to manage
problems associated with exercise setup and potentially diverse
results caused by platform di�erences. Platform diversity can also
negatively impact students, who must devote a disproportionate
amount of time to lab set up, relative to doing the lab exercise and
achieving the intended learning objectives. Fourth, o�en the best
learning takes place when students are engaged in exploratory ex-
ercises. Unfortunately, exploratory exercises, by their very nature,
can involve many blind alleys and detours. Understanding what
each student has done, where that student may have had di�culty
and whether the lab was successfully completed can become very
laborious for instructors. Last, students may share or reuse exercise
results. �e undesirable consequences of this behavior include: im-
plicit punishment of diligent students who complete the exercises
themselves; student-cheaters who do not learn the material yet re-
ceive undeserved high marks; and instructors are unable to identify
and assist students having di�culty with the material. Individu-
alized exercises could solve the problem; however, if each student
is given an di�erent exercise, the instructor is faced with a huge
grading task. Furthermore, it is possible that the individualized
exercises will vary in di�culty, making the exercise unfair.

To address these problems, we have developed Labtainers.
�e Labtainers framework involves three roles:

Lab Designer �is person is an expert on the material to be
presented in the lab exercise and serves as the pedagogical
authority with respect to the intended learning objectives.
�e lab designer creates the laboratory exercise. �e lab
designer might have no interaction with the students, al-
though it is likely that the lab designer will work with
instructors, or may be the instructor. �is interaction will
help ensure that the intended learning objectives of the
exercise are addressed. �e lab designer can easily mod-
ify existing labs to �ne tune the learning experience or to
update the labs to incorporate new tools and technologies
�e designer might also specify requirements for, or even
create, tools to assist instructor assessment of students’
deliverables.

Instructor �e instructor interacts with the students and is
responsible for ensuring that learning objectives are met.
An instructormight alsoworkwith a lab designer to specify
the objectives for new labs. �e instructor must ensure
that students have the prerequisite knowledge required
to complete each exercise successfully, and must assess
student performance on the exercise.

Student Students perform laboratory exercises and deliver
their results to instructors. �e intent is for students to
have learned something as a result of doing an exercise.



NCS17 , Huntsville, AL , 2017 Cynthia E. Irvine, Michael F. Thompson, and Jean Khosalim

�e overarching goal of the Labtainers project is to develop a
framework for cybersecurity laboratory exercises that is:

Consistent and Fair Laboratory exercises will be delivered
to students in a precon�gured environment. Di�erent labs
can o�er di�erent environments. Both students and in-
structors will be able to to generate consistent, reproducible
results. Each lab environment will be homogeneous across
the entire instructor and student population, despite likely
heterogeneity across the underlying platforms. One excep-
tion is that per platform performance may vary. Students
will not have to struggle to create lab environments, and,
instead, can concentrate on the lab. Instructors can assess
student work without having to contend with di�erences
resulting from the way the labs were set up.

Parameterizable Each student will have a laboratory exer-
cise that cannot be accomplished by simply copying the
results of another student. Parameterization choices can
ensure that all students have labs of the same di�culty.
Lab designers will be able to parameterize the generation
of expected results on a per student basis, thus streamlin-
ing the assessment process. Labtainers are not an absolute
guarantee that students will not engage a surrogate to do
the lab or that a student might outwit the parameterization
mechanism for a particular exercise, but the work factor
required to cheat is intended to disincentivize cheating.

Support Automatic Assessment �eLabtainer framework
is designed so that evidence can be collected to demon-
strate that students have achieved intended intermediate
and �nal goals of exercises. Information can be collected
so that the instructor can determine where students be-
come confused or go o� track. �e framework supports
the use of assessment tools by storing student evidence
in a format that can be easily digested by other applica-
tions. �ese tools may be generic, or may be created by
the lab designer to address speci�c aspects of an exercise.
�rough the development of machine learning and other
emerging analytical methods, it may be possible to create
good metrics of exercise and experiential learning e�cacy.

