OldMcData – The Data Farmer

User’s Manual

Version 1.1

Stephen C. Upton

June 18, 2010
Introduction

OldMcData - The Data Farmer (OMD) is a software application designed to do data farming runs, from running large simulation experiments on a distributed computer cluster to multiple replications of a single excursion on a single machine. For runs on a distributed computing cluster, OMD uses Condor (http://www.cs.wisc.edu/condor/) an open-source distributed computing environment, to handle the scheduling and managing of the running jobs.
OMD uses an XML formatted specification of your simulation experiment, called a study.xml file (see below for more details on this specification). The study.xml file includes information about the model, a listing of the input variables or factors in your experiment, the type of algorithm you want to use to read in or create the values for the input variables, and other administrative information such as the user's contact information. This file can be created manually using any text editor, or using a graphical front-end called XStudy. XStudy is used to create the study.xml file, allowing you to select your input variables or factors using the XPath specification, import a comma-separated value (csv) file with your experimental design, indicate which model you are using, and other administrative information such as the user's contact information. XStudy then creates a zip file of your supporting files, which the user can then send to their data farming administrator for the execution of the experiment, or used to run OMD on a single machine.
What does OMD do? Using the study.xml file and a configuration file, OMD finds and takes your model's base case scenario file (assumed in XML), and creates a new scenario file for each "excursion" or design point generated by the algorithm you selected. It does that by finding the variable or factor in your base case file using the XPath specification (specified in the study.xml file), replacing that value with the new value, and writing out the new excursion file. Depending on whether you selected to use Condor or a local run, then, for each excursion, OMD submits the job to Condor or runs the job locally. After doing this for each excursion, OMD quits. Condor is then used to check the status of the jobs, and manages the running jobs. Output from all the runs is placed in the Output folder in the study directory.
The software currently allows the use of four types of data farming: (1) gridded data farming (or full factorial - all combinations); (2) Cartesian product generation; (3) specifying runs desired in a comma-separated file; and, (4) an evolutionary programming algorithm.
The user can also group variables such that all the variables in the group take on the same values for a specific excursion, in effect, treating the group as one variable. Future versions of OldMcData are planned to directly include design of experiments methods (thanks to Tom Lucas and Susan Sanchez at NPS). Currently, these designs need to be generated with other tools, saved as a csv file, and referenced in the study.xml file. Additional natural algorithms for search, optimization, and discovery, such as genetic algorithms and simulated annealing are also planned.
Installation

To install, just unzip the omd1.1.zip file to any directory (one with no spaces), preferably at the top level. (See the QuickStart Guide that you downloaded separately for quick install and test instructions). Once unzipped, the file structure should look like this (where oldmcdata is the directory you unzipped into):

· oldmcdata (top level, or root directory)
· oldmcdata.start.bat - a windows bat file to start OMD from the command line

· oldmcdata.start.sh - a unix shell script to start OMD from the command line

· oldmcdata.config.xml - OMD's configuration file

· lib - the library directory containing all the supporting jars used by OMD

· models

· simpleplanner - a directory containing all the files needed by simpleplanner to run. simpleplanner is a simple task/resource simulation written in Scala (2.7.7)

· studies

· test-simpleplanner - a "study" directory containing all the files needed for an OMD run

The only configuration needed is to modify the oldmcdata.config.xml file to reflect where you unzipped omd1.1.zip. Just change all the file paths in the oldmcdata.config.xml file from "/Users/stephenupton/Work/oldmcdata/1.1" to your oldmcdata directory. You will also need to change the command executable to a ".bat" file if you are running on windows. Currently, you do not need to worry about the Condor entries at the top of the config file, unless you have Condor installed and want to experiment with that configuration.
The following java applications are included in the lib folder, and are required to run OMD.
	Table 1 - Java applications required to run OldMcData

	Application
	Purpose
	Jar files

	Jade 2.5
	Agent-based development environment
	Base64.jar, iiop.jar, jadeTools.jar, jade.jar

