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Constructing Nearly Orthogonal Latin Hypercubes for Any
Nonsaturated Run-Variable Combination
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States Naval Postgraduate School

We present a new method for constructing nearly orthogonal Latin hypercubes that greatly expands their
availability to experimenters. Latin hypercube designs have proven useful for exploring complex, high-
dimensional computational models, but can be plagued with unacceptable correlations among input vari-
ables. To improve upon their effectiveness, many researchers have developed algorithms that generate
orthogonal and nearly orthogonal Latin hypercubes. Unfortunately, these methodologies can have strict
limitations on the feasible number of experimental runs and variables. To overcome these restrictions, we
develop a mixed integer programming algorithm that generates Latin hypercubes with little or no correlation
among their columns for most any determinate run-variable combination—including fully saturated designs.
Moreover, many designs can be constructed for a specified number of runs and factors—thereby providing
experimenters with a choice of several designs. In addition, our algorithm can be used to quickly adapt to
changing experimental conditions by augmenting existing designs by adding new variables or generating
new designs to accommodate a change in runs.
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1. INTRODUCTION

Experiments using computer models are increasingly essential in scientific research,
national defense, and public policy debates. Continual improvements in computational
power against a backdrop of rising costs and other challenges often associated with
physical experimentation make computer experimentation an increasingly attrac-
tive option. In situations with a dearth of real-world experimental data, computer
simulations are often used to help understand complex issues. Indeed, in many
important areas it is not practical to conduct many, or even any, physical experiments;
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for instance, the long-term effects of various policies on global climate, emergency
response to large-scale nuclear accidents, potential major military conflicts, etc.

Computer models used in these areas may contain many thousands of input vari-
ables and can take many days to run [Kleijnen et al. 2005]. Researchers have sev-
eral techniques to effectively extract information from these simulations. Among them
are experimental designs that are specifically developed for efficiently exploring high-
dimensional computer models. For example, Sanchez and Sanchez [2005] use Walsh
functions to quickly generate very large (hundreds of factors), two-level, resolution V
fractional factorial designs and central composite designs. Of course, the information
obtainable by analyzing the data from an experiment depends critically on the design;
for instance, a quadratic response is not identifiable for a quantitative input variable
from a two-level design.

Often, especially in exploratory analysis, we desire designs that can accommodate
fitting a wide variety of metamodels [Santner et al. 2003]. For such situations,
Latin hypercube (LH) sampling [McKay et al. 1979] has proven to be an invaluable
technique. In fact, LHs are the predominant design for experiments involving com-
puter simulations [Buyske and Trout 2001]. A key reason for this is that they are
easily obtainable (e.g., LHs are available in many simulation software packages) and
come with minimal restrictions on the number of factors and sampling budget. In
addition, the resultant output data allow analysts to fit many different diverse models
to multiple outputs from a single experimental set. In practice, LHs are often used to
simultaneously screen many factors for significance and to fit complex metamodels to
a handful of dominant variables. This flexibility also extends to visual investigations
of the data [Sanchez et al. 2012], as we get many viewpoints from which to observe
the relationships between inputs and outputs.

LH designs may come with unwanted properties; chiefly, unacceptable correlations
among the columns of the design matrix that may hinder many statistical procedures,
such as regression and regression trees [Montgomery 2005; Kim and Loh 2003]. To
mitigate this problem, many researchers [Iman and Conover 1982; Florian 1992; Owen
1994; Ye 1998; Steinberg and Lin 2006; Cioppa and Lucas 2007; Joseph and Hung 2008;
Pang et al. 2009; Moon et al. 2011] have developed algorithms to reduce or eliminate
correlations among input variables in LHs. An LH with zero correlation between any
of its input variables is an orthogonal Latin hypercube (OLH). In this article, a nearly
orthogonal Latin hypercube (NOLH) is defined as an LH with a maximum absolute
pairwise correlation no greater than 0.05 between any two input variables [Hernandez
2008]. Although this criterion is somewhat arbitrary, designs meeting it suffer minimal
adverse multicollinearity effects.

As desirable as OLH and NOLH designs are for computer experimentation, their
application is limited because of the scarcity of available design dimensions (i.e., com-
binations of the number of runs n and factors k) due to restrictions that many algo-
rithms impose when creating them. A common restriction among existing algorithms
is a strong reliance on design dimensions that are functions of powers of 2. Unfor-
tunately, in practice, experimental conditions seldom fall precisely into the currently
available dimensions. Thus, analysts must modify experimental conditions to fit the
framework of catalogued OLHs or NOLHs, or use designs that possess greater corre-
lation among input variables and deal with the consequences. The limited number of
readily available NOLHs motivates our study.

In this article, we present a new method for constructing NOLH designs that breaks
through the design dimensional barriers that afflict previous efforts. Our discussion
in Section 2 defines our terminology, details the progression of OLH and NOLH
efforts, and designates the measures by which we differentiate LHs of the same class
(i.e., identical n and k). Section 3 contains our mixed integer program optimization
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formulation to address the design problem to create NOLHs for most any situation
in which n > k. Section 4 demonstrates the power and flexibility of our new method,
while the last section summarizes our findings.

2. BACKGROUND

This section describes the experimental setting, defines key terms, introduces the mea-
sures by which we compare designs, and summarizes previous algorithms that reduce
or eliminate correlations among input variables. We also outline the construction of
lattice LHs to provide the basis for simplifying the mathematical formulation of the
design problem and for discussing our approach.

