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Abstract: Decades ago, simulation was famously characterized as a “method of last resort,” to which analysts should turn only
“when all else fails.” In those intervening decades, the technologies supporting simulation—computing hardware, simulation-
modeling paradigms, simulation software, design-and-analysis methods—have all advanced dramatically. We offer an updated
view that simulation is now a very appealing option for modeling and analysis. When applied properly, simulation can provide fully
as much insight, with as much precision as desired, as can exact analytical methods that are based on more restrictive assumptions.
The fundamental advantage of simulation is that it can tolerate far less restrictive modeling assumptions, leading to an underlying
model that is more reflective of reality and thus more valid, leading to better decisions. Published 2015 Wiley Periodicals, Inc. Naval
Research Logistics 62: 293–303, 2015
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1. INTRODUCTION

The belief that simulation should be a method of last
resort has been entrenched since at least the 1950s. Har-
ling [12], in an article entitled “Simulation Techniques in
Operations Research—A Review,” stated that “It has been
often said that a simulation is a last resort.” Variations of
this phrase have seen continued use within the operations-
research community over the years. Perhaps the best known
example appears in Harvey Wagner’s seminal textbook Prin-
ciples of Operations Research with Applications to Manage-
rial Decisions [60]. In his Chapter 21, “Computer Simula-
tion of Management Systems”—the introductory section of
which is entitled “When all else fails...”—he wrote that “Most
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operations research analysts look upon digital computer
simulation as a ‘method of last resort.”’ Wagner gave two
primary reasons for his “gloomy attitude” toward simulation.
The first was that when the simulation “includes uncertain
events, the answers... must be viewed only as estimates sub-
ject to statistical error.” The second reason was that if a system
was so complicated that it was “beyond the reach” of tra-
ditional operations-research techniques, then “the required
model-building effort and the subsequent analysis of the sim-
ulated results are likely to be difficult.” As a consequence of
these challenges, Wagner concludes that “computer simula-
tion is often an expensive way to study a complex problem.”

Unfortunately, the notion persists that simulation should be
a last resort. Many researchers maintain the a priori attitude
that analytical models are inherently superior. A relatively
recent example is the paper by Parlar and Sharafali [37],
which we evaluate in some detail in Section 4.

Times have changed. In the face of astounding advances in
affordable processing power, modeling paradigms and tools,
and supporting analysis capabilities, it should be clear that
for many complex, real-world problems, simulation—done
properly—should be the method of choice. After more than
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half a century of dramatic progress in simulation technology,
it is time to retire the outdated notion that “simulation is a
method of last resort.” Our objective in this article is to change
mindsets in support of those who are actually concerned about
actually solving actual problems.

We state our fundamental position in Section 2, and in
Section 3, we detail the current enabling technologies that
now render our position practical and appealing. Section 4
exemplifies, in several ways, the risks associated with styl-
ized models based on unrealistic simplifying assumptions
required for analytical tractability. Section 5 looks ahead and
Section 6 concludes.

2. SIMULATION: EMBRACING REALITY IN
MODELING

The primary advantage of simulation is that it enables
researchers to construct and study valid models of complex
systems in relatively simple and straightforward ways. Put
another way, simulation allows us to study problems with-
out assumptions made principally to obtain an analytically
tractable model, and that may jeopardize the veracity of the
model.

We build and evaluate models (simplified representations)
to gain insights into existing or prospective systems and
phenomena. Ultimately, this should allow us to make bet-
ter choices and improve outcomes—such as cutting costs or
saving lives. Models can be abstracted as a mapping of inputs
to outputs. In many cases, the mapping will be expressed as
mathematical or logical representations of that transforma-
tion. If these relationships are sufficiently simple, they can
be written as closed-form mathematical expressions. Such
a model is called analytically tractable and yields exact
results for output metrics of interest. Estimated results from
analytically intractable models can usually be obtained via
simulation [2, 23]—and increased computation power usu-
ally allows us to make the estimate extremely precise. If the
models are equally valid, an exact analytical solution is, of
course, preferred to an approximate simulation one. How-
ever, if the analytical tractability comes at the expense of the
model’s verisimilitude, then faulty insight and poor decisions
may result. The imprecision of a simulation-generated esti-
mate can be quantified and, if need be, reduced. Conversely, it
is often difficult to assess the effect of unrealistic simplifying
assumptions underpinning many analytical models without
using simulation.

To facilitate analytical tractability, modelers commonly
posit convenient probability distributions, such as the addi-
tive Gaussian or memoryless exponential. They also invoke
assumptions such as linearity, deterministic relationships,
homoscedasticity, identical distributions, Markovian behav-
ior, and independence or stationarity. If these assumptions are

made because they reflect the nature of the problem being
examined, and they facilitate analyzing the model, then no
one should quibble with them. However, it is our belief that
such assumptions are often made solely to render a model
analytically tractable. The consequences of such simplifying
assumptions can be severe. As an all-too-common example,
ignoring variance can easily lead to extremely poor decision
making [28, 49].