	Colt
	Scientific code - use random number generators, version 1.2.0 (without the hep.aida.* packages)
	colt-wohepa.jar

	dom4j
	XML parsing
	dom4j-1.6.1.jar

	jaxen
	XML parsing
	Jaxen-1.1-beta-6.jar

	xalan
	XSLT processor for transforming XML - used by dom4j
	xalan.jar

	Jakarta-oro
	Regular expression pattern matching and processing
	jakarta-oro-2.0.7.jar

	groovy
	Provide for on-the-fly analysis calculations of metrics for use by the iterative algorithms
	groovy-all-1.6.0.jar

	NALEX
	Natural algorithms, such as simulated annealing, genetic algorithms, and evolutionary programming. The current version only has implementations for an evolutionary programming algorithm.
	nalex1.0-20031119b306.jar

That’s all there is to the installation. Now, we will test and see if the installation worked.

Testing the installation

To test the installation, we will use the sample simulation - simpleplanner- provided with the OMD distribution. To run OMD, open up a command or terminal window, change directories to your oldmcdata directory and type:
oldmcdata.start.sh /root/studies/test-simpleplanner study.xml
for unix/mac, and
oldmcdata.start.bat c:/root/studies/test-simpleplanner study.xml
for windows (note you need to use the forward slash here as well).

The first argument, oldmcdata.start, is the batch file, or shell script, for starting oldmcdata. The second argument, /root/studies/test-simpleplanner, is what we call the study directory, and you need to specify the full path to that directory as we did in this example. The third argument, study.xml, is the name of the study file. This file is in the test-simpleplanner directory, as the requirement is for the study file to be in the study directory. Press the enter key, and the command prompt window will start displaying command lines, and run status for 10 replications of each simpleplanner excursion, for a total of 4 excursions.
After the run, you should have directories called "Output", “Excursions”, “playback”, and a directory called "run" in the study directory (that's the /root/studies/test-simpleplanner directory).

In the Output directory, you should have a bunch of output files called *.csv and *.tasks, where the file names are of the form “scenario.-0-X.xml.Y”. The “0” refers to the iteration number, which will always be “0” for a once-only generating algorithm. The “X” refers to the excursion number and the “Y” indicates the replication number. The pattern that includes the replication number is model specific, i.e., it is a function of how the model generates output files. OMD only has control over the iteration and excursion file-naming pattern. There are also jobX.log files that contain captured console output from the model, i.e., any output that the model sends to the console while it is running gets redirected to this file.

In the run directory, you should have all the simpleplanner files, plus the excursion files generated from the study.csv file. The excursion files are originally generated and placed in the “Excursions” directory and copied here for the local runs.

This concludes our testing. HOWTO’s on how to use OMD with other models can be found in the OMD “docs” directory of your root oldmcdata folder. These describe how and where to make changes to your oldmcdata.config.xml file and what other files are needed by OMD in order to execute your model, and what other files your model needs in order to run.

The Study.xml file specification
The heart of your study is contained in the study file. This file contains the information necessary for OMD to identify the model to use for your study, where your study files are located, which variables to change, how to change those variables, and whether you want to run locally or use another distributed computing application (currently, only interfaces to Condor are implemented). This file is an XML formatted file, and as such, can be generated by any text processor. Since this is fairly tedious, you have the option to use XStudy, a graphical front-end that helps with creating a study.xml file and selecting your input variables or factors. XStudy can be downloaded from the same location you downloaded OMD. If you have a large number of factors, XStudy can be tedious – in this case, you can create a study.xml template using XStudy, and then hand-edit the study.xml file as necessary, or create the set of XPaths using some other tool and cut-and-paste the results back into the study.xml file.

Now, we’ll turn to discussing the various elements in the study file. If you are so inclined, we’ll also point out which elements you’ll need to modify, which ones are nice to modify, and which ones you shouldn’t modify.