�e remainder of this paper consists of three sections. In the next
section of this paper, related prior work and an overview of contain-
ers, our enabling technology, are presented. �e student work�ow
supported by the Labtainer framework, lab exercise de�nition, pa-
rameterization, and support for student assessment are discussed in
Section 3. �is is followed by a summary and discussion of future
work.

2 BACKGROUND AND RELATEDWORK
�is section reviews relevant preëxisting work and then provides
an overview of the container technology that enables Labtainers.

2.1 Existing Cybersecurity Lab Frameworks
Security labs o�en require extensive infrastructure and technical
support to undertake educational activities such as capture-the-�ag
challenges and class-focused lab exercises. Because many programs

are homed at institutions lacking su�cient resources for such fa-
cilities, several environments have been created to address this
need.

Several alternatives are available to instructors who wish to
o�er cybersecurity labs: hands on experience involving physical
machines, virtual machines hosted on an infrastructure-as-a-service
(Iaas) platform, virtual machines hosted on each student’s laptop,
and containers executing either on the the student’s Linux host or
in a Linux virtual machine hosted on the student’s system.

�e use of virtual machines to teach computer science classes
has been explored for over 30 years, e.g. [5]; however, low cost
virtualization technology capable of easily supporting laboratory
exercises has only been available in the past ten years, e.g. Hay et
al. suggested the use of virtual machines to support security labs
[11]. Relative to virtual machines, containers have a number of
advantages.

On demand cloud computing resources, such as Amazon Web
Services (AWS) [2] require special permission to run many simple
network security exercises, such as port scans and penetration
testing. 1

Construction of an institutionally-owned and operated virtual
machine farm is likely to require considerable initial hardware in-
vestment and technical expertise, as well as an ongoing operational
tail for maintenance, user management, continuity of operations,
and backups. Even institutional use of a proprietary system for
managing VMs, such as vSphere [18], requires expertise, whereas
less costly open source options, such as KVM [17], require even
greater levels of expertise. If students are required to host a number
of VM images on their personal computers or laptops, the resource
requirements could quickly exceed the resources available on the
host. In contrast, Linux containers [24] o�er a less costly and
less complex alternative that a�ords lab designers and instructors
greater control, while not tethering students to a server farm.

Where the physical component cannot be virtualized, the solu-
tion may involve some combination of elements, both physical and
virtual networked together.

DeterLab [13] makes available 24 homework exercises intended
to be run on the DETER testbed. Students access exercises via the
web, as do instructors. Providing a similar facility, RAVE (Remote
Access Virtual Environment) [14, 22] provides multiple infrastruc-
ture centers and sharable lab exercises. A challenge for instructors
is the level of sophistication required to construct, execute, and
maintain exercises. EDURange [20] originated to o�er a facility
for competitive, interactive exercises. To provide a combination of
�exibility and ease of use for instructors, it uses Amazon’s AWS to
support virtual machines and inter-VM networking. �e Tele-Lab
project [23] supports web-based access to virtual machines that
can support individualized laboratory exercises and assessments.
All of these enabling infrastructures require students to be con-
nected to the infrastructure platform hosting the virtual machines.
In contrast, Labtainers do not tether students to a server and allow
self-pace and intermi�ent activity. In addition, containers allow a
more constrained and tailored lab environment.

1h�ps://aws.amazon.com/premiumsupport/knowledge-center/penetration-testing/

https://aws.amazon.com/premiumsupport/knowledge-center/penetration-testing/


Labtainers: A Framework for Parameterized Cybersecurity Labs Using Containers NCS17 , Huntsville, AL , 2017

Although there are many descriptions of laboratory exercises
used to support teaching cybersecurity, e.g. [21], fewer complete
sets of materials are available.

�e SEED project [6–8] is an initiative to develop an instructional
environment and a collection of hands-onmaterials for computer se-
curity education. �e SEED project currently o�ers 33 labs divided
into three categories: vulnerability and a�ack, design and imple-
mentation, and exploration. All lab materials are freely available
under the GNU Free Documentation License, allowing instructors
and textbook authors to integrate and adapt lab materials into
course curricula. �e SEED project openly shares usage statistics
and continues to receive thousands of lab downloads per month,
suggesting that the materials continue to be used at a number of
universities.