Model validation is a central pillar within the simulation
community, as evidenced by its ubiquity in the leading texts
over the years [2, 5, 19, 20, 23, 26, 39]. We believe valida-
tion should be applied to all modeling, including analytical.
A model is not intrinsically valid just because it is analytical.
The allure of stylized analytical models, with little regard for
their validity, may be partly due to the perception that analyt-
ical results are easier to get published than are “equivalent”
conclusions derived via simulation [36].

Of course, the debate over analytical versus simulation
approaches is not new. Discussions are in all standard simu-
lation books such as those referenced in the preceding para-
graph, in general operations-research overview texts (e.g.,
[14]), and in introductory simulation tutorials (e.g., [42]).
There has been general agreement that simulation’s right-
ful place is for addressing models that are too complicated
to succumb to an analytical solution, and we agree. But our
argument here is that, with modern hardware, modeling para-
digms, software, and methods, simulation can produce results
that are just as insightful and just as precise as can analytical
methods. Moreover, simulation models have the undeniable
advantage of not requiring overly-restrictive, and thus less
realistic, modeling assumptions. Thus, the historically strong
preference for analytical over simulation approaches is no
longer warranted. With a well-done simulation study there is
(now) nothing really lost in terms of insight or precision, but
(as always) much to be gained by the opportunity to work
with a model that is more valid, even if more complicated.

3. ADVANCES IN SIMULATION TECHNOLOGIES

Since the first utterance that simulation is a “method of
last resort,” there have been quantum advances in computing
capabilities, modeling paradigms, and software environments
for building simulation models. Likewise, both the meth-
ods and the software for statistical design and analysis have
dramatically improved, allowing us to evaluate far more sce-
narios than ever before, and in statistically convincing ways.
These parallel movements, taken together, imply that simula-
tion is now an option that should be, in many ways, regarded
as the method of choice for analyzing complex systems.

In Section 3.1 we explore the implications, for simulation
purposes, of the dual facts that today’s analyst has billions
of times more processing power at her or his fingertips than
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all of the world’s simulation pioneers combined had sixty
years ago, and that these astronomical increases in capabil-
ity are available at several orders of magnitude less expense.
In Section 3.2 we explore modern foundational paradigms
for simulation modeling, which have led to much-improved
simulation software. In Section 3.3 we describe the salient
elements of those resulting software environments for simu-
lation modeling and execution that facilitate developing, test-
ing, and designing/analyzing simulation experiments in ways
that provide as much or more insight as do exact analytical
models—and stem from more-valid modeling assumptions.
In Section 3.4 we document the revolutionary advances in
our ability to explore computational models efficiently using
new and extremely efficient experimental designs developed
specifically for this purpose. Once the experiments are run
and the output data collected, modern data-mining and visu-
alization software enables researchers to identify patterns
interactively in complex, high-dimensional explorations that
were inconceivable in simulation’s early days. Finally, in
Section 3.5 we sum up this confluence of events that we
believe mandates a fundamental mindset change in the way
analysts choose tools and, in particular, view the simulation
tool as an option.

3.1. A Trillion-Fold Improvement in Computing

Simulation proved its value long before the invention of
electronic computers. Perhaps the most famous early exam-
ple is Buffon’s 1777 “needle experiment,” in which needles
were manually tossed on a plane ruled with parallel lines to
estimate π [7]. Another early use of manual simulation was
performed by Gosset in the early 20th century, investigating
the deviations from normality that constitute Student’s-t dis-
tribution [53]. Shewhart [52] drew samples of marked chips
from bowls to derive control charts—ushering in the field of
statistical quality control, which has had tremendous impact
on manufacturing around the world. Later, von Neumann
used humans as computational units for performing Monte
Carlo-based estimation during the Manhattan Project [27].

Prior to World War II, computation was done by
humans, although increasingly with the assistance of electro-
mechanical machines. For calculation-intensive efforts dur-
ing the war, such as for the Manhattan Project and in develop-
ing the U.S. Army’s Ballistic Research Laboratory’s (BRL’s)
firing tables, computers were people—mostly highly edu-
cated women [27]. To increase the speed and accuracy of the
BRL’s calculations, the University of Pennsylvania devel-
oped the first modern computer, known as the Electronic
Numerical Integrator And Computer (ENIAC) for a cost of
$500,000 (roughly $6 million in today’s dollars) [6]. The
ENIAC was formally accepted by the U.S. Army in July 1946.