2.1. Experimental Setting

We consider experimental settings involving a computer simulation in which users can
precisely choose the input values and outputs can be exactly determined. The design
matrix is the complete specification of input settings for each variable over a set of
runs. For this discussion, the model contains k continuous variables that we wish to
vary in n computational experiments over a k dimensional hyperrectangle. We denote
the n × k design matrix as X, where row i of X corresponds to the ith experiment, and
column j corresponds to the jth variable. Thus, Xj

i is the value the experimenter sets
for factor j in run i. We further denote the jth column of X as Xjand the ith row as Xi.
Finally, let zi be an outcome generated by the ith experiment.

Analysts often construct metamodels to quantify the relationship between the input
variables (X1, X2, . . . , Xk) and the resultant outputs (z1, z2, . . . , zn) from the computa-
tional experiments. A metamodel is a “model of a model” that approximates the simula-
tion. A good metamodel is one that makes parsimonious use of the variables, is simple
to understand, and whose outputs closely match those of the simulation. A variety of
statistical methods are used to build metamodels. Barton [1998] lists parametric poly-
nomial response surface approximation, splines, neural networks, spatial correlation
models (like Kriging), and frequency domain methods among the approaches used.
He notes that using linear regression to build an approximate response surface is the
most common technique used. A design that facilitates many possible metamodels is
preferred.

Metamodels provide analysts with insight into their complicated simulations by
identifying the most important factors (usually a small proportion of the total possible)
and interesting features, such as nonlinear responses, interactions, and change-points.
While predictive accuracy is an important consideration in many design contexts, it is
less critical in our situation, as the simulation model can usually be run at any desired
setting.

2.2. Latin Hypercube Designs

McKay et al. [1979] first proposed LH sampling and described it as follows: for each in-
put variable Xj , “all portions of its distribution [are] represented by input values” (p. 56)
by dividing its range into “n strata of equal marginal probability 1/n, and [sampling]
once from each stratum” (p. 56). Following Owen’s [1994] notation, the ith element in
the jth column, Xj

i , is determined by Xj
i = F−1

j ( (π j (i)−Uij )
n ), for i = 1, . . . , n and j = 1, . . . k,

where π j(1), . . . , π j(n) is one of the n! possible random permutations of 1, . . . , n in which
all n! permutations are equally likely. Fj , for j = 1, . . . k, are continuous and invert-
ible distribution functions. Uij , for i = 1, . . . , n and j = 1, . . . k are independent and
identically distributed uniform [0, 1] random variables. Many analysts choose Fj to be
a uniform distribution and take a fixed value in each stratum (e.g., the median); see
Koehler and Owen [1996]. In this situation, the design points all fall on a lattice in
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k-space [Patterson 1954]. In such a case, creating an LH corresponds to independently
generating k permutations of the first n natural numbers and appropriately scaling
the columns to cover the variables’ ranges. It is this lattice variant that we use in
this article. The projection of a lattice LH into any one-dimensional factor’s subspace
results in n equally spaced points—which maximizes the minimum distance between
any two points in that dimension.

2.3. Measures for Assessing Designs

For any given n and k, there exist (n!)k lattice LHs, of which (n!)k−1 are distinct. If
experimenters rely solely on chance, they may get an LH that has high correlations
among the input variables and/or poor space-filling properties. In a linear regression
model an orthogonal design is desirable since it gives uncorrelated estimates of the
coefficients, avoids partial confounding, and enhances the performance of many other
procedures, such as classification and regression tree models [Kim and Loh 2003]. A
good space-filling design is one in which the design points are scattered throughout the
experimental region. Such a design is less likely to miss an interesting localized effect.

Correlation is the most commonly used criterion for assessing LHs [Owen 1994;
Tang 1998], and it is our primary measure. Computation of the correlation coefficient
between any two vector columns, Xi and Xj , in the design matrix, X, is straightforward:

ρi j =
∑n

b=1[(Xi
b − X̄i)(Xi

b − X̄j)]√∑n
b=1(Xi

b − X̄i)2
∑n

b=1(Xj
b − X̄j)2

, (1)

where X̄i and X̄j are the mean values of the ith and jth columns in X.
In an n×k design matrix, there are ( k

2 ) pairwise correlations, of which the largest
in magnitude defines the degree of nonorthogonality in the design. We express the
maximum absolute pairwise (map) correlation as

ρmap = max{|ρi j |,∀(i �= j)} (2)

and concentrate on minimizing it to find OLH and NOLH designs. By minimizing ρmap,
we bound the worst-case pairwise correlation. For a design involving many factors, a
low average absolute correlation does not guarantee that all pairwise correlations are
small.

While we focus on minimizing correlation, this does not guarantee a good LH. For
example, points that are uniformly distributed over an X (the main diagonal and the
reverse diagonal) in the unit square are orthogonal; however, such a design has poor
space-filling properties and does not allow the fitting of interactions in addition to
the linear terms. Therefore, in addition to correlation, we assess LHs based on space-
filling properties. Our general approach, as illustrated in Section 4, is to generate many
NOLHs and choose for experimentation the one with the best space-filling properties
(or some other criteria, such as its ability to fit higher-order terms).

The design points will ideally be distributed as uniformly as possible throughout
the k dimensional design space. Our choice of space-filling measure is the computa-
tionally efficient modified L2 discrepancy. Fang et al. [2000a, p. 238] state that the
L∞ discrepancy, equivalent to the Kolmogorov-Smirnov statistic, “is probably the most
commonly used measurement for discrepancy. . .and has been universally accepted in
quasi-Monte-Carlo methods and number theoretic methods.” Unfortunately, as they
note, “one disadvantage of [this] measure is that it is expensive to compute.” When
the L∞ discrepancy is too computationally onerous, as for many of the designs in this
article, the modified L2 discrepancy (with the designs normalized to [0,1] in each di-
mension), is often used instead (Hickernell 1998; Fang et al. 2000b). Thus, this article
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uses ML2 discrepancy (see Equation (3)) to measure the space-filling of a design, with
smaller values preferred over large ones.

