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ABSTRACT  

Data from the Optech Titan airborne laser scanner were collected over Monterey, CA, in three wavelengths (532 nm, 
1064 nm, and 1550 nm), in May 2016, by the National Center for Airborne LiDAR Mapping (NCALM). Analysis 
techniques have been developed using spectral technology largely derived from the analysis of spectral imagery. Data 
are analyzed as individual points, vs techniques that emphasize spatial binning. The primary tool which allows for this 
exploitation is the N-Dimensional Visualizer contained in the ENVI software package. The results allow for significant 
improvement in classification accuracy compared to results obtained from techniques derived from standard LiDAR 
analysis tools. 
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1. INTRODUCTION  
Light detection and ranging (LiDAR) data processing techniques typically use Cartesian coordinate information, 
infrequently adding intensity from a single wavelength component. Research into the use of multi-wavelength systems 
for terrain classification is limited and lacks dedicated analysis tools and procedures. The limited prior work are dual-
wavelength bathymetric LiDAR studies and a 2016 study by Morsy et al. They used rasterized Optech Titan three-
wavelength data, approached by use of three normalized difference feature indices (NDFIs) to conduct separate land vs 
water and vegetation vs built-up (urban) area classifications in Ontario, Canada1. Yu et al (2017) have recently studied 
the application of Titan data to tree species classification in forest mapping.  These authors address intensity variations 
with range, including corrections for foliage penetration2.   

This research analyzes the contributions to the terrain classification process from a multi-laser (spectral) LiDAR system. 
Data come from Teledyne Optech’s Titan scanner, which provides three-wavelength aerial LiDAR data in 532 nm, 1064 
nm, and 1550 nm. Spatial point density is approximately 12 points/m2. As an important philosophical decision, we do 
not rasterize our data. Instead, we analyze and classify individual points in the 3-dimensional point cloud comprised of 
all three wavelengths. 

Our objective in this work is to use spectral techniques to analyze the LiDAR data.   A heavily validated training set was 
obtained for the grounds of the Naval Postgraduate School (NPS).  Standard analysis approaches were used, starting with 
a training subset for 5% of the data. Several classification techniques were studied; the focus here is on the use of the 
Maximum Likelihood (ML) classifier to classify the entire point cloud based on the spectral training regions. The 
processing approach demonstrated here builds on the earlier works of Thomas3 and Miller et al.4. Refer to McIver5 for a 
complete explanation of our data preparations, spectral analysis procedures, classification results, post-processing 
refinement, and conclusions. 

2. DATA 
2.1 Sensor  

Teledyne Optech’s Titan Multispectral LiDAR system, uses three independently-scanning lasers to collect data at a 
combined ground-sampling rate of 1 MHz. Teledyne states that “the Optech Titan provides greater performance for 3D 
land cover classification, vegetation mapping, bathymetry, and dense topography”6. Titan’s three laser channels are as 
listed: Channel 1 operates in the SWIR at 1550 nanometers (nm). Channel 2 operates in the NIR at 1064 nm. Channel 3 
operates in the visible green at 532 nm. The system records all intensities in a 12-bit dynamic range. The 532 nm channel 
has a beam divergence of ~0.7 mrad; the other two sensors operated at ~0.35 mrad.  The other noteworthy difference is 
in pointing: channel 2 is nadir pointing, channel 1 is pointed 3.5 degrees forward, channel 3 is pointed 7 degrees 
forward. 
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2.2 Area of Study 

Four of the 28 flight lines collected during NCALM’s Monterey, CA flight campaign are selected for this study. 
Together, these four flight lines (numbers 10, 12, 13, and 15) contain the entire campus of NPS. Each flight line is 
delivered as three separate LASer (LAS) files, corresponding to one file per channel. A total of 12 LAS v.1.2 files are 
used. For this study, we are concerned only with the NPS campus, so the four flight lines are cropped to the region 
shown in Figure 1. Our study area contains 15,022,802 laser points. 

 
Figure 1. NPS campus study area, Monterey, CA in Google Earth.5 

 

3. METHODOLOGY 
First, we apply several pre-processing steps to merge the separate channels for each flight line into a single-combined 
LAS file, remove the points at the edges of all flight lines (which are too far apart for spectral incorporation due to the 
greater scan angle), and clean up point cloud noise. Second, a geometric classifier from the LAStools LiDAR-processing 
suite7 is used to commence the classification process by placing all points into four generalized spatially-defined classes: 
unclassified, ground, vegetation, and buildings. Third, the OpenTStools’ nearest-neighbor algorithm8 accomplishes 
spectral incorporation by storing the intensity values of every point and its closest neighbors from the other two 
wavelengths (channels) into the LAS RGB field. Since this occurs with nearly-coincident points, it effectively gives 
every point three spectral bands: Red-1064 nm, Green-532 nm, and Blue-1550 nm.  