As was typical of early computing devices, ENIAC was
large and cumbersome to use. The 30-ton behemoth had

18,000 vacuum tubes and occupied 1800 square feet of floor
space. The ENIAC team consisted of “about 50 people” [41].
Furthermore, it required 150 kilowatts of power to operate.
Researchers interacted with ENIAC via punch cards. If that
was not enough, ENIAC had severe reliability issues, with
a tube failure “about every two days” [41]. In 1954, the
longest period of continuous operation was less than five days
[15]. Despite all of those hardships, ENIAC provided scien-
tists with a revolutionary new capability. It could add 5000
10-digit numbers per second and multiply 400 of them per
second—roughly 1000 times faster than any previous device.
Even with having a data-storage capacity of only 20 accu-
mulators with 10 signed decimal digits each, ENIAC could
solve previously unsolvable problems required in designing
a hydrogen bomb, calculate “the path of a shell’s trajectory
faster than the shell could fly,” and determine “2000 digits of
π in only 70 hours” [6].

It is no wonder that early researchers such as Harling found
simulation difficult, problematic, and prohibitively expen-
sive. However, since that period, there have been amazing
advances in processing speed, computer memory, reliabil-
ity, and data storage—all at ever more affordable costs. This
phenomenon is best exemplified by “Moore’s Law.” In 1965
Gordon Moore [33] predicted that the number of transistors
per chip would continue to increase by “a factor of two per
year.” Later, Moore [34] revised the growth rate to “approx-
imate a doubling every two years.” Not only has Moore’s
law roughly held true [9], it now drives progress as industry
regards it as a standard. As of this writing, the Tianhe-2, devel-
oped by China’s National University of Defense Technology,
is listed as the world’s top supercomputer, with a performance
of over 33 petaflops (quadrillions of floating point operations
per second) on the LINPACK benchmark [25, 54]. Moreover,
the amount of data storage per unit cost since the 1950s has
doubled approximately every 14 months [13, 22]. All told,
since Harling’s time, there have been greater than trillionfold
reductions in the cost of flops and data storage. The contin-
uing increase in processing power is dramatically illustrated
by the fact that in 2012 a $399 Apple iPad 2 was faster than
the $16 million (in 1985 dollars) liquid cooled Cray-2 super
computer, the world’s most powerful computer in the late
1980s, as measured by the LINPACK benchmark [8].

3.2. New Paradigms for Modeling

Today’s modelers and analysts have access to a far richer
set of tools for building realistic and valid models than did
Harling and his contemporaries.

Turing [56, 57] and von Neumann [59] built a founda-
tion for modern computing that influences us to this day.
The von Neumann architecture drew on Turing’s insight
that computing instructions were themselves data, and com-
putation could be achieved by loading a mix of data and
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instructions from a memory device into registers to per-
form operations sequentially, negating the need for physical
rewiring to achieve a different mix of computations. All
programs must eventually be mapped—via compilers, inter-
preters, or virtual machines—to instructions corresponding
to the specific architecture of the hardware on which the pro-
gram will run, but this is not an easy or natural mode of
thinking for human beings. Consequently, we have designed
and created a variety of programming languages to facili-
tate the human expression of problem formulations and their
solutions. The growth and evolution of domain-specific lan-
guage and modeling paradigms over the last half century has
greatly extended our ability to formulate, express, and solve
complex problems in many fields.

Simulation has benefitted from the development of both
general computing and simulation-specific modeling para-
digms. The latter include activity scanning, event modeling,
process modeling, and agent-based modeling. Each of these
enhances our ability to build valid models. Problems that
may seem difficult or impossible when viewed from one par-
adigm are often tractable or even trivial when viewed from
another. For example, simulations of epidemics and tools to
combat them (like contact tracing and vaccination programs)
are straightforward to implement using agent-based modeling
[17, 18], but less so with process modeling.

3.3. Better Environments for Simulating

Simulation-specific software did not even exist until three
years after Harling made his “last resort” statement [50].
Since that time, simulation-modeling software has made sig-
nificant leaps on multiple fronts. Together with the dramatic
hardware advances described in Section 3.1, we now have far
better platforms with the capability for rapidly and routinely
building high-quality simulation models. This would seem to
be a much better option than relying on heavily stylized mod-
els with strong, questionable assumptions made solely for the
sake of pushing through an analytical solution, without regard
for validity.

On the user-modeling front, drag-and-drop interfaces pro-
mote ease of modeling along with verification and validation.
Laborious, error-prone, low-level coding of simulations in a
procedural programming language is (mostly) gone. Current
simulation software is not just easier, but also more flexi-
ble, using object-oriented design or hierarchical structures
to facilitate creating models that can better mimic details of
complicated systems. Low-level coding still has a place in
the bottom layer, in those occasional cases when we wish to
assert ultra-fine-grained control to capture particular nuances.

Another front is simulation software itself, which has
improved markedly. Better programming and verification
practices have increased software quality. Some software

effectively and automatically exploits the multicore capabil-
ities of today’s processors, greatly increasing run speed.