To follow along, using any text editor, open up the study.xml file in the studies/test-simpleplanner folder. You’ll see up at the beginning of the file an ModelIdentification, StudyIdentification, and UserIdentification elements, like so:

<ModelIdentification>

 <ModelName>SimplePlanner</ModelName>

 <ModelVersion>

 <Major>1</Major>

 <Minor>0</Minor>

 </ModelVersion>

 </ModelIdentification>

 <StudyIdentification>

 <Name>simpleplanner-example</Name>

 <Description>example running for OMD and SimplePlanner </Description>

 </StudyIdentification>

 <UserIdentification>

 <UserName>Your User Name</UserName>

 <EmailAddress>Your email</EmailAddress>

 <PhoneNumber>Your phone</PhoneNumber>

 <UserID>1</UserID>

 </UserIdentification>

The ModelName element has to match the model that you will be using for your study, and therefore, is a must to modify if you’re using a different model. This goes for the Major and Minor ModelVersion as well. The Major and Minor version has to match what’s available in the oldmcdata.config.xml file. We’ll talk later about how to add a different model version and modifying the oldmcdata.config.xml file.

The StudyIdentification and UserIdentification elements are nice to modify elements, as they aren’t used by the software (currently), but provide good descriptions for anyone reading this file.

The next element, SubmissionParameters tells the software that we are using a local machine, and has some parameters to tell it where to find the java class needed for local evaluation.
 <SubmissionParameters>

 <OriginatingMachine>your.machine.name</OriginatingMachine>

 <Platform>Local</Platform>

 <Evaluator type="Local" name="Local" classname="oldmcdata.evaluators.local.LocalEvaluator">

 <Parameters>

 <MakeRuns>true</MakeRuns>

 </Parameters>

 </Evaluator>

 </SubmissionParameters>

The Evaluator element supports two options – one for local evaluation, i.e., using a single machine to make runs, and one using condor. If you are using a single machine, then use the type, name, and classname attributes as listed in the example above. If you are using condor, replace type and name with “Condor”, and classname with “oldmcdata.evaluators.condor.CondorEvaluator”.
The MakeRuns parameter can be either true or false; if false, OMD just goes through the motions of creating the command lines to run the study, but doesn’t actually start the runs. Good for debugging purposes.
The next element is the ModelParameters element.

 <ModelParameters>

 <RandomGeneratorClass>Default</RandomGeneratorClass>

 <RandomGeneratorMethod>Default</RandomGeneratorMethod>

 <MapFile>some file name here</MapFile>

<MapFile>possibly some other file name here</MapFile>

 <NumberReplicates>5</NumberReplicates>

 <InitialRandomSeed>-1014207</InitialRandomSeed>

 <InitialRandomSeed>-503096</InitialRandomSeed>

 <InitialRandomSeed>73904</InitialRandomSeed>

 <InitialRandomSeed>917211</InitialRandomSeed>

 <InitialRandomSeed>-488347</InitialRandomSeed>

 <PlaybacksWanted>no</PlaybacksWanted>

 </ModelParameters>

Leave the RandomGeneratorClass and the RandomGeneratorMethod alone – they should have the value “Default”, and this value is currently the only one supported. The MapFile indicates the name of any additional, study specific file you may have. You can have multiple <MapFile> elements, e.g., if you have an elevation file for your scenario. The term “MapFile” is a hold over from previous study.xml versions, where models needed additional map files, like terrain and elevation that were part of the scenario, but were not going to be modified. You can include any other type of file that is needed by the model that you are not modifying, and which is study specific. Additional model specific files are listed in the oldmcdata.config.xml file.

The NumberReplicates should indicate how many replications you want for each excursion. For the InitialRandomSeed list, you’ll need to specify at least one InitialRandomSeed. If there aren’t enough InitialRandomSeed elements to match the number of replicates, OldMcData will generate some of it’s own until it has enough to match the number of replicates. If you want playbacks (for models that support this feature) then put a “yes” in the PlaybacksWanted element. Otherwise, leave it at “no”. If you have a lot of excursions, we recommend keeping this at “no”, i.e., only use playbacks for a small number of excursions, as this could eat up your hard drive pretty fast.

Now, moving right along, the next section is the Algorithm section. A study file that has been processed should look like this, i.e., there is no data in between the ModelRunInformation element. Otherwise, if a study file has been processed, you’ll have a tag that starts with the name Iteration. You can safely cut all of the text in between the ModelRunInformation beginning and ending tags as OldMcData will generate this information. We’ll come back to what the Iteration information is telling us.