Next, the data array is converted from LAS to ASCII format, and ENVI’s N-Dimensional Visualizer (N-D VIS) tool9 is 
adapted to display the spatial and spectral components of the LiDAR data. In N-D VIS, we develop spectrally-defined 
regions of interest (ROIs) for a supervised classifier. Our training region consists of a randomly generated 5% subset of 
data points, evenly dispersed across the study area. The 5% training region is considered our ground truth, which has 
been vetted by extensive walkthroughs of the study area—our own campus. 

 

3.1 Initial Spatial Classification 

LAStools’ LASground script classifies all points as ground or not-ground. Heights above ground level (AGL) values are 
calculated by the LASheight script. LASclassify analyzes apparent surface roughness to classify the not-ground point: 
planar surfaces as buildings and rough surfaces as vegetation. Points which do not conform to either of these geometric 
properties remain unclassified. This autonomous spatial classification is limited to approximately 60-70% accuracy, and 
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it only provides four classes. Figure 2 shows the results of LASclassify for an area near Herrmann Hall (the principle 
building of the school). Notice that the rough roof of clay-tile shingles is often misclassified as vegetation. Also, notice 
the many points that remain unclassified, especially the building walls and the low-lying shrubs. Although Figure 2 
shows only a small segment of campus, these mistakes are characteristic of LASclassify throughout the entire study area. 

 
Figure 2. NPS point cloud classified using LAStools’ LASclassify tool5. 

 

3.2 Spectral Incorporation 

The nearest neighbor spectral incorporation is accomplished with a locally-developed MATrix LABoratory 
(MATLAB)10 script that calls OpenTSTOOL’s approximate k-nearest neighbor algorithm. We use Lasdata tools to read 
and write the LAS files in MATLAB. Figure 3 illustrates how the nearest neighbor process works for every point in all 
channels: LAS blue field (B) is set to the nearest 1550 nm intensity, red field (R) is set to the nearest 1064 nm intensity, 
and green field (G) is set to the nearest 532 nm intensity—one of these values will be the point’s own intensity, 
duplicated into the appropriate field. 

 
Figure 3. Titan point cloud nearest neighbor RGB attribution3. 

 

 

3.3 ENVI Preparation 

We convert the data from LAS files to ASCII format with LAStools’ las2txt using the flag –parse xyzirndecauptRGB. 
This allows ENVI to read in the LiDAR data as an imagery format without losing any of the LiDAR attributes. The 
ASCII files are reformatted in Interactive Data Language (IDL) as a modified band sequential (BSQ) interleave (1 x # of 
points x # of attributes)4. To create a training region for the upcoming spectral analysis, we flag a 5% subset of random 
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data points. Table 1 is the list of attributes for every data point—21 spatial/spectral attributes. Three green vegetation 
indices are calculated from the appropriate RGB intensities according to Table 211. The entire point cloud is saved as an 
ENVI standard data file with a region of interest (ROI) file, ready for input to N-D VIS using the visualize with new data 
option. 

      

     Table 1. List of ASCII point cloud attributes.4 

Field Attribute Field Attribute 
1 X 12 Point Source ID 
2 Y 13 GPS Time 
3 Z 14 Red     (1064 nm) 
4 Intensity 15 Green  (532 nm) 
5 Return Number 16 Blue    (1550 nm) 
6 Number of Returns 17 Manual Classification 
7 Scan Direction 18 Green Normalized Difference Vegetation Index 
8 Edge of Flight Line 19 Green Difference Vegetation Index 
9 Classification 20 Green Ratio Vegetation Index 

10 Scan Angle Rank 21 Reduction Flag 
11 Height (AGL)   8-bit relative range   

 

Table 2. Vegetation indices calculated.4 

Index Formula 

Green Normalized Difference Vegetation Index (GNDVI) GNDVI = (NIR - Green) / (NIR + Green) 

Green Difference Vegetation Index (GDVI) GDVI = NIR - Green 

Green Ratio Vegetation Index (GRVI) GRVI = NIR / Green 

 

3.4 N-D Visualizer 

ENVI’s n-Dimensional Visualizer tool (N-D VIS) is used to identify ground, vegetation, and building material class 
clusters and create spectral ROI training classes for input into the Maximum Likelihood supervised classifier12. In N-D 
VIS, we visualize various combinations of the spatial/spectral attributes in Table 1 as bands in an n-dimensional 
scatterplot. We focus primarily on the RGB spectral bands (14, 15, and 16) for identifying endmember clusters. Viewing 
the point cloud using bands 1, 2, and 3 (XYZ space) allows us to see the data in a familiar coordinate system. 

Data reduction is performed by displaying X (band 1) and reduction flag (band 21) to isolate only the points in the 5% 
training subset. Selecting X and classification (band 9) allows us to color points according to their LASclassify 
classifications: unclassified, ground, vegetation, or buildings. This provides the ability to spectrally subclassify the 
ground, vegetation, and building points separately.  