Wang has developed a set of lab exercises for IT security [19].
�ese lab exercises are broken down into the following taxonomy:
Computer Security Labs, Network Security Labs, Cryptography
Labs, Application Security Labs.

Parameterization of security labs was incorporated into Tele-Lab
[23]. Parameters are prede�ned and stored in a parameter database.
In Labtainers, parameterization is achieved by using metadata asso-
ciated with the student and does not require a database. To create
individualized labs, the PolyLab project developed techniques to
provide randomization of exercises using hashes. [10] Exercises
in steganography and networking were modi�ed so that students
were required to �nd answers that re�ected their unique hash val-
ues. However, PolyLab does not support the virtualization provided
by Labtainers.

Automated assessment has been explored for programming courses,
e.g. [12, 15, 16], and are generally either static or dynamic [1]. We
found that none were directly applicable to our parameterization
framework.

2.2 Virtualization Approach: Containers
A key enabling technology that permits us to create a consistent,
yet realistic, laboratory environment is virtualization. Like its pre-
decessors discussed in the previous section, Labtainers also uses
virtualization, but we wanted it to be easier for both instructors and
students to use. Linux Docker [3] provides a convenient abstraction
layer that builds upon Linux containers [24].

Our use of Docker containers allows the lab designer to spec-
ify an appropriate execution environment for each lab in terms
of installed programs, library versions, and con�guration se�ings
typically found in the Linux /etc/ directory, e.g., networking con-
�gurations. �us, the execution environment within a lab container
can vary signi�cantly from that provided by the host OS without
modifying the student’s host platform. Similarly, the student’s
Linux host platform, (e.g., a VM) can be any Linux distribution that
supports Dockers, and need not be a particular version or con�gu-
ration. �e advantages of the Linux Docker [4] environment and
its impact on the Labtainer framework are listed below [3]

“File system isolation: each process container runs in a com-
pletely separate root �le system.” �is means that each laboratory
exercise can be provisioned and packaged with all of the �les, in-
cluding startup and parameterization scripts, required for students
to start the exercise.

“Resource isolation: system resources like CPU and memory
can be allocated di�erently to each process container, using cgroups.”
Problems associatedwith exercises will not spill out of the container:
neither instructors nor students will experience a negative impact
on the other work they are conducting on their systems. �rough
well designed Docker resource allocation, it may be possible to
create exercises in which the need for synchronization primitives
and transactional properties are clearly illustrated.

“Network isolation: each process container runs in its own net-
work namespace, with a virtual interface and IP address of its own. For
laboratory exercises, it is possible to create networked containers,
thus allowing exercises on topics in network security.

“Copy-on-write: root �le systems are created using copy-on-write,
which makes deployment extremely fast, memory-cheap and disk-
cheap.” �is is a�ractive for students and instructors who may have
resource-constrained platforms.

“Change management: changes to a container’s �le system can
be commi�ed into a new image and re-used to create more contain-
ers.” Lab designers and instructors can easily create variations of
laboratory exercises, thus the exercises can be both extensible and
evolvable.

“Interactive shell: docker can allocate a pseudo-�y and a�ach to
the standard input of any container, for example to run a throwaway
interactive shell.” �is feature supports a variety of exploratory
activities by students.

�e worst case so�ware stack for an instructor or student using
Labtainers will layer a Type II virtual machine monitor, e.g. Vir-
tual Box, on a commodity operating system. Linux will run in a
VM, with the Docker engine and the containers (applications) it
supports comprising the uppermost layers as shown in Figure 1.
An individual running a Linux system will have a shorter stack as
shown in Figure 2.

Hardware	

Na)ve	Opera)ng	System	

Type	II	Virtual	Machine	Monitor	

Linux	VM	

Docker	Engine	

Bins/Libs	 Bins/Libs	

Ap
p	
A’
’	

Ap
p	
B’
	

Na)ve	Applica)ons	

Ap
p	
A’
	

Ap
p	
A	

Ap
p	
B	

Figure 1: Worst case so�ware stack

3 LABTAINER FRAMEWORK
�e envisioned student work�ow and the use of the Labtainers
framework to de�ne, parameterize, and automate assessment of
labs is described below.