 <Algorithm type="genetic">

 <ModelRunInformation>

 </ModelRunInformation>
The next section, AlgorithmSpecification, is the part that specifies your experimental setup. It has a GeneratorAlgorithm specification and an AnalyzerAlgorithm specification. Leave the AnalyzerAlgorithm specification alone for now – we’ll come back to that later as it only used (currently) by the EvolutionaryProgrammingGenerator. Each GeneratorAlgorithm has a set of Parameters and a Dimensions element that includes the Variable specification, and a set of attributes – a type, name, and classname.
<AlgorithmSpecification>

 <GeneratorAlgorithm type="File" name="File" classname="oldmcdata.generators.RunDataFromFileGenerator">

 <Parameters>

 <FileName>study.csv</FileName>

 <NumberOfLinesToSkip>1</NumberOfLinesToSkip>

 </Parameters>

 <Dimensions>

 <Variable type="string" name="Resource1_ST">

 <XPath>/testevent/tasks/task[1]/startTime</XPath>

 </Variable>

 <Variable type="string" name="Resource1_event1_duration">

 <XPath>/testevent/tasks/task[1]/duration</XPath>

 </Variable>

 <Variable type="string" name="Resource2_ST">

 <XPath>/testevent/tasks/task[3]/startTime</XPath>

 </Variable>

 <Variable type="string" name="Resource2_coord_duration">

 <XPath>/testevent/tasks/task[5]/duration</XPath>

 </Variable>

 </Dimensions>

 <ExcursionFileInfo>

 <ExcursionDir>Excursions</ExcursionDir>

 <MOEDir>Output</MOEDir>

 <PlaybackDir>playback</PlaybackDir>

 <PlaybackFileStub>viz.</PlaybackFileStub>

 <ExcursionFileStub>scenario.</ExcursionFileStub>

 <BasecaseFileName>scenario.xml</BasecaseFileName>

 <MOEFileStub>MOE.</MOEFileStub>

 </ExcursionFileInfo>

 </GeneratorAlgorithm>

 <AnalyzerAlgorithm name="Null Fitness Analyzer" classname="oldmcdata.analyzers.NullAnalyzer"/>

 </AlgorithmSpecification>
We’ll first cover the most important part – specifying which variable to use. This is independent of the generator algorithm used. Following the general discussion on specifying the variable, we’ll describe the various generator algorithms that are available.

Specifying the Variables

In this section, we’ll describe how to construct the XPath for the variable you’re interested in (if you are using XStudy, XStudy will determine the XPath). In the Variable example below (taken from the above GeneratorAlgorithm example), we have the following specification for a Variable.

<Variable type="string" name="Resource1_ST">

 <XPath>/testevent/tasks/task[1]/startTime</XPath>

 </Variable>

The type and name attributes, along with the XPath element, are the same for all types of generators. The other items in this example are specific to the type of generator algorithm, so we’ll return to what those mean later. The type attribute can be either “float”, “integer” or “int” or “string” (the literal “string” can be replaced by any other string, e.g., “foo”, and OMD will interpret the value as a “string”), depending on the type of your variable. The “string” type can only be used with the RunDataFromFileGenerator, as you need to specify the exact strings you want to use. The name attribute is specified by the user, and is just a short name that is used in the header of the output file. There are no restrictions for composing this string, e.g., you can place “:” between strings to make it easier to read, or use spaces, thus name="Yadda:yadda:yadda" is a legitimate name.
If you’re familiar with the XPath specification (part of the XML specification), then you won’t have a problem determining the XPath in the scenario file for the variable you wish to farm over. If you’re not familiar, not to worry! The XPath is very easy to determine for our purposes, as the scenario files are reasonably structured. The XPath is a string that, when evaluated, actually points to a section of text in the scenario file; in our case, a particular value, that we want the software to modify. Let’s take a look at our simple-planner example above. The XPath is /testevent/tasks/task[1]/startTime. In this example, the variable we want is a task parameter for task “Resource1 start activity”, named “startTime”, and we want to farm over the range of that startTime. An XPath works pretty much the same way the hierarchical file structure does on Windows. Each “/” separates the hierarchy and goes one step down in the hierarchy for each “/”. The first “/testevent” is the root of that hierarchy. Now let’s take a look at the study.xml file, as this is the source of the XPath’s for the variables. Here are the first lines in that file:

<?xml version="1.0" encoding="UTF-8"?>

<testevent>

 <resources>

 <resource>

 <name>Resource1</name>

 </resource>

 <resource>

 <name>Resource2</name>

 </resource>

 <resource>

 <name>Resource3</name>

 </resource>

 <resource>

 <name>Resource4</name>

 </resource>

 </resources>

 <tasks>

 <duration_variation>0.05</duration_variation>

 <task>

<name>Resource1 start activity</name>

<duration>1</duration>

<startTime>0</startTime>

<resource>Resource1</resource>

 </task>
 <task>

<name>Resource1 Event2</name>

<duration>1</duration>

<startTime>5</startTime>

<predecessor>Resource1 start activity</predecessor>

<resource>Resource1</resource>

 </task>
You can ignore the <?xml … > part – that just means this is an xml file. You can see that <testevent> is the first element – this is the root. Now you can see that <tasks> is one level in from <testevent>, hence there will be a “/” separating those in the XPath. You can also see <task> is one level below <tasks>, hence there will be a “/” separating those in the XPath. Now the question is “how do we get the startTime of Resource1 start activity and not the startTime of Resource1 Event2?” That’s the role of the array indices, [1], immediately following task.

Any XPath can be used to specify which element to select – there are wide range of functions and predicates available that allow you to be very selective, and precise, about which variable you want to specify. Please refer to the many XPath, and XML, tutorials available on the web.

Grouping the Variables

In this section, we’ll describe how to group, or lock-step, variables so that all of the variables in the group take on the same values at the same time. This helps in limiting the data farming space to sample over. This is actually very simple – you just add to the Variable element the XPath’s for the variables you want to group. For example (from the simpleplanner sample scenario):

 <Variable type="float" name="Tasks1:2:3:StartTime">

<XPath>/testevent/tasks/task[1]/startTime</XPath> <XPath>/testevent/tasks/task[2]/startTime</XPath>

<XPath>/testevent/tasks/task[3]/startTime</XPath>

</Variable>
Here we have the startTime for Tasks, 1,2, and 3 being grouped together.
There is an alternate way to specify groupings and that is by using XPath functions and predicates. I wont’ go into the details here; please look in any good book on XPath’s or the XPath specification itself (found on the web). Using an example similar to the one above, supposed we wanted to change the startTime for all tasks whose index was less than 8 and not equal to 2 (if we had that many in the scenario!). The Variable section would look like this:

<Variable type="float" name="TasksLT8NOT2:StartTime">

<XPath>/testevent/tasks/task[index < 8 and index != 2]/startTime</XPath>

</Variable>
(You might notice the “<” – since the file is XML, you can not use certain character codes like a “<”. These need to be replaced by their character entity equivalents). You can as complicated as you wish, for example, specifying task names that contain the string “coordinate”. Again, see any good reference on XPaths.

Generator Algorithms
As we mentioned in the introduction, there are four generating algorithms – GriddedGenerator, RunDataFromFileGenerator, CartesianProductGenerator, and an EvolutionaryProgrammingGenerator. To use one of these, just change the classname to reflect the algorithm you’d like to use. The example shows the GriddedGenerator being used. Just replace the text after the period, so that your four choices for classname are:

1. classname="oldmcdata.generators.GriddedGenerator
2. classname="oldmcdata.generators.RunDataFromFileGenerator
3. classname="oldmcdata.generators.EvolutionaryProgrammingGenerator
4. classname="oldmcdata.generators.CartesianProductGenerator
The final change here is to modify the type and name attributes to reflect the generator used. The type and name are used in appending that information to the excursion and MOE files generated, and in the post-processing. I recommend the following for type and name (make them the same for now – I’ll probably remove one of them since they are currently redundant):

1. GriddedGenerator – type/name = “Grid”

2. RunDataFromFileGenerator = type/name = “File”
3. EvolutionaryProgrammingGenerator – type/name = “EP”
4. CartesianProductGenerator – type/name = “CP”
We’ll next cover the specifics of each generator. We’ll discuss what the required Parameters are, and the additions needed to the Variable descriptions.