The underlying random-number algorithms, many of
which originated long ago—most notably linear-congruential
generators, including the now-infamous RANDU [30]—
can be replaced by newer algorithms with astronomical
cycle lengths and much-improved statistical qualities that are
essential in compute-intensive, high-precision applications
[24]. We can enumerate the entire cycle of a legacy 31-bit
linear congruential generator (2.1 × 109) in just a couple of
minutes on a garden-variety personal computer [19]. By con-
trast, modern generators, such as the Mersenne Twister [31]
with a cycle length of 106001, would keep that same machine
busy for many multiples of the current age of the universe.

We now have improved lists of “standard” probability
distributions and processes from which to generate simu-
lation inputs, further enhancing validity. Empirical distrib-
utions are also available when fitting standard distributions
proves unsatisfactory. Generating dynamic input processes
with time-varying rates, like nonstationary arrivals, is stan-
dard, and often essential for validity; allowing these in exact
analytical models is limited to only a very few simple cases. In
simulation, it is no harder to specify a realistic (even if messy)
input distribution and process than to specify one that is ana-
lytically tractable. Pursuing the analytically-tractable option,
historically the more common choice, can do serious dam-
age to model validity and output reliability; more frightening
is that, even if we are aware of this risk, we cannot a priori
quantify it.

Animation has been in simulation modeling environments
for some time and continues to improve. Academics may
sometimes belittle it, perhaps as undue effort is sometimes
expended fine-tuning the cosmetics, but it can be useful,
beyond just communicating and establishing credibility with
decision makers who may not know (or care) about simula-
tion per se. By watching an animation and noting anomalous
behavior, modeling and coding errors can be revealed. We
can also literally see dynamic behavior, like migrating bot-
tlenecks, which could be masked by summary measures like
means or maxima.

As Wagner [60] wrote in 1969, results from stochastic sim-
ulations are indeed uncertain statistical estimates. It is fair to
criticize some simulation projects for failing to recognize this,
and thus failing to deal with it appropriately. This has, perhaps
deservedly, sometimes given simulation a bad name. But for
decades, researchers have been developing robust statistical
design-and-analysis protocols specifically for simulation out-
put data. Until recently these protocols, some of which are not
simple, have remained inaccessible to simulation practition-
ers, but that is changing. It is now at least almost automatic
to get precision measures such as confidence-interval half
widths in standard simulation output, making it easy to assess
the precision of point estimates of means. Further, many
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software packages include effective ways to compare at
least the means of multiple competing scenarios in statis-
tically valid ways. Some software easily visualizes (e.g.,
histograms, box plots) post-run simulation output that goes
beyond the traditional focus on means alone [20]; in an
application like allocation of voting machines to minimize
waiting-time inequity across precincts, it is not the expected
waiting time that really matters, but rather the maximum or the
90th (say) percentile of the underlying waiting-time distribu-
tion [61, 62]. Increasingly common are grafted-on third-party
optimum-seeking packages to search for model configura-
tions that are better, according to a critical performance met-
ric, than anyone could find by just trying alternatives in an
ad hoc manner. So we now have (and can easily execute)
effective statistical procedures that practically eliminate any
gnawing uncertainty about our results’ precision; as real sys-
tems are, after all, mostly themselves stochastic, a simulation
can capture that system variation in a realistic way, while still
producing results that can be made as precise as desired.

With simulation, we are not afraid of complexity if we
need it to build a valid model. An approximate estimate from
a valid (simulation) model is preferable to an exact result
from an invalid (analytical) model. In the former case we can
estimate the imprecision and, if need be, reduce it via more
computing. But in the latter case we generally have no way of
knowing “how wrong” the results from an overly simplified
or perhaps even stylized analytical model might be. Putting
it another way, if we greatly simplify model assumptions and
structure to arrive at an analytically-tractable model, we run
a substantial risk of solving the (possibly-unrealistic) model
as opposed to addressing the actual problem [48]. Mitroff
and Featheringham [32] designated “the error ... [of] choos-
ing the wrong problem representation...” to be a “Type III
error.” This catchy term is a nice shorthand that highlights the
importance of modeling assumptions, and captures the spirit
of Tukey’s statement “Far better an approximate answer to
the right question, which is often vague, than an exact answer
to the wrong question, which can always be made precise”
(pp. 13–14 of [55]).

3.4. Data Farming: Designing Experiments and
Analyzing Output

Once your simulation has been built, verified, and val-
idated, “it’s time to have the model work for you” [44].
Kleijnen et al. [21] describe three types of goals: to (i) develop
a basic understanding of the simulation model and the system
it emulates; (ii) find robust policies and decisions, or (iii) com-
pare the merits of various policies or decisions. Well-designed
experiments can be efficient and effective ways to help you
meet these goals. Even with the exponential increase in pro-
cessing ability, efficient design of experiments is absolutely

required for obtaining broad insights via large-scale simula-
tion studies. A brute-force approach quickly falls victim to
the curse of dimensionality. Attempting to explore all possi-
ble combinations of 100 input factors, each at just two levels,
for a simulation that runs as fast as a single elementary oper-
ation, would require all the Tianhe-2’s processing power for
over 935 millenia. In contrast, even for a simulation with a run
time measured in minutes and that has hundreds of factors
and higher-order effects, analysts can use efficient designs
like those in Vieira et al. [58] to complete the necessary runs
over a weekend using a single multicore desktop computer, or
in a few hours or minutes on a high-performance computing
cluster [46].