NCS17 , Huntsville, AL , 2017 Cynthia E. Irvine, Michael F. Thompson, and Jean Khosalim

Hardware	

Linux	

Docker	Engine	

Bins/Libs	 Bins/Libs	

Ap
p	
A’
’	

Ap
p	
B’
	

Other	Applica>ons	

Ap
p	
A’
	

Ap
p	
A	

Ap
p	
B	

Figure 2: Best case so�ware stack

3.1 Overview of Student Environment and
Work�ow

Labtainers support laboratory exercises designed for Linux environ-
ments, ranging from interaction with individual programs to labs
that include what appear to be multiple components and networks.
Students see and interact with Linux environments, primarily via
bash shell commands. In general, the Labtainer framework imple-
mentation is not visible to the student, and the Linux environment
as seen by the student is not augmented or modi�ed to support
the framework. �e Linux execution environments presented by
Docker containers do not readily include GUIs. As a result, Lab-
tainer are not intended for use with GUIs.

Labtainers are intended for use on individual student comput-
ers. �e computer utilized by a student must include the Linux
operating system, e.g., as a single VM. �is Linux operating system
can be any distribution and version that supports Dockers, and
it must have Dockers installed. In addition to installing Dockers
on the Linux host, the student must obtain and expand a tarball,
which contains the Labtainer workspace utilities. (�is tarball may
someday be replaced by standard Linux distribution packages, e.g.,
Debian and/or RPM packages.) Students initiate any and all labs
from a single workspace directory on the Linux host.

To perform a speci�c Labtainer exercise, the student runs a “start”
command from the Labtainer workspace, naming the lab exercise.
�is starts up one or more containers, along with corresponding
virtual terminals through which the student will interact with the
containers. �ese virtual terminals typically present a bash shell.
Each container appears to the student as a separate computer, and
these computers may appear to be connected via one or more
networks.

When a student starts a given exercise for the �rst time, the
framework fetches Docker images from a centralized repository,
and creates Docker containers parameterized for the individual
student using a cryptographic seed.

A�er the student performs the lab exercise, artifacts from the
container environments are automatically collected into a zip �le
that appears on the student’s Linux host. �e student forwards
this zip �le to the instructor, e.g., via email or a Learning Manage-
ment System (LMS). �e instructor collects student zip �les into a
common directory on his or her own Linux host, and then issues a
command that starts the instructor container(s) for that lab. �is
results in automated assessment of student lab activity, (if the lab
is designed for that), and creation of an environment in which the
instructor can review the work of each student.

�e instructor does not take any additional actions to set up or
facilitate automatic assessment or parameterization of student labs.
�e framework automates those functions based on con�guration
values de�ned by the lab designer as described in the following
section.

3.2 De�ning New Labs
�e most challenging and critical part of creating a new cyber
security lab is the design of the lab itself, i.e., identifying learning
objectives and organizing exercises to achieve those objectives.
�e Labtainer framework does not speci�cally address any of that.
Rather, the framework is intended to allow the lab designer to focus
more time on the design of the lab and less time on mitigating
and explaining system administration burdens placed on students
and instructors. �e framework does not require lab designers to
program or create scripts. �e lab designer primarily interacts with
the framework by editing con�guration �les that a�ect the student’s
execution environment and the optional automated assessment of
student activity.

Editing a set of con�guration �les is how lab designers perform
the three primary steps to create a new lab.

De�ne the lab execution environment
A given lab typically requires some set of so�ware packages,

and some system con�guration, e.g., network se�ings. Identifying
an expected environment is not unique to this framework, rather,
it is typically part of any lab design. �e framework captures most
con�guration details within a standard Docker�le.2 Additionally,
the lab designer identities the set of lab-speci�c �les, e.g., vulnerable
programs, that are to reside in the student’s home directory within
the container.