GriddedGenerator
The GriddedGenerator has no Parameters element, so that’s easy. In the Variable descriptions, there are 3 required elements for each variable – MaximumValue, MinimumValue, and Delta. These are what they sound like, so no surprise there. Here’s an example using the variables from the simpleplanner study.

 <GeneratorAlgorithm type="Grid" name="Grid" classname="oldmcdata.generators.GriddedGenerator">

 <Parameters/>

 <!-- Dimensions specify the bounds of the space to search/sample/farm over -->

 <Dimensions>

 <Variable type="float" name="Task1 startTime">

 <XPath>/testevent/tasks/task[1]/startTime</XPath>

 <MaximumValue>100</MaximumValue>

 <MinimumValue>10</MinimumValue>

 <Delta>10</Delta>

 </Variable>
The only error checking done by OldMcData is to see that the MaximumValue is greater than the MinimumValue. OldMcData does not check if these are reasonable values, so user beware! OK, that takes care of the GriddedGenerator.

RunDataFromFileGenerator
The RunDataFromFileGenerator has two Parameters elements. Here’s an example.

 <GeneratorAlgorithm type="File" name="File" classname="gan.generators.RunDataFromFileGenerator">

 <Parameters>

<FileName>study.csv</FileName>

 <NumberOfLinesToSkip>1</NumberOfLinesToSkip>

 </Parameters>

The first Parameter is the FileName (actually, the ordering of the Parameters is not important). This string is a relative path to a comma-separated file (typically placed in your study directory), where the columns are the variables you wish to modify, and each row is a single excursion. The cell (intersection of the column and the row) is a specific value for the variable identified by the column, and the excursion specified by the row. Here’s the format:

<Var1name>,<Var2name>,<Var3name>, . . . <VarNname>

<Var1valueExcursion1>, . . ., <VarNvalueExcursion1>

<Var1valueExcursion2>, . . ., <VarNvalueExcursion2>

…

<Var1valueExcursionM>, . . ., <VarNvalueExcursionM>

Now the important thing to remember is that the ordering of the Variables in this file has to match the ordering of the Variables specified in the study file. So, Var1 has to be the first variable specified in the Dimensions section of the GeneratorAlgorithm.

The second Parameter is the NumberOfLinesToSkip. This just tells OldMcData how many lines to skip in the input file before reading in the excursion data. You can then put anything you want upfront in the file, say a description of the experiment, etc., and just count how many lines down to the first data line. The header is just another descriptor and for convenience of the user, and hence, is not the first data line. If you don’t have a header or any other descriptive remarks, then just set NumberOfLinesToSkip to 0.

In the Variable descriptions, an XPath specification is the only required element, as the values of the variables are specified in the comma-separated file.

OK, that’s it for the RunDataFromFileGenerator.

EvolutionaryProgrammingGenerator
Digression: Background on Natural Algorithms

All Natural Algorithms follow a fairly straightforward iterative procedure, successively operating on a collection of solutions, usually referred to as a population. The differences between the wide varieties of algorithms lie mainly in the problem representation, how new solutions are generated, and the method for selecting the “best” trial solutions to use in the next iteration. The general procedure is as follows:

STEP 0: Generate an initial set of trial solutions. This is typically done randomly over the bounded search space. Each trial solution represents a specific combination of the variables.

STEP 1: Run each of the trial solutions in the distillation for a user-specified number of replications. This will yield a “fitness” for that trial solution.

DO UNTIL a “stopping criterion” is satisfied:

STEP 2a: Generate a new set of trial solutions from the current set of “best” trial solutions using mutation, crossover, and possibly other operators.

STEP 2b: Run each of the trial solutions in the distillation for a user-specified number of replications to calculate the fitness.

STEP 2c: Select a new set of “best” trial solutions. Depending on the algorithm used, this could be the new set just generated, or a subset of the new set and the old “best” set.

The “stopping criterion” typically used in the evolutionary computation community is either based on a fixed number of iterations or when no improvement is being made, say over the last m iterations.