ML2 =
(

4
3

)k

− 21−k

n

n∑
d=1

k∏
i=1

(3 − x2
di) + 1

n2

n∑
d=1

n∑
j=1

k∏
i=1

[2 − max(xdi, xji)]. (3)

If a design has a low ML2, then all of the projections of the design onto subsets of
the k variables will also have good uniformity. While LHs have proven valuable in
obtaining insight from high-dimensional models, when higher dimensional uniformity
is required; for instance, in minimizing integration error or variance by the point set,
Quasi-Monte Carlo methods [L’Ecuyer 2009] and uniformity techniques [Fang et al.
2000a] may be appropriate.

2.4. Previous Approaches to Creating OLHs and NOLHs

Efforts to reduce correlations among the columns of an existing LH have been numer-
ous. They include Iman and Conover [1982], Florian [1992], and Owen [1994]. While
these methods often suffice, especially when n is large relative to k, they do not guar-
antee an OLH or even an NOLH. For smaller values of n, their performance degrades
when k is close to n [Hernandez 2008].

A recent series of algorithms generate LHs with little or no correlation among the
columns in the design matrix. Ye [1998] developed a procedure to create OLHs when the
number of runs, n, is a power of 2 plus 1. Specifically, Ye’s use of Kroenecker products
enables construction of an OLH with 2m – 2 columns for an experiment with 2m + 1
runs, where m is a positive integer.

Cioppa and Lucas [2007] extend Ye’s method for constructing OLH designs to
m+ ( m−1

2 ) factors in 2m + 1 computational experiments. However, they note that these
designs often have poor space-filling properties, subsequently developing an approach
that improves the space-filling properties by allowing an acceptable level of nonorthog-
onality. The result is a family of NOLH designs for various combinations of k input
variables in n experiments, which are labeled Nn

k . We denote an OLH for k factors in n
runs as On

k . Cioppa [2002] selectively catalogued NOLHs with good space-filling prop-
erties for up to 29 factors within 257 runs. Ang [2006] extended Cioppa’s methodologies
to create OLHs and NOLHs for n = 2m + 1 and k = 1 + ∑w

j=1 ( m−1
j ), where w ≤ m− 1

and m is integer > 0.
Steinberg and Lin [2006] rotate two-level factorial designs to construct OLHs for

n = 2h, with h a power of 2, and the maximum number of factors being h × Bh, where
Bh = �n−1

h �, with �x� the largest integer ≤ x. For instance, for n = 16 runs, h = 4 and
Bh = 3, an O16

12 design is possible. Pang et al. [2009] propose a general construction
method for OLH in which Steinberg and Lin’s [2006] approach is a special case (p =
2). Pang et al. [2009] show that an OLH may be constructed for n = pd, where p is a
prime number and d is a power of 2. Additionally, the number of factors that may be
addressed is also a function of d.

The success that these recent efforts have had in creating OLH and NOLH designs is
substantial, but still subject to stringent constraints in their dimensionality. Steinberg
and Lin [2006] recognize that “the primary limitation to our method is the severe
sample size constraint” (p. 287). Likewise, Pang et al. [2009] acknowledge that “the
primary limitation to the [our] method is the sample size constraint” (p. 1726). Our
work overcomes these constraints.

To illustrate the constraints of these algorithms, we select values for n up to 65 such
that OLHs or NOLHs are, or are not, available. Table I reveals numerous gaps in n
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Table I.
Gaps exist in the current OLH and NOLH catalogue. For instance, no methods address sample sizes for n =
18 to 24 for any number of factors, k.

N
Maximum k for Each Method

Ye [1998] Cioppa [2002] Ang [2006] Steinberg and Lin [2006] Pang et al. [2009]
9 4 UNAVAILABLE 4
10–15 UNAVAILABLE
16 UNAVAILABLE 12 12
17 6 7 8 UNAVAILABLE
18–24 UNAVAILABLE
25 UNAVAILABLE 6
26–32 UNAVAILABLE
33 8 11 16 UNAVAILABLE
34–48 UNAVAILABLE
49 UNAVAILABLE 8
50–64 UNAVAILABLE
65 10 16 32 UNAVAILABLE

and k combinations from these techniques, underscoring the sparseness of the family
of existing OLH and NOLH designs.

Sample sizes for the NOLHs developed in this article need not be related to a power of
2, and are feasible for many k (typically all k < n). In many cases, our algorithm creates
saturated NOLHs, which to date, no other method achieves. A significant advantage
of our technique is that it can adapt to major changes in the experiment. Since our
designs can be created for most any situation in which k < n, our method facilitates the
addition or subtraction of design points. In addition, its application to existing OLHs or
NOLHs to extend the number of factors often preserves much of the nearly orthogonal
properties of the original design, while maintaining the same sample size.

3. A MIXED INTEGER PROGRAMMING APPROACH TO MINIMIZE ρMAP

Our design approach is based on a mixed integer program (MIP) that optimally selects
input levels for a given column in the design to minimize the maximum correlation
between that column and all other columns. An optimization routine to create an LH
presents a number of challenges; the objective function is nonlinear in the entries of
the design matrix and not differentiable everywhere. In addition, all decision variables
are natural numbers. Moreover, each column of X must be a permutation of the first
n natural numbers 1, . . . , n. Thus, the lattice construct for a given n and k equates
to a total of (n!)k possible LHs, making an exhaustive search to find an optimal LH
daunting, and as n and k increase—impossible. Fang et al. [2000b] identify a similar
issue in their own work and note that such problems are most likely nondeterministic,
polynomial-time hard [Bazaraa et al. 2004], additionally confirming their intractability
for large n and k.