The term “data farming” has been used in the defense
community over the past decade to capture the notion of pur-
poseful data generation from simulation models. Large-scale
designed experiments let us “grow” the simulation output effi-
ciently and effectively. We can explore massive input spaces,
uncover interesting features of complex simulation response
surfaces, and explicitly identify cause-and-effect relation-
ships. With this new mindset, we can achieve quantum leaps
in the breadth, depth, and timeliness of the insights yielded
by simulation models.

Sanchez [43] and Sanchez [45] contrast the data-mining
and data-farming metaphors as follows. Miners seek valu-
able nuggets of ore buried in the earth, but have no control
over what is out there or how hard it is to extract the nuggets
from their surroundings. As they take samples from the earth
they gather more information about the underlying geology.
Similarly, data miners seek to uncover valuable nuggets of
information buried within massive amounts of data. Data-
mining techniques use statistical and graphical measures
to try to identify interesting correlations or clusters in the
dataset.

Farmers cultivate the land to maximize their yield. They
manipulate the environment to their advantage using irriga-
tion, pest control, crop rotation, fertilizer, and more. Small-
scale designed experiments let them determine whether these
treatments are effective. Similarly, data farmers manipu-
late simulation models to their advantage, using large-scale
designed experimentation to grow data from their models in a
manner that easily lets them extract useful information. This
may result in datasets that are big, but still far smaller than
what would be needed to gain insights if the results were
obtained using ad hoc or randomly generated combinations
of factor settings. They also contain better data, in the sense
that the results can reveal root cause-and-effect relationships
between the model input factors and the model responses,
in addition to rich graphical and statistical views of these
relationships.

Classic experimental designs are ill-suited for exploring
simulations of large-scale, complex problems because they
either limit the investigation to a handful of factors, or
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make assumptions about the responses that are unrealistic
except over very narrow ranges. Many new designs have
been developed in recent years, including single-stage and
adaptive sequential methods. Sanchez and Wan [47] created
a “consumer-report” chart that provides guidance to those
interested in conducting large-scale simulation experiments.
An updated version of this chart is kept on the Naval Postgrad-
uate School’s SEED Center web pages [51]. It characterizes
designs in terms of their factors, features, and flexibility;
gives notes with additional guidance; provides citations for
the source papers; and highlights designs that we have found
to be good starting points.

Note that data farming need not be limited to stochastic
simulation experiments, but can be applied to any model
evaluated computationally. For example, many articles on
stochastic modeling present formulas that characterize the
models’ behaviors, and tabulate numeric results for a small
number of test cases or excursions from a baseline. If, instead,
the authors had chosen to use a modern design, this could
reveal whether there are interactions that substantively alter
the patterns in other regions of the design space, or whether
the test-case behaviors can be generalized. We provide an
example in Section 4.4.

The transformation in analysis capabilities means we can
make use of the results from these modern designs. Fit-
ting a single regression took 40 hours of computation near
the end of World War II [11]. As late as 1970, central
computer labs might have a one-day turnaround time on
punch card submissions [40]. Now, fitting regressions involv-
ing orders of magnitude more data is a trivial task on a
desktop computer. Computationally-intensive analysis tech-
niques abound, including bootstrap methods, stepwise regres-
sion, clustering algorithms, partition trees, logistic regres-
sion, spline-fitting, and kriging metamodels. A plethora of
visualization methods exploit the use of colors, small multi-
ples, three-dimensional plots, contour plots, and other data-
mining tools. Interactive plots make it easy to search through
high-dimensional data for interesting features.

3.5. A Sea Change is Happening

We understand why, when viewed from the vantage point
of the 1950s–1980s, the mere use of simulation tended to
be regarded prima facie as an abject, disappointing failure.
With the hardware, modeling paradigms, modeling software,
and experimental-design and analysis methods of the day, the
very idea of numerically acting out all the detailed operations
of complex systems was extremely unappealing and unlikely
to lead to useful, generalizable insights. One often heard the
argument that simulation was just “too expensive,” in terms
of both computing time—which cost (even at the margin) real
money at the time—and in terms of analyst time to navigate

the cumbersome programming languages that were the only
option for building simulation models.

But with the multifront, dramatic developments in recent
decades chronicled above, we believe that simulation now
offers a highly appealing option. Simulation models, which
can tolerate almost arbitrary complexity, can thus be far more
general than a limited set of analytical models constrained by
solvability concerns. With the technologies described here,
simulation can, therefore, provide every bit as much insight
as can exact analytical models that are based on sometimes-
questionable underlying assumptions made expressly for the
purpose of enabling an analytical solution in the first place.