The Evolutionary Programming Algorithm implemented in OldMcData

This is perhaps one of the simplest natural algorithms to understand and implement, and has been found to be very robust in finding good solutions over a wide variety of problem types. The EP algorithm uses a population, a mutation operator, which takes one parent and generates one offspring, and a selection operator that selects the next population from a union of the parent and offspring populations. There are no specific guidelines for selecting population size, but some heuristics exist based on problem characteristics. Generally, the larger the populations size the better. oweHowe However, if too large a population is selected then you will get no better results than just randomly selecting points. Our experience to date - and that’s very limited - suggests that a population size of between 30 and 80 seems to work in practice.

As for the operators, for the initialization in STEP 0, we use a uniform random distribution, generating points uniformly over the bounded space of the variables. Within the loop, for STEP 2a above, the EP uses only a mutation algorithm, wherein all individuals in the current parent population each generate one offspring using this mutation operator. Currently, we use a log-normal mutation operator that modifies the variance of the normal distribution for each parent individual prior to generating the offspring individual (a new point in the solution space). This is currently set to start at 3.0. [Note: we plan to make this user-definable.] The offspring is then created from the parent by adding some random variation calculated from a random draw from this individualized distribution.

To calculate an individual’s fitness, for STEPs 1 and 2b, the user currently has 2 options that we will discuss below under the AnalyzerAlgorithm section. For the selection operator in STEP 2c, we use tournament selection. This works by taking each individual and pitting them against a number of randomly selected individuals in the total population (in this case, the combined population of parents and offspring). The individuals are then sorted by the number of “wins” (a “win” is where their fitness was strictly greater than their competitor’s fitness). The best individuals are then selected for the next parent population. This is an elitist operator, wherein the best individual is always selected to be in the parent population since that individual would “win” all of its competitions. Finally, for the stopping criteria, we arbitrarily stop after a fixed number of generations.

The EvolutionaryProgrammingGenerator has four Parameters elements. Here’s an example.

 <GeneratorAlgorithm type="EP" name="EP" classname="oldmcdata.generators.EvolutionaryProgrammingGenerator">

 <Parameters>

 <NumberOfExcursions>80</NumberOfExcursions>

 <NumberOfIterations>25</NumberOfIterations>

 <ProblemType>MIN</ProblemType>

 <TournamentSize>80</TournamentSize>

 </Parameters>
The first Parameter is the NumberOfExcursions (again, the ordering of the Parameters is not important). In evolutionary algorithm terms, this is the population size. This is the number of excursions that are generated in each iteration. As mentioned above, there seem to be no practical guidelines on this value (it also depends on the particular algorithm used), so you are on your own. In our practice, for the EP algorithm and our models and the number of variables we’ve used (ranging from 2-16), a value of 30-80 seems to work, i.e., some pretty good solutions were found. Further research is certainly warranted on the relationship between number of variables, number of excursions, number of generations, and the particular natural algorithm used.

The second Parameter is the NumberOfIterations. In evolutionary algorithm terms, this is the number of generations. This is the stopping criteria – once this number of iterations has been processed (plus 1 for generating the starting population), the algorithm will stop.

The third Parameter is the ProblemType. This is either “MIN” or “MAX”, depending on whether you want to minimize or maximize, respectively, your objective (specified in the AnalyzerAlgorithm section). We always maximize fitness within the algorithm, and the fitness is converted according to this parameter value.
The fourth Parameter is the TournamentSize. The minimum number is 2 – a solution has to compete with at least one other individual! The maximum number is unbounded, but practically shouldn’t be any larger than twice the Number of Excursions, and a reasonable value is anything between 2 and the Number of Excursions. This means the individual solution is competed against that many other individual solutions in the combined population of offspring and parents. You are free, however, to experiment with this value, and any of the other parameters for that matter.

In the Variable descriptions, there are 2 required elements for each variable – a MaximumValue and a MinimumValue. These specify the upper and lower bounds, respectively, of your variables and define the hyper-dimensional box that the EP algorithm uses to select the individual excursion values. Currently, there is no support for defining other constraints, such as variable 1 being less than variable 2, but we do plan to have a type of constraint specification.

As with the GriddedGenerator, the only error checking done by OldMcData is to see that the MaximumValue is greater than the MinimumValue.