To transform the overall problem into a solvable linear program, we focus on one
column of the design matrix in formulating the mathematical model. This is broadly
similar to the nonlinear optimization approach of Stinstra et al. [2003], who find max-
imin designs by using a constrained sequential heuristic to iterate toward a solution.

The single column problem is guaranteed an optimal solution. In most cases, ap-
plying the program iteratively to update one selected design column at a time, until
no further improvement in the overall design matrix is possible, produces NOLHs.
This threshold-accepting process is a local search [Aarts and Lenstra 1997] within the
neighborhood of the most updated design matrix. The ideal optimal solution for the
overall problem is ρmap = 0, signaling a completely orthogonal design. However, we

ACM Transactions on Modeling and Computer Simulation, Vol. 22, No. 4, Article 20, Publication date: November 2012.



TOMACS2204-20 ACM-TRANSACTION October 26, 2012 21:10

Constructing Nearly Orthogonal Latin Hypercubes for Any Nonsaturated 20:7

typically stop iterations when ρmap meets the threshold of 0.05, since the resultant
designs are minimally affected by multicollinearity.

vmap ≡ max
i �= j

∣∣∣∣
n∑

b=1

(Xi
b − X

i(
Xj

b − X
j)∣∣∣∣. (4)

The following paragraphs detail the steps to formulate the mathematical model
for minimizing ρmap. Much as Owen [1998] points at the utility of the LH lattice for
integration, we exploit the lattice construct of design matrix X to simplify the problem
of minimizing ρmap into an equivalent problem for minimizing:

This follows since
∑n

b=1 (Xi
b − X̄i)2 from Equation (1) is a constant, as is the average

of any column that has the first n natural numbers as its values (i.e., X̄i = n(n + 1)/2
for all i), regardless of order. We use X̄ = n(n + 1)/2 as the mean value for each
column in the formulations below. We establish Equation (4) as the objective function
for the optimization problem. In the following formulations we equate the objective
function (i.e., vmap in Equation (4)) to the variable V. We note that the nonlinearity of
the objective function only results from product terms involving Xi

b and Xj
b, and the

absolute value expression. Using standard math programming notation [Bertsimas
and Tsitsiklis 1997; Bazaraa et al. 2004], we express our initial nonlinear formulation
of this optimization problem in Model A:

Model A (n, k):
INDICES
i runs (alias j) i = 1, . . . , n
l factors (alias h) l = 1, . . . , k
DECISION VARIABLES
Xl

i level of lth factor on the ith run
V variable representing the value vmap

OBJECTIVE and CONSTRAINTS

min V (A0)

s.t. V ≥
n∑

i=1

(
Xl

i − X̄
)(

Xh
i − X̄

) ∀l �= h (A1)

V ≥ −
n∑

i=1

(
Xl

i − X̄
)(

Xh
i − X̄

) ∀l �= h (A2)

Xl
i �= Xl

j ∀i �= j, l (A3)

1 ≤ Xl
i ≤ n, integer ∀i, l (A4)

The objective function A0 is simply V; the value vmap. Because the absolute value
is a nonlinear expression, constraints A1 and A2 separate it into expressions that
we can transform into linear terms. These actions are consistent when dealing with
optimization problems that have nonlinear objective functions [Rardin 1998; Hillier
and Lieberman 2005]. Constraints A3 and A4 require that each column of X be a
permutation of the integers from 1 to n.

Unfortunately, our desired formulation cannot be directly solved due to the nonlinear
(A1 and A2) and nonconvex (A3) constraints. To address the nonconvex nature of the
feasible region [Bazaraa et al. 2004], we reformulate A3 by introducing binary variables
[Wolsey 1998]. We represent one run (design point) i of factor m, with a set of n binary
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variables, one for each possible level j of the factor on that run: Y m
i, j, j = 1, 2, . . . , n. For

instance, a solution, Y 4
3,7 = 1, means that for the 4th factor, the value level is set at 7 in

the 3rd run of the experiment.
Finally, focusing on one factor (column = m) of the design matrix to optimize, we treat

the elements in all other columns (l) of the design as “fixed” values, denoted X̂l
i,∀l �= m

and i = 1, . . . , n. These constant values eliminate the variable product terms in A1
and A2. Thus, for a given factor, m, we find level settings that minimize vmap between
column m and every other column in the design. In this instance, the resulting levels
for factor m guarantees the lowest value for V and is optimal. Our model is now a
single-column MIP for a specified column, m, in a design with n runs and k factors.
After collecting terms, our final model equates to the following formulation, which we
refer to as VMIN for the remainder of the article.

VMIN (m, k, n)
INDICES
i runs (alias j) i = 1, . . . , n
l factors l = 1, . . . , k
DATA (DESIGN MATRIX)
X̂l

i level value of factor l for run i in the given design X
DECISION VARIABLES
Y m

i, j equals 1 (0 otherwise) if factor m is set to level j in run i

V maximum absolute value of vmap for any two columns in X
OBJECTIVE and CONSTRAINTS

min V (A0)

s.t. V ≥
n∑

i=1

(
Xl

i − X̄
) n∑

j=1
jY m

i, j ∀l �= m (V1)

V ≥ −
n∑

i=1

(
Xl

i − X̄
) n∑

j=1
jY m

i, j ∀l �= m (V2)

n∑
j=1

Y m
i, j = 1 ∀i (V3)

n∑
j=1

Y m
i, j = 1 ∀ j (V4)

Y m
i, j ∈ {0, 1} ∀i, j (V5)

We code this formulation in the General Algebraic Modeling System (GAMS), using
the Cplex solver on a standard laptop computer with 2.0 gigabytes of RAM. This opti-
mization code is available at http:/harvest.nps.edu, under section “NOLH design GAMS
code.” [Sanchez 2012]. GAMS is a specialized programming language for optimization
problems. We instruct GAMS to use the Cplex solver [IBM 2012], a very powerful inte-
ger programming routine that solves our problems quickly and, in almost every case,
to a provably optimal solution using a combination of a proprietary IBM heuristic that
quickly finds feasible solutions and automatic generation of cutting planes at the root
node, followed by standard branch and bound applied to the resulting problem and any
incumbent solution. The initial solution to this single column optimization problem is
the maximum absolute pairwise correlation of the original design matrix.