The larger scientific community is embracing this new
reality. Over the last 60 years, a variety of digital libraries
show dramatic growth in the number of articles containing
“simulation” as a keyword [38]. To see how much of this is
due to a shift in modeling preferences, rather than an over-
all increase in the number of journal articles, the simulation
trends were compared with those of “linear programming”
and “optimization”—two other operations-research methods
that also benefit from more powerful and affordable process-
ing capabilities. In all cases, the growth of simulation-related
articles is more dramatic than the growth of articles related
to linear programming and optimization [38].

We are not claiming that simulation can solve all the
world’s problems, nor do we argue that simulation is appro-
priate in all situations. For example, if an analyst has a
linear-optimization problem in which all the coefficients and
parameters are really known with exact certainty, then sim-
ulation is clearly inappropriate. We are merely pointing out
that, increasingly, a well-done simulation study is an appeal-
ing option that should no longer be regarded as some kind of
consolation prize, or even failure.

4. EXAMPLE: MODELING AIRLINE CHECK-IN

Despite the widespread use and acceptance of simulation in
the broader scientific community, it is still discounted within
some academic circles. As Nance and Sargent [36] noted,
simulation has suffered from “scholarly disrespect” in some
quarters due to the belief that “simulation was simply a pro-
gramming exercise” and that “anyone could do it.” In this
section, we illustrate the types of insights simulation can
provide by comparing and contrasting simulation results to
some of the analytical results from a published article that
denigrates simulation. By relaxing some of the unrealistic
assumptions that were originally made for reasons of analyt-
ical tractability, we show the potential consequences of Type
III errors.

Our example is the recent paper by Parlar and Sharafali
[37], mentioned in Section 1, in which they construct a com-
plex queueing model to “optimize” the number of employees
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who should staff the check-in counters for an airline. In dis-
cussing prior literature, they say “... most of those that have
looked into this problem have resorted to simulation to study
the queue characteristics” and “The work still employed only
simulation to determine the number of counters to open for
each flight...” [emphases ours]. They then proceed to make
a number of oversimplifying, unrealistic assumptions (e.g.,
exponential service times and no group arrivals) to obtain an
analytically tractable model.

4.1. Some of the Assumptions for an Analytically
Tractable Airline Check-in Model

Parlar and Sharafali built and analyzed a model, to which
we will refer as the P&S model, to study how check-in coun-
ters should be allocated at an airport. They stressed the impor-
tance of the fact that their model is “amenable to analytical
treatment.” Although they refer to their model as “analyti-
cal and more realistic,” its applicability is quite narrow and
reliant on many assumptions that seem unreasonable to us.
Specifically, the situation modeled involved an airport with no
“paperless tickets and self check-in kiosks.” In addition, the
P&S model is an exclusive-use counter system, that is, the
counters are used only for passengers of a single airplane,
rather than the more typical common-use counter system.
Some of the other assumptions that seem risky and contrary
to experience are no batch arrivals and exponential service
times with an individual counter service rate proportional to
the number of people in line. Indeed, we believe exponential
service times are routinely assumed solely for mathematical
convenience, as nobody would actually believe that the modal
service time is zero. Even Parlar and Sharafali [37] question
“the assumption of exponential service-time distribution” by
asking “[i]sn’t a truncated exponential... more suitable than
a distribution with infinite support...?” We agree that this is
another valid concern, but disagree with their stated reason
for retaining the exponential distribution, which is: “such an
assumption would also destroy the Markovian nature of the
process and make the model intractable” [emphases ours].
We think their motivation is misguided, and that the more
important question is: do such assumptions matter?

4.2. The Airline Check-in Model is Computationally
Tractable

We define a model as computationally tractable if it can
be computationally implemented to yield results that can be
estimated to any required level of precision within the allot-
ted time. For many models, using simulation, one can quickly
obtain results equivalent to the analytical solution to within
any desired degree of precision. This is true of the airport
check-in model, which can be readily simulated. Moreover,
with modern processing capabilities, the P&S model can be

Figure 1. This simulation-estimated transient transition probabil-
ity graph is visually identical to the analytically derived one in Fig.
2 of Parlar and Sharafali (2008).

simulated many times in short order. Indeed, we simulated
the P&S model using Java. Figure 1 shows a simulation-
generated estimate of particular transient transition probabil-
ities, given the same arrival and basic service rates (λ = 1.5,
and µ = 5, respectively) used in [37] for a 10-passenger flight,
of going in t time units from a state of four passengers hav-
ing arrived and two served, to a state of seven having arrived
and three served, as a function of elapsed time t, for each of
c = 1, 2, and 3 counters (i.e., parallel servers). We chose this
particular output as it was the one used in [37]. This graph is
identical to the analytically derived Fig. 2 in [37], at least to
the human eye, and thus we glean identical insights.