The AnalyzerAlgorithm section has 2 attributes and a number of parameters based on the analyzer used. The name attribute is just a simple descriptor of the analyzer used and doesn’t currently affect anything. The classname specifies the analyzer to use, and currently there is only one, namely the SimpleFitnessAnalyzer. The SimpleFitnessAnalyzer has 2 parameters: a Fitness parameter, and a FitnessCalculator parameter. See the example below.

 <AnalyzerAlgorithm name="Simple Fitness Analyzer" classname="oldmcdata.analyzers.SimpleFitnessAnalyzer">

 <Parameters>

 <Fitness MOEName="TotalTestTime” Statistic="Mean"/>

 <FitnessCalculator>
oldmcdata.analyzers.utils.SimpleFitnessCalculator

</FitnessCalculator>

 </Parameters>

 </AnalyzerAlgorithm>

The Fitness parameter has 2 required attributes and one optional attribute. The required attributes are a MOEName and a Statistic. The MOEName has to match exactly the specific MOE in the output file. There is no error checking here, except to check for a MOEName and a Statistic, so be careful. Fixing this, i.e., doing more error checking and making the checking less dependent on the specific model is on the list of things to do. For the Statistic attribute, there are 2 options – Mean and StandardDeviation. The fitness is calculated based on the results of that calculation over the number of replications made. In the example above, the fitness will be the mean of total test time, i.e., the last event completion time.

Currently, the only available FitnessCalculator is oldmcdata.analyzers.utils.SimpleFitnessCalculator as shown in the example above. It has no associated parameters at the time of this writing.

With both the GeneratorAlgorithm and AnalyzerAlgorithm specified, you are ready to use the EvolutionaryProgrammingGenerator.

CartesianProductGenerator
The CartesianProductGenerator was created by Thorsten Lampe. The CartesianProductGenerator is similar to the GriddedGenerator but you specify the specific values you wish for each variable instead of specifying a minimum, maximum, and delta. The generator then makes excursions for every combination of variable value. Like the GriddedGenrator, the CartesianProductGenerator has no Parameters element, so that’s easy. In the Variable descriptions, in addition to the XPath element, there is a Value element for each value you wish to consider. Here’s an example using the variables in the simpleplanner study.

 <GeneratorAlgorithm type="Cartesian" name=" Cartesian " classname="oldmcdata.generators. CartesianProductGenerator">

 <Parameters/>

 <!-- Dimensions specify the bounds of the space to search/sample/farm over -->

 <Dimensions>

 <Variable type="float" name="Task1 StartTime">

 <XPath>/testevent/tasks/task[1]/startTime</XPath>

<Value>21</Value >

 <Value>32</Value >

 <Value>45</Value >

 </Variable>
 <Variable type="float" name=" Task2 StartTime ">

 <XPath>/testevent/tasks/task[2]/startTime</XPath>
 <Value>12</Value >

 <Value>22</Value >

 <Value>35</Value >

 </Variable>
So in this example you would have 9 excursions, taking each one of the 3 values from the first variable, with each one of the 3 variables of the second variable, i.e., [(21,12), (21,22), (21,35), (32,12), (32,22), (32,35), (45,12), (45,22), (45,35)].

The only error checking done by OldMcData is to see that the MaximumValue is greater than the MinimumValue. OldMcData does not check if these are reasonable values, so user beware! OK, that takes care of the CartesianProductGenerator.

Running your experiment with OMD

Now that we have a completed study file, the only thing left to do is set up a study directory, place all of the necessary files there, and start OldMcData. I’m assuming you know how to create a directory. Once you create a directory, place the study file you just created there, the scenario files for the model you’ll be using, and any auxiliary files needed by your model for your study to run.

Then, using a command window (or DOS window) change directories to your oldmcdata directory, i.e.,

cd c:/oldmcdata

Now, type on the command line:

oldmcdata.start <path to your study directory> <your study filename>

OldMcData should then respond by running your model in the command window. If using the LocalEvaluator, OMD will start the processing of jobs; if you use the CondorEvaluator, OMD will then submit the jobs to condor.

Configuring OMD

This section will describe how to modify the oldmcdata.config.xml file generically for any model, i.e., what is needed by OMD for any model to run.

<to be completed>