Even as a one-column MIP, VMIN can rapidly become large as n and k increase. The
model contains 2(n2+n+k−1) constraint equations and n2 binary variables. A relatively

ACM Transactions on Modeling and Computer Simulation, Vol. 22, No. 4, Article 20, Publication date: November 2012.



TOMACS2204-20 ACM-TRANSACTION October 26, 2012 21:10

Constructing Nearly Orthogonal Latin Hypercubes for Any Nonsaturated 20:9

Fig. 1. A design with n = 17, k = 7 has a total of 289 binary variables for any factor in an iteration of VMIN.
For factor (or column) m = 6, VMIN optimizes the order of the elements 1 through 17 to minimize V . Cells
with an entry of 1 specify the value level (j) for the specified run (i). We translate the actual value level for
each run from the matrix and present it on the right.

small design, n = 33, involves 2,262 constraint equations and 1,089 binary variables for
just one factor. However, for a problem of this size, our formulation provides a solution
for any column, typically within minutes.

The two-dimensional solution for this mathematical problem is best seen in matrix
form. Figure 1 shows the solution for 289 binary variables when m = 6 (i.e., we are
solving for X6) and n = 17. Each column equates to a value level (j) that may be set
for the ith run (row). VMIN populates each cell of this 17 × 17 matrix with a 0 or
1 to minimize V. Thus, the matrix contains the solutions for the variables Y m=6

i, j , i =
1, 2, . . . , 17 and j = 1, 2, . . . , 17. Entries of 1 equate to the complete specification for
the order of elements in the 6th factor (column) of the design matrix, shown on the
right-hand side of the figure.

Any LH can be used to initialize the procedure. However, a good initial solution
(design) helps the optimization routine solve the problem more quickly, and begin in
a neighborhood that contains an acceptable vmap. Fang et al. [2000b] start with an
arbitrary choice of U-type design to initiate their optimization routine. Our starting
solution for VMIN results from quickly generating many (up to 1,000) random Latin
hypercubes (RLHs), and selecting the one with minimum ρmap [Hernandez 2008].

An iterative application of VMIN constructs the entire NOLH. After determining the
best value levels for one column, a new column is selected, continuing until no further
improvement is possible or the correlation threshold is met. This local search algorithm
seeks a maximum improvement for one column at each step [Aarts and Lenstra 1997].
The problem that emerges is choosing the direction of the next step (i.e., selection of
the next column to optimize).

Fang et al. [2000b] use a local search that focuses on a complete submatrix of
the design, which they eliminate, reconstruct, and test for “all possible permutations
of the deleted elements,” (p. 286) finally selecting the set with least discrepancy
relative to the rest of the design matrix. Consequently, a method for specifying the
next submatrix is not a consideration. However, a large neighborhood quickly makes
this approach computationally unaffordable.

In our method, we preclude the need to search all possible permutations in the
neighborhood of the current design by specifying the direction of the search. We use the
correlation mean square (ms) to select the next column to optimize. In other studies,
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Table II. Applying VMIN to the Best of 1,000 RLHs Created This N16
12 .

Final NOLH After VMIN Application: ρmap = 0.029
k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12

n1 13 11 5 5 9 16 13 4 16 14 15 5
n2 10 1 7 14 5 13 15 12 8 6 9 14
n3 15 3 9 11 1 4 1 3 14 12 2 9
n4 11 4 13 10 12 12 16 9 5 8 1 4
n5 1 6 8 4 3 6 11 11 10 5 8 11
n6 14 14 4 7 7 14 6 16 11 3 6 12
n7 12 9 11 6 15 1 9 6 13 2 13 16
n8 8 7 10 3 10 8 10 1 6 1 7 1
n9 7 2 16 2 8 10 2 15 7 13 16 7
n10 2 8 3 9 14 2 12 13 15 15 5 6
n11 3 5 1 15 11 11 4 2 4 7 14 10
n12 16 10 6 13 13 3 7 14 2 10 11 3
n13 9 15 12 8 4 5 14 5 1 16 10 15
n14 6 12 2 1 6 9 5 8 3 9 4 8
n15 4 16 14 16 2 7 8 10 12 4 12 2
n16 5 13 15 12 16 15 3 7 9 11 3 13

Owen [1994] uses the correlation root mean square (rms) to compare LHS designs,
and Joseph and Hung [2008] use rms as one of two objectives in their multiobjective
algorithm to develop LHs. The ms for a column m is the average squared correlation
coefficient (ρlm) between m and all other columns in a design with k columns:

ρ2
ms(m) =

∑k
l �=m ρ2

lm

k − 1
(5)

The largest ρ2
ms (m) identifies the column that is likely the most problematic, thereby

having the greatest potential for improvement, and thus we use this criterion to select
the next column to optimize. A possible alternative to this approach is to simply select
the column containing ρmap; however, this method results in ties among the columns.
At a minimum, there would be two columns from which to select, necessitating another
measure to break the tie. Thus far, ρ2

ms (m) provides a unique direction in the next step
of the local search and has proven sufficiently effective for our purposes.