For each lab, there will be a template Docker�le for student
containers and one for instructor containers. �ese use standard
Docker �le syntax. Simple labs can use the default Docker�les
created by the Labtainers script.

Lab Parameterization
�e lab designer identi�es speci�c properties of the lab that are

to be individualized for each student. Parameterization is achieved
by de�ning symbols within source code or data �les. During con-
tainer initialization, the framework will replace these symbols with
randomized, student-speci�c values. A con�guration �le identi�es
the �les, and the symbols within those �les that are to be replaced
by the computed values. An example might be a constant control-
ling a bu�er size in the source code of a program that the student
is to interact with. A given student’s instance of the lab will have
a cryptographically generated seed that is unique to that student
for that lab. �e con�guration �le entry for the example bu�er
size value would be expressed as a random value within a given
range. When the student �rst starts the lab, functions within the
framework will replace the indicated constant in the source code
�le prior to code compilation.

Automated assessment of student labs
�is section describes how to con�gure a lab for automated

assessment of student work. It is worth noting that the framework
does not require that labs include automated assessment, e.g., the

2h�ps://docs.docker.com/engine/reference/builder/

https://docs.docker.com/engine/reference/builder/


Labtainers: A Framework for Parameterized Cybersecurity Labs Using Containers NCS17 , Huntsville, AL , 2017

“results” of a lab may consist entirely of a wri�en report submi�ed
by the student.

�e goal of automated assessment is to provide instructors with
some con�dence that students performed the lab, and to give in-
structors insight into which parts of a lab students may be having
di�culty with. It is possible to create exercises in which the student
must execute a speci�c sequence of operations, and the lab designer
can easily create assessments for such labs. It is more interesting
to design labs that encourage experimentation, but such experi-
mentation does not lend itself to highly prescriptive assessment
techniques. �e automated assessment functions we envision are
not intended to standardize each student’s approach to a lab, rather
the goal is to permit ad hoc exploration by students. �erefore,
the framework gives the lab designer a means to identify evidence
that steps of a lab were performed rather than trying to identify
everything a student may have done in the course of the lab.

�e framework’s automated assessment functions generally as-
sume the student will interact with one or more programs or system
utilities. Each time the student invokes a selected program or utility,
the framework captures copies of standard input and standard out-
put (stdin and stdout) into timestamped �le sets. �is is transparent
to the student. For example, one artifact might be the value that
follows the string, “�e result is:” within the stdout �le. �e lab
designer then references these tagged values within a con�guration
�le which de�nes the expected results of the lab. �e expression of
expected results can include indirect references to values that are
speci�c to the student’s instance of the lab, i.e., are a function of
the lab-speci�c seed described earlier.

�ese timestamped �le sets, and everything else relative to the
exercise in the student’s container-based home directory, are au-
tomatically packaged when the student completes the lab. �ese
packages of artifacts are then transferred to the instructor, (e.g., via
email or a LMS), and ingested into the instructor’s system where
lab assessment occurs.

�us, for assessments, the framework requires the lab designer to
create con�guration �les identifying what has been parameterized
for each lab, and what artifact values constitute success. �is extra
work by the lab designer greatly simpli�es the instructor’s task of
assessing each student’s performance of the labs. While many labs
may still include an essay component in which the student is asked
to describe the lab activity, the automated evaluation of artifacts
from individualized labs gives the instructor con�dence that the
student essays re�ect work performed by the student.

Example LabDe�nition for parameterization and automated
assessment

Consider a simple bu�er over�ow lab in which a vulnerable pro-
gram is exploited by consuming a student-de�ned data �le cra�ed
to over�ow a bu�er and transfer execution to shellcode embedded
in the data �le. �e lab might be parameterized by changing the
size of the over�owed bu�er for each student, thereby altering the
location of the overwri�en return address relative to the start of
the bu�er. �e lab designer inserts a symbolic name into the source
code of a vulnerable program where the bu�er size is de�ned, and
the designer adds a corresponding con�guration �le entry directing
that symbolic name to be replaced with a random value within a

speci�ed range. An example con�guration �le entry is:

rand1:RAND REPLACE:/home/ubuntu/stack.c:BUF SZ:100:500

which will replace the symbol BUF SZ in the �le stack.c with
a random value between 100 and 500. A di�erent con�guration
�le entry would then cause the individualized stack.c program to
be compiled the �rst time the student starts the lab. �us, the lab
designer augments the source code, and de�nes two con�guration
�le entries to parameterize this lab.