Figure 1 is based on 100 million replications of the simu-
lation, which were run in less than 15 minutes on a modern
laptop. While the curves are “only” estimates, they are quite
precise. The standard error of any point on this graph is much
less than the thickness of the lines. The sampling error due to
the inherent randomness of a stochastic simulation is easy to
measure (and control), but what is the magnitude of the mod-
eling error caused by the unrealistic assumptions required by
the analytical approach?

4.3. Using Simulation We Can Solve the Airline
Check-in Model Using More Reasonable

Assumptions—And It Makes a Difference

The primary value of simulation is not that it can reproduce
an analytical solution to an analytically tractable model, but
that it facilitates modeling and analyzing many of the attrib-
utes of real-world situations that are analytically intractable.
To illustrate this, we simulated the airport check-in process
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Figure 2. The transient transition probabilities for c = 1 signifi-
cantly change when allowing batch arrivals (while preserving the
same overall arrival rate) or Weibull service times (while preserving
the mean but using shape parameter 5). [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

with batch arrivals, and also with a Weibull service-time
distribution.

To generate batch arrivals, we used a shifted and trun-
cated Poisson distribution, with a minimum batch size of one
rather than zero and a maximum batch size of no more than
the remaining number of unprocessed passengers. The rate at
which batches arrive was scaled by the expected batch size to
yield the same overall expected number of arrivals per time
period. Figure 2 shows that, despite having the same mean
arrival rate as the P&S model, the transition probabilities
dramatically change when we allow batch arrivals.

Another assumption often made for analytical tractability,
but which we consider to be unrealistic, is that service times
are exponentially distributed. The mode of an exponential
distribution is zero, but no reasonable analyst believes that
zero is the most likely service time customers will experi-
ence. Instead, we chose to model the service time using a
Weibull distribution with shape parameter 5 (which yields
a “hump”-shaped probability density function with positive
mode and support [0, ∞), more typical of service-time data),
and with the scale parameter adjusted to yield the same mean
service time as the P&S model. Figure 2 shows that the results
are highly sensitive to the form of the service-time distrib-
ution. Note that in practice, we could use any empirically
“appropriate” distribution or even take bootstrap samples
from observational data. Figure 2 also illustrates how chang-
ing more than one model aspect at a time can yield behavior
that is substantially different from that associated with indi-
vidual changes. The transition-probability curve associated

with incorporating both batch arrivals and a Weibull service-
time distribution is strikingly different from the original curve
and the curves associated with either one of these enhance-
ments. Additional changes would likely ensue if service times
were modeled as serially dependent or nonstationary.

4.4. Data Farming the Airline Check-in Model

As we discuss in Section 3.4, it is possible—and can be
quite useful—to use designed experiments to explore ana-
lytical models. Equation (2) of [37] provides an exact value
(according to their analytical model) for the expected time
to process all customers, E[τ ], in the special case of N = 3
potential airline passengers as a function of three parameters:
λ and µ, related to the state-dependent arrival and service
rates, and the number of counters c:

E[τ ]

= 22λ4 + 101cµλ3 + 143c2µ2λ2 + 89c3µ3λ + 22c4µ4

6cλµ(2λ + cµ)(λ + 2cµ)(λ + cµ)
.

Starting from a base case of (λ, µ, c) = (1, 5, 1), associ-
ated with E[τ ] = 2.091 hours, they do one-factor-at-a-time
ceteris paribus excursions to show that E[τ ] would decrease
by 1.171 if λ were changed from 1 to 3, increase by 0.493
if µ were changed from 5 to 2, and decrease by 0.203 if c
were changed from 1 to 4. A decision maker might anticipate
that changing both µ and c simultaneously (while holding
λ at 1) would result in E[τ ] = 2.091 + 0.493 − 0.203 =
2.381 hours, or a 13.9% increase in expected waiting time.
However, because of interactions among the factor effects,
the analytical result is E[τ ] = 1.983 hours, which is a 5.1%
reduction in expected waiting time! This illustrates the dan-
ger of performing one-at-a-time variation from a baseline,
instead of using a well-designed experiment, for analytical as
well as simulation models. As an interesting side note, E[τ ]
provably converges monotonically downward to 11/(6λ) as
c increases, which is 1.833̄ in the present case of λ = 1. (We
were able to find ∂E[τ ]/∂c symbolically and show that it
is always negative for all admissible values of λ, µ, and c.)
This is another instance where we believe that these ana-
lytical modeling assumptions are unrealistic—and lead to
unrealistic results—because we see no reason why the ser-
vice time should continue to decrease once the number of
counters exceeds the maximum number of customers.