4. THE PROCESS FOR BREAKING DIMENSIONAL BARRIERS IN THE CONSTRUCTION OF
NEW NOLH DESIGNS

In this section, we apply VMIN in different scenarios to demonstrate its effectiveness
and versatility. Our approach creates many NOLHs, which are often beyond the dimen-
sional limits of other procedures. Furthermore, we provide an explicit illustration of
how VMIN extends the dimensions of existing OLH and NOLH designs, as well as how
it adjusts to new experimental conditions, thus demonstrating the adaptive nature of
this algorithm.

The combinations of n and k that are the most difficult for correlation reduction
techniques are those where n is relatively small (less than 50) and k → n [Hernandez,
2008]. Therefore, we focus on this class of designs for our demonstration. Steinberg
and Lin [2006] provide a test case, where n = 16 and k = 12, O16

12 , with which we make
comparisons throughout this section.

We begin construction of an N16
12 by generating 1,000 RLHs and selecting the one

with the smallest value of ρmap. The result is an LH with a ρmap value of 0.476. In 20
minutes, VMIN transforms this initial LH into an N16

12 with ρmap = 0.029; see Table II.
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Table III. Applying VMIN to a New RLH Generates Another N16
12

Unique NOLH After VMIN Application: ρmap = 0.032
k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12

n1 7 16 4 13 11 10 4 16 9 4 2 10
n2 4 6 10 14 12 9 3 6 15 2 7 3
n3 5 13 16 7 3 14 8 11 13 10 16 5
n4 16 12 12 5 13 15 15 4 16 8 3 13
n5 11 7 7 3 4 16 6 7 2 3 11 4
n6 12 10 1 4 10 6 1 10 14 16 13 7
n7 1 11 3 10 5 12 13 5 3 9 6 12
n8 3 2 15 12 15 11 10 13 6 15 9 9
n9 8 4 2 9 16 8 12 2 8 5 15 6
n10 13 9 8 15 2 1 16 9 11 7 8 2
n11 6 3 11 6 1 5 2 1 10 11 1 11
n12 9 14 13 2 14 3 9 8 1 12 4 1
n13 15 5 14 8 9 4 5 12 4 1 12 16
n14 2 8 6 1 7 2 14 14 12 6 10 14
n15 14 1 5 11 6 13 11 15 7 14 5 8
n16 10 15 9 16 8 7 7 3 5 13 14 15

An important benefit of our approach is that it can produce many NOLHs of the same
design dimension, while many other techniques to construct an OLH or NOLH in the
literature are deterministic algorithms that provide a single design. Using new random
number streams to yield different initial RLHs and applying VMIN, we develop new
NOLHs with the same design dimensions. Table III shows a new VMIN-generated N16

12
with ρmap = 0.032 that was initiated using the best of 1000 new RLHs—which had a
ρmap = 0.506.

An examination of the NOLH designs in Tables II and Table III shows that the
properties of the two design matrices are different, although their dimensions are
exactly the same. To distinguish between the two NOLH designs we classify them
with their ρmap value, designated Nn

k (ρmap), which we now apply to the two designs:
N16

12 (0.029) and N16
12 (0.032). If desired, we could generate an almost inexhaustible supply

of different N16
12 designs.

A selection of NOLHs allows the analyst to use other properties for distinguishing
among them. Although our approach does not attempt to directly balance correla-
tion reduction and space-filling measures as do Joseph and Hung [2008], eliminating
concern for high correlation enables the analysts to concentrate on other needs—for
example, space-filling and/or higher order correlations. We extend our example and
measure ML2 for each, N16

12 (0.029) with ML2 = 2.74 and N16
12 (0.032) with ML2 = 2.82,

and decide that N16
12 (0.029) is more advantageous.

We compare the new VMIN designs with currently catalogued n = 16 and k =
12 designs from Fang’s Web site1 and Steinberg and Lin’s [2006] OLH. We match
them with our N16

12 (0.029) design in terms of ρmap and ML2. Table IV summarizes the
comparison of all three designs. While an analyst who requires minimal correlation
among input variables would choose the OLH from Steinberg and Lin [2006] or the
NOLH from VMIN, a need for a space-filling scheme points to VMIN as the best
choice. In a case when both properties are required, VMIN offers the most advantage
among these designs. It is interesting to note that N16

12 (0.029) has a lower ML2 than
Fang’s presumed optimal design (thereby dominating it). This underscores that using

1(http://www.math.hkbu.edu.hk/UniformDesign/).
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Table IV.
A comparison of three n = 16, k = 12 designs; one from Fang, another from Steinberg and Lin, and one from
VMIN, in terms of correlation and space-filling measures, shows that VMIN offers advantages in both criteria.

Fang[2011] Steinberg and Lin[2006] VMIN
ρmap 0.20 0 0.029
ML2 2.78 2.92 2.740

Table V.
A comparison of ρmapsummary statistics after Florian (1992) and VMIN
application on an RLH for n = 16 and k = 12.

Statistic for ρmap

Technique
Initial RLH Post-Florian Post-VMIN

Mean 0.458 0.121 0.033
Median 0.456 0.118 0.032
Range 0.385—0.509 0.082—0.191 0.024—0.044

heuristics to facilitate optimization does not necessarily guarantee an optimum is
found.