Automated assessment of the lab could be as simple as con-
�rming the student displayed the content of a prede�ned �le a�er
gaining a shell from the stack.c program. �is can be achieved by
entries in two con�guration �les, the �rst, in results.con�g identi�es
the result within the artifacts, e.g.,

file string = stack.stdout : CONTAINS : the cheese

�e symbol “�le string” will be true if the stdout of any invoca-
tion of stack program contains the string the cheese. An entry in a
second, “goals.con�g” con�guration �le de�nes success:

viewed file = is true : file string

�e goal of “viewed �le” is met if the symbol �le string is true.
Goal assessment operations also include comparison of symbols
to speci�c values and to parameterized values. And it supports
temporal comparisons and boolean expressions.

When the instructor container is started, the assessment is per-
formed automatically and the instructor is providedwith a summary
of each student’s achievement of the “viewed �le” goal. �is simple
example can be extended such that �le displayed by the student
contains an individualized value, an example of which is within
one of our “bufover�ow” Labtainer example lab.

4 SUMMARY AND FUTUREWORK
Built around standard Linux Docker-supported containers, the Lab-
tainer framework is targeted for use with labs designed for Linux
environments. Deploying cyber security labs using this framework
provides simplicity, consistency, per-student parameterization, and
assessment support.

• �e use of containers provides the bene�t of a consistent
execution environment without requiring an individual
VM per lab, and without requiring all labs to be adapted
for a common Linux execution environment. �e lab exe-
cution environment is controlled and consistent across all
students’ computers regardless of the Linux distribution,
version, and con�guration. �is allows each lab designer to
control which so�ware packages are present, the versions
of libraries and con�guration se�ings, e.g., /etc values.
�ese con�gurations may vary between labs.

• Labs may be automatically parameterized for each student
so that students cannot simply copy results from another
student or from internet repositories.

• Automated assessment of student lab activity is supported
through detailed logging of student activity and a set of



NCS17 , Huntsville, AL , 2017 Cynthia E. Irvine, Michael F. Thompson, and Jean Khosalim

con�guration �les that identify expected results. When
combined with appropriate tools, these capabilities can
relieve lab instructors from having to individually review
detailed lab results. �e assessment con�gurations support
per-student parameterization.

An initial implementation of the framework has been completed
and we have adapted a subset of the existing labs from the Syracuse
University SEED Labs project as a proof of concept. We are also
moving some of our existing and new computer forensics labs to
the Labtainer environment. At this point Labtainers are su�ciently
robust to support creation and adoption of new labs focused on
the security of industrial control systems. We expect these labs
will be a�ractive to instructors of ICS courses who have modest
resources for or lack physical ICS lab equipment or for distance
learning courses.

As we progress, the laboratory exercises will be evaluated in
several ways. First each will bench tested for functionality. Exercise
instructions will be reviewed and tested by individuals outside of
the exercise development group, thus ensuring that some tacit
knowledge of what the directions are supposed to mean is not
brought into the tests. In our classes, student use of the exercises
will be monitored and the exercises will be re�ned to ensure clarity
and easy identi�cation of expected student progress.

We will pursue tools to help instructors evaluate student work
with selected levels of granularity. For example, it may be helpful
to enable instructors to ask questions related to student progress
within a lab exercise and the duration of student activity.

REFERENCES
[1] K. M. Ala-Mutka. 2005. A survey of Automated Assessment Approaches for

Programming Assignments. Computer Science Education 15, 2 (June 2005), 83–
102.

[2] Amazon.com. 2011. About AWS. h�ps://aws.amazon.com/about-aws/ Retrieved
8 May 2017. (September 2011).