Even more information can be obtained if we use the newer
space-filling designs and analysis approaches on a simulation
model: we can explore a few orders of magnitude more fac-
tors if this is warranted by the system’s complexity, yet do
so in a computationally efficient way. See [1] for additional
examples of these types of insights for an airline check-in
simulation.
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Another advantage of simulation is that it is straightfor-
ward to build a model that includes more than one air-
plane, more than one flight per day, and other more-realistic
conditions—not so for the analytical model.

5. LOOKING AHEAD

Niels Bohr was fond of the Danish proverb, “it’s hard to
make predictions, especially about the future” [35]. We agree,
but provide some general thoughts and hopes for the coming
decades. Model-supported decision making will continue to
expand, as decision makers seek solutions to problems of
increasing complexity. Climate change, economics, trans-
portation, warfare, epidemiology, health care, manufacturing,
and social dynamics are just a few of the areas where closed-
form analytic models will not suffice—simulation is better
at capturing the nuanced behavior of the underlying systems.
Those who are studying complex systems are not likely to be
interested in answers to simple questions.

Since the emergence of the digital computer almost 70
years ago, there has been a steady trend of increasing capa-
bility and decreasing cost. We fully expect that this will
continue for some time—whether by better exploitation of
current technologies such as parallelization, or emerging
technologies such as quantum computing, remains to be seen.

It is difficult to predict what will drive the creation of
future simulation-modeling paradigms, but we have no doubt
that resourceful people will develop them as new problems
arise. Simulation researchers can support emerging applica-
tion areas by expanding the portfolio of adaptive simulation
exploration methods, particularly those that embrace multiple
performance measures. Methods and software that facili-
tate building, running, verifying, updating, and analyzing
simulations should and will continue to advance.

Singling out a few from among the many candidate tech-
nologies [10], we would like to see more widespread automa-
tion of massive, high-dimensional experimentation. Simi-
larly, creating links that readily pull in real-time data from
external sources will improve input modeling and enhance
the potential of simulation for systems control. Both of these
capabilities move a simulation study toward being an ongoing
knowledge-acquisition process rather than yielding a fixed
end product.

As simulation use expands, improving the practice requires
more than just advances in technology—education is critical.
Users of simulation are often unaware of, or do not fully use,
available simulation technologies. Indeed, many simulation
developers and users are experts in their application domain,
but not in the discipline of simulation. As with any powerful
technology, in the hands of unskilled or uneducated users,
there is potential for misuse—avoiding this requires knowl-
edge. Whatever the future holds, the simulation community

should be poised to identify, respond to, and ideally blaze a
trail that leverages emerging technologies.

6. FINAL THOUGHTS

Our motivations for writing this article go beyond any par-
ticular example. Those of us in the simulation community
have had countless discussions with numerous colleagues
over many years about the philosophy of modeling and
analysis. Everybody makes assumptions, whether seeking
an analytical or simulation-based solution. What matters is
the utility of the resulting model and solution. We believe
in parsimonious models [29, 42]. However, we also believe
in the adage credited to Einstein that one should “keep your
model as simple as possible, but no simpler” [emphasis ours].
George Box famously noted that “all models are wrong, but
some are useful” [3]. He and Norman Draper further stated
that “the practical question is how wrong do they have to be
to not be useful” [4]. Because, it commonly requires fewer
or weaker assumptions, simulation helps us avoid Type III
errors and attain truly useful solutions to complex problems.

Harling had legitimate cause, nearly 60 years ago, to be
skeptical of simulation. The complexity of implementation,
the cost along many dimensions (hardware costs, compute
time, reliability, staffing, energy, etc.), and the dearth of tools
for both modeling and analysis, made it a daunting task. These
constraints no longer apply. Simulation’s ability to address
the complexity of real problems has grown by leaps and
bounds.

In 1986, John Tukey [16] spoke almost wistfully about the
limitations of mathematics relative to computing:

If anyone, here or later, can tell us how the approach of
certainty—traditional mathematics—is going to answer
the questions that practical data analysts are going to
have to have answered, I will rejoice. Such a route will
surely be easier and cheaper, and there will be many
more ready to follow it up at once with effective work.

But until I am reliably informed of such a utopian
prospect, I shall expect the critical practical answers of
the next decade or so to come from the approach of
simulation—from a statistician’s form of mathematics,
in which ever more powerful computing systems will be
an essential partner and effective, mathematically sound
“swindles” will be of the essence.

To take this view does nothing to discount the para-
phrase made by the late great John von Neumann: “The
only good Monte Carlo is a dead Monte Carlo!” This
aphorism was coined to express the view that out of
a well-conducted Monte Carlo should come enough
insight to allow us to use newly-developed or newly-
chosen approximations to solve other cases of that par-
ticular complexity, thus needing to use Monte Carlo
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again only when we want to go still further or still deeper.
I approve this goal; I only wish I could reach it more
often.

The gap between mathematics and computing has only
widened in the three decades since Tukey made these
observations. The elements for going both “further” and
“still deeper” are readily available for modern-day analysts,
making simulation an appealing first choice.
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