Other methods, such as Florian’s [1992] updated sampling technique, can generate
LHs of this dimension with reduced correlation. However, an NOLH directly from an
RLH using Florian is not easily achieved [Cioppa 2002]. We compare Florian’s method
with VMIN, applying both to 30 unique RLHs with n = 16 and k = 12. In each trial the
initial RLH is the best of 1,000 RLHs. After applying Florian and VMIN separately to
the initial RLH, we discover that VMIN outperforms Florian in every case. On average,
VMIN reduces correlation over 71% better than Florian. In a number of cases, there is
more than an 80% greater reduction of ρmap using VMIN than when applying Florian.
While VMIN results in 30 different NOLHs of the same design dimension, Florian’s
method produces none. A comparison of before and after ρmap statistics from these 30
test cases is presented in Table V.

Our approach’s adaptability to many different scenarios, as well as changing situa-
tions, is clear. As discussed, there are techniques to build a design that addresses 12
factors with just 16 runs. However, a new requirement that adds two factors for study
without increasing the number of runs, while simultaneously keeping NOLH proper-
ties, is a difficult challenge. To the authors’ knowledge, no other construction method
to date can accommodate this change under the same conditions.

The given situation provides an opportunity to build an N16
14 , using either Fang’s

[2011] uniform design or Steinberg and Lin’s [2006] O16
12 as a starting point. For this

illustration, we select the Steinberg and Lin design, which we scale to the first n
natural numbers, and append two columns. The entries for the two new columns are
each simply a random permutation of the first 16 natural numbers. The initial design
has ρmap = 0.61.

VMIN quickly transforms the extended Steinberg and Lin (2006) design into an N16
14

with ρmap = 0.047; see Table VI. This minimal sacrifice in orthogonality results in
enabling the analyst to address two additional factors without increasing the required
number of runs. Significantly, VMIN recognizes columns 13 and 14 as the most prob-
lematic and only modifies them in the process, thereby keeping the base O16

12 intact. The
analyst now has the flexibility to conduct trade-offs between these new columns and
the original columns of O16

12 , and to develop a new N16
12 with perhaps better properties

in space-filling or other design needs.
As previously explained, we may generate a completely new RLH with n = 16

and k = 14, and apply VMIN, and we do so. An initial RLH of the same dimension
has ρmap = 0.509. Application of Florian’s method results in a reduced correlation of
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Table VI.
The final NOLH design after applying VMIN shows that Steinberg and Lin’s [2006] OLH remains
intact. VMIN modifies only columns 13 and 14 to reduce the design’s overall correlation.

Final NOLH from Extended Steinberg and Lin Design, n = 16, k = 14: ρmap = 0.047
k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14

n1 16 6 4 10 5 3 14 5 13 7 16 6 7 4
n2 15 8 8 2 12 14 3 12 9 15 15 8 14 6
n3 14 5 12 14 2 9 9 15 4 10 1 11 5 2
n4 13 7 16 6 15 8 8 2 8 2 2 9 15 7
n5 12 14 3 12 3 12 5 3 6 1 10 13 10 13
n6 11 16 7 4 14 5 12 14 2 9 9 15 4 11
n7 10 13 11 16 8 2 2 9 11 16 7 4 12 15
n8 9 15 15 8 9 15 15 8 15 8 8 2 1 10
n9 8 2 2 9 13 7 16 6 3 12 5 3 9 14
n10 7 4 6 1 4 10 1 11 7 4 6 1 3 12
n11 6 1 10 13 10 13 11 16 14 5 12 14 11 16
n12 5 3 14 5 7 4 6 1 10 13 11 16 2 9
n13 4 10 1 11 11 16 7 4 12 14 3 12 8 3
n14 3 12 5 3 6 1 10 13 16 6 4 10 13 5
n15 2 9 9 15 16 6 4 10 5 3 14 5 6 1
n16 1 11 13 7 1 11 13 7 1 11 13 7 16 8

ρmap = 0.124. VMIN creates an N16
14 with ρmap = 0.041. As an extension of this exercise

(not shown here), we add another column to generate a saturated NOLH design, N16
15 ,

which of course includes 14 other N16
14 designs with the elimination of any column

[Hernandez 2008].
The speed in which VMIN generates these new NOLHs is a departure from previ-

ous methods. In ten separate RLHs we recorded the time VMIN needed to solve one
column. In developing N16

12 designs, VMIN solved any single column to a guaranteed
optimal solution in less than three minutes. We also recorded the amount of time VMIN
required to solve the entire design problem, resulting in an NOLH. The median time
was less than 24 minutes, with the longest time less than 29 minutes. Similarly, we
computed times when constructing complete N16

14 designs from raw RLHs. The median
time was less than 36 minutes, with the longest time less than one hour. This relatively
small cost in computational time is an added advantage for experimenters and opens
opportunities for customized NOLH designs instead of a static library of designs.

Joseph and Hung [2008] developed LHs using simulated annealing to minimize a
weighted linear combination of a correlation measure and a maximin space-filling
metric. Specifically, they minimize w1ρ

2 + w2φp, where ρ2 is defined by Equation (6)
and φp by Equation (7), and scaled to [0,1]. Using w1 = 0.5 and w2 = 0.5, Joseph and
Hung generate an LH for n = 9 and k = 4. They show that their new design performs
well against designs of similar dimensions by Morris and Mitchell [1995], Ye [1998],
and Fang et al. [2002].

ρ2 =
∑k

i=2
∑i−1

j=1 ρ2
i j

k(k − 1)2−1 , (6)

where ρi j is the linear correlation between columns i and j.

φp =

⎛
⎜⎝

(
n
2

)
∑
i=1

1
dp

i

⎞
⎟⎠

1/p

, (7)
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Table VII.
A comparison of the minimum ML2 of 100 VMIN designs and an LH from Joseph and
Hung [2008] for n = 9 and k = 4.