[3] Abel Arvam. 2013. Docker: Automated and Consistent So�ware Deployments.
h�ps://www.infoq.com/news/2013/03/Docker. (27 March 2013).

[4] Docker.com. 2017. Docker. h�ps://www.docker.com. (2017).
[5] John L. Donaldson. 1987. Teaching Operating Systems in a Virtual Machine

Environment. In Proceedings of the Eighteenth SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’87). ACM, New York, NY, USA, 206–211.
DOI:h�p://dx.doi.org/10.1145/31820.31759

[6] Wenliang Du. 2011. SEED: Hands-On Lab Exercises for Computer Security
Education. IEEE Security and Privacy Magazine 9, 5 (Sept. 2011), 70–73. DOI:
h�p://dx.doi.org/10.1109/MSP.2011.139

[7] W. Du, K. Jayaraman, and N. B. Gaubatz. 2010. Enhancing Security Education
with Hands-on Laboratory Exercises.. In Proceedings 5th Annual Sympoisum on
Inforamtion Assurance (ASIA’10).

[8] Wenliang Du and Ronghua Wang. 2008. SEED: A Suite of Instructional Labora-
tories for Computer Security Education. J. Educ. Resour. Comput. 8, 1, Article 3
(March 2008), 24 pages. DOI:h�p://dx.doi.org/10.1145/1348713.1348716

[9] Janet Eyler. 2009. �e Power of Experiential Education. Liberal Education 95, 4
(2009).

[10] Niclaus A. Giacobe and Ryan Kohler. 2016. Development of Poly-
morphic Homework and Laboratory Assignments in Cyber Security
with PolyLab. h�ps://www.�cinc.com/e/nice/ncec/presentations/2016/
Track C ShawneeMission/C-8 Giacobe and Kohler (2016) Development of
Polymorphic Homework and Laboratory Assignments in Cyber Security.pdf.
In NICE (National Initiative for Cyber Education) Conference 2016. Kansas City,
MO.

[11] Brian Hay, Ronald Dodge, and Kara Nance. 2008. Using Virtualization to Create
and Deploy Computer Security Lab Exercises. In Proceedings of �e IFIP Tc 11
23rd International Information Security Conference: IFIP 20th World Computer Con-
gress, IFIP SEC’08, September 7-10, 2008, Milano, Italy, Sushil Jajodia, Pierangela
Samarati, and Stelvio Cimato (Eds.). Springer US, Boston, MA, 621–635. DOI:
h�p://dx.doi.org/10.1007/978-0-387-09699-5 40

[12] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and O�o Seppälä. 2010. Review
of Recent Systems for Automatic Assessment of Programming Assignments.

In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli Calling ’10). ACM, New York, NY, USA, 86–93. DOI:
h�p://dx.doi.org/10.1145/1930464.1930480

[13] Jelena Mirkovic and Terry Benzel. 2012. Teaching Cybersecurity with DeterLab.
IEEE Security and Privacy 10, 1 (Jan. 2012), 73–76. DOI:h�p://dx.doi.org/10.1109/
MSP.2012.23

[14] Kara Nance, Blair Taylor, Ronald Dodge, and Brian Hay. 2011. Creating Shareable
Security Modules. In 7th World Conference on Information Security Education
(IFIP Advances in Information and Communication Technology), Ronald C. Dodge
and Lynn Futcher (Eds.), Vol. 406. 156–163.

[15] R. S. Pe�it, J. D. Homer, K. M. Holcomb, N. Simone, and S. A. Mengel. 2015. Are
Automated Assessment Tools Helpful in Programming Courses?. In 122nd ASEE
Annual Conference & Exposition. American Society for Engineering Education.

[16] Vreda Pieterse. 2013. Automated Assessment of Programming Assignments.
In Proceedings of the 3rd Computer Science Education Research Conference on
Computer Science Education Research (CSERC ’13). Open Universiteit, Heerlen,
Open Univ., Heerlen, �e Netherlands, �e Netherlands, Article 4, 12 pages.
h�p://dl.acm.org/citation.cfm?id=2541917.2541921

[17] Amit Shah. 2016. Ten Years of KVM. h�ps://lwn.net/Articles/705160/. (02
November 2016).

[18] VMware. 2017. vSphere and vSphere with Operations Management.
h�p://www.vmware.com/products/vsphere.html. (April 2017).

[19] Xinli Wang, Yan Bai, and Guy C. Hembro�. 2015. Hands-on Exercises for IT
Security Education. In Proceedings of the 16th Annual Conference on Information
Technology Education (SIGITE ’15). ACM, New York, NY, USA, 161–166. DOI:
h�p://dx.doi.org/10.1145/2808006.2808023

[20] Richard Weiss, Jens Mache, and Michael Locasto. 2014. EDURange: Hands-on
Cybersecurity Exercises in the Cloud. J. Comput. Sci. Coll. 30, 1 (Oct. 2014),
178–180. h�p://dl.acm.org/citation.cfm?id=2667369.2667402

[21] RichardWeiss, JensMache, and Erik Nilsen. 2013. Top 10Hands-on Cybersecurity
Exercises. J. Comput. Sci. Coll. 29, 1 (Oct. 2013), 140–147. h�p://dl.acm.org/
citation.cfm?id=2527148.2527180

[22] Richard Weiss, Vincent Nestler, Michael E. Locasto, Jens Mache, and Brian Hay.
2013. Hands-on Cybersecurity Exercises and the RAVE Virtual Environment
(Abstract Only). In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education (SIGCSE ’13). ACM, New York, NY, USA, 759–759. DOI:h�p:
//dx.doi.org/10.1145/2445196.2445505

[23] C Willems and C Meinel. 2012. Online assessment for hands-on cyber security
training in a virtual lab. In Global Engineering Education Conference (EDUCON).
IEEE. DOI:h�p://dx.doi.org/10.1109/EDUCON.2012.6201149

[24] Y. Yu. 2007. OS-level Virtualization and its Applications. Ph.D. Dissertation. State
University of New York, Stony Brook, Stony Brook, NY.

http://dx.doi.org/10.1145/31820.31759
http://dx.doi.org/10.1109/MSP.2011.139
http://dx.doi.org/10.1145/1348713.1348716
https://www.fbcinc.com/e/nice/ncec/presentations/2016/Track_C_ShawneeMission/C-8_Giacobe_and_Kohler_(2016)_Development_of_Polymorphic_Homework_and_Laboratory_Assignments_in_Cyber_Security.pdf
https://www.fbcinc.com/e/nice/ncec/presentations/2016/Track_C_ShawneeMission/C-8_Giacobe_and_Kohler_(2016)_Development_of_Polymorphic_Homework_and_Laboratory_Assignments_in_Cyber_Security.pdf
https://www.fbcinc.com/e/nice/ncec/presentations/2016/Track_C_ShawneeMission/C-8_Giacobe_and_Kohler_(2016)_Development_of_Polymorphic_Homework_and_Laboratory_Assignments_in_Cyber_Security.pdf
http://dx.doi.org/10.1007/978-0-387-09699-5_40
http://dx.doi.org/10.1145/1930464.1930480
http://dx.doi.org/10.1109/MSP.2012.23
http://dx.doi.org/10.1109/MSP.2012.23
http://dl.acm.org/citation.cfm?id=2541917.2541921
http://dx.doi.org/10.1145/2808006.2808023
http://dl.acm.org/citation.cfm?id=2667369.2667402
http://dl.acm.org/citation.cfm?id=2527148.2527180
http://dl.acm.org/citation.cfm?id=2527148.2527180
http://dx.doi.org/10.1145/2445196.2445505
http://dx.doi.org/10.1145/2445196.2445505
http://dx.doi.org/10.1109/EDUCON.2012.6201149

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Existing Cybersecurity Lab Frameworks
	2.2 Virtualization Approach: Containers

	3 Labtainer Framework
	3.1 Overview of Student Environment and Workflow
	3.2 Defining New Labs

	4 Summary and Future Work
	References