VMIN Joseph and Hung [2008]

Design Matrix

9 5 8 7 1 5 3 3
6 7 1 6 2 2 5 8
4 6 3 1 3 9 7 5
1 4 4 5 4 3 8 1
7 1 2 8 5 7 1 7
5 3 9 3 6 6 9 9
2 9 7 9 7 1 2 4
8 8 5 2 8 8 4 2
3 2 6 4 9 4 6 6

ρmap 0 0.117
ρ 0 0.063
φ p .1498 .1049
ML2 0.0485 0.0519

Fig. 2. The pairwise projections of the VMIN generated LH and the one from Joseph and Hung [2008] for
n = 9 and k = 4.

with di the rectangular distances between the ( n
2 ) pairs of points and p a positive integer

(set to 15).
As an alternative to Joseph and Hung’s design, VMIN was applied on 100 RLHs, and

the orthogonal design with the best ML-2 discrepancy was selected for comparison.
Table VII displays the designs and their correlation and space-filling measures. We
see that VMIN produces a design that is preferred by all of the correlation metrics. In
addition, each design does better in the respective space-filling measure that was the
focus in its construction. Figure 2 displays the projections of the nine design points into
the six two-dimensional subspaces defined by all pairs of factors.

5. CONCLUSIONS

Latin hypercubes have proven their utility as easy-to-generate designs that allow ex-
perimenters to explore the relationships between a large number of input variables and
multiple output variables. However, the degree of correlation among its input variables
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Table VIII.
VMIN fills in gaps in the available catalogue of NOLH and OLH designs. Many
of the VMIN-based NOLHs are saturated.

n
Maximum k for Each Method

Ye Cioppa Ang Steinberg and Lin Pang et al, VMIN
9 4 UNAVAILABLE 4 6

14 UNAVAILABLE 12
16 UNAVAILABLE 12 12 15
17 6 7 8 UNAVAILABLE 16
19 UNAVAILABLE 18
24 UNAVAILABLE 23
25 UNAVAILABLE 6 24
32 UNAVAILABLE 31
33 8 11 16 UNAVAILABLE 32
47 UNAVAILABLE 46
49 UNAVAILABLE 8 47
64 UNAVAILABLE 63
65 10 16 32 UNAVAILABLE

can affect its utility. Efforts to develop LHs with little or no correlation continue, but
are stifled by strict dimensional constraints.

Our research makes OLHs and NOLHs available to experimenters in most any ex-
perimental situation. The new algorithm presented in this article enables construction
of an NOLH for almost any n and k < n. Saturated NOLHs (S-NOLH) such as N16

15 ,
N17

16 , N19
18 , N25

24 , N33
32 , N47

46 , and N64
63 are only some of the new designs from our work

[Hernandez 2008] that are available at http:/harvest.nps.edu [Sanchez 2012].
The results of our study greatly expand the inventory of NOLHs available to ex-

perimenters. In the “VMIN” column of Table VIII, which is an update of Table I, we
introduce some of our new NOLHs that fill dimensional gaps discussed in Sections
1 and 2. For instance, Pang et al. [2009] develop an O25

6 design for a 25-run exper-
iment, while in a later study Sun et al. [2009] produce an O25

4 . Yet, there are no
OLH or NOLHs that cover more than six variables for 25 or less runs. Our algorithm
addresses this concern. We quickly develop NOLHs,Nn

6 , n = 9, 10, . . . , 14 and OLHs,
On

6 , n = 15, 16, . . . , 23. VMIN fills much of the remaining space with N14
12 , N16

15 , N17
16 ,

N19
18 , and N25

24 designs [Hernandez 2008]. Table VIII presents some specific values of n
for which we have developed an S-NOLH, demonstrating how we fill gaps in k for a
specified n.

The utility of our designs often emerge in experimental situations where no OLH or
NOLH designs exist, even in theoretical dimensions. For example, the Peace Support
Operations Model (PSOM)—a high-dimensional, interactive simulation—is an impor-
tant training tool in humanitarian assistance and peace-keeping operations [Body and
Marston 2007]. Such a model contains thousands of variables, many of which are un-
certain, including the leadership and reputation of coalitions, as well as numerous
population characteristics.

In Marlin’s [2009] study to quantitatively analyze PSOM, he sought efficient exper-
imental designs (OLH and NOLH) to test and explore a scenario used by the multi-
national forces in Iraq. He was concerned that classic fractional factorial designs may
not deal with the range of possible response surfaces associated with PSOM. Although
Marlin concentrated on just a few vignettes, the series of experiments still had hun-
dreds of variables. One phase of these cumulative experiments required him to ad-
dress 66 factors. Previously, no OLHs or NOLHs existed in this dimension. However,
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our work produced designs for this situation. Marlin’s study results have contributed
to an understanding of PSOM and have helped the United Kingdom’s Defence Sci-
ence and Technology Laboratory, in partnership with U.S. Joint Staff J-8, to improve
the model and cooperation for training in peacekeeping and stability operations. The
United States Partnership for Peace Training and Education Center now uses PSOM
as a primary tool for its global program.

We have presented significant advantages in using our technique for constructing
experimental designs. Our algorithm readily and quickly creates new NOLHs for most
any design dimension required, to include S-NOLHs. Additionally, we can repeat the
process and create unique designs for the same design dimension, allowing the exper-
imenter to use criteria other than the degree of correlation to select one that best fits
experimental goals. Our process can extend existing OLHs and NOLHs to address new
situations, while maintaining the orthogonal properties of the original design. We offer
our new method to develop OLH and NOLH designs of any determinate dimension to
the scientific community to increase the effective utilization of computer simulations
in the sciences.
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