Figure 4 shows ground points only in XYZ and RGB space prior to the definition of endmembers. Figure 5 displays 
ground points in RGB space after the definition of class clusters. Figure 6 provides the corresponding spectra plots from 
mean RGB intensities. Figure 7 displays the six new ground classes in XYZ space. AGL is zero for all ground classes. 
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Figure 4. Titan Monterey data—ground points only in XYZ and spectral (RGB) space, prior to sub-classification5. 

 

  
Figure 5. Two screenshots of newly-defined ground classes in N-D VIS RGB space (bands 14, 15, 16)5. 

 

 
Figure 6. Spectra plots of new ground classes from mean RGB intensities5. 
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Figure 7. Titan Monterey data—ground points only in XYZ space, after spectral subclassification5. 

 

Figure 8 shows the vegetation points in RGB space with the grass, a ground class, displayed as a reference. Vegetation 
demonstrates mostly lower intensities in all three wavelengths and is difficult to subclassify. Thus, we are only able to 
divide vegetation loosely into shrubs and trees. Mean AGL for shrubs class is 16.5, and mean AGL for trees is 127. 

 
Figure 8. Titan Monterey data—vegetation points (plus grass) in RGB space, after spectral subclassification5 . 

 

Figure 9 shows points from the building class in XYZ and RGB space prior to the definition of endmembers. Figure 10 
demonstrates building points in RGB space after the definition of class clusters. Figure 11 provides the corresponding 
spectra plots from mean RGB intensities and a chart of mean AGLs for each building class. Figure 12 displays the new 
building classes in XYZ space. To better show the primary roofing materials, Figure 12 excludes the general building 
class, which is comprised of all leftover building points that do not fit into any of the specific spectral clusters. Finally, 
Table 3 provides a summary, including point counts, for all of the newly-defined spectral training classes. 
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Figure 9. Titan Monterey data—building points in XYZ and RGB space, prior to subclassification5 . 

 

 
Figure 10. Two screenshots of newly-defined building classes in N-D VIS RGB space5 . 

 

 
Figure 11. Spectra plots of new building classes from mean RGB intensities and mean AGL plot 5. 
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Figure 12. Titan Monterey data—building points only in XYZ space, after spectral subclassification 5. 

 

Table 3. List of Spectral Subclasses Generated Using the 5% Random Subset 5. 

New Subclass Assigned Color Previous Class—Pre N-D VIS Number of Points 
Dirt, Mulch, & Sand Sienna Ground (2) 196,044 
Grass & Ivy Bright Green Ground (2) 26,204 
Sidewalk Concrete Thistle Ground (2) 31,872 
Road Asphalt Thistle (Darker) Ground (2) 72,356 
Red Brick Dark Red Ground (2) 298 
Turf Sea Green Ground (2) 122 
 
Shrubs Middle Green Vegetation (5) 5,995 
Trees Dark Green Vegetation (5) 190,083 
 
General Building Bright Yellow Building (6) 7,025 
Light Concrete Thistle (Medium) Building (6) 6,835 
Dark Concrete Yellow/Gold Building (6) 12,078 

Powerlines Orchid (Pink) Unclassified (1)  
& Building (6) 615 

Clay-tile Shingles Coral (orange/pink) Building (6) 6,799 
Tan & Gray Shingles Magenta Building (6) 1,313 
Dark Asphalt Shingles Purple Building (6) 819 
Red Basalt & Lava Rock Dull Orange Building (6) 2,588 
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By adding the spectral (RGB) component, we are able to separate the ground points into six subclasses, the vegetation 
into two subclasses, and the buildings into eight subclasses. We discovered, after the completion of the previous figures 
and Table 3, that sand can be separated as an additional ground subclass. This brings the total number of ground classes 
to seven.  With the addition of the water class (defined spatially in N-D VIS), 18 total training classes are identified as 
input ROIs for the Maximum Likelihood classifier. 

 

3.5 Supervised Classification 

Maximum Likelihood supervised classification is accomplished using the AGL and RGB attributes of the full-campus 
point cloud with no probability threshold and 15 of the non-water input classes from Table 3. Sand is separated from the 
previous dirt, mulch, and sand class. The general building and powerlines classes are discarded as they cause gross 
misclassifications, especially with tree points. 

For each pixel (laser data point), Maximum Likelihood determines a probability value for every class13. The class with 
the highest probability value is then selected as the classification for that pixel, assuming the probability value meets the 
minimum threshold level for this most-likely class14. An intermediate rule image is generated for every input class to 
store the probability values for that class until the classifier is ready to create the final classification image. Figure 13 
displays a probability distribution graph for a sample class (concrete – both ground and building). A point’s likelihood of 
being concrete is zero on the right side of the x-axis and progresses to one on the far left. The red and green lines in 
Figure 13 are representative of the likewise colored points in Figure 14. Figure 14 is a screenshot of the point cloud, 
where the red and green areas represent those points with a high probability of being classified as concrete. 

Figure 15 is a screenshot of the NPS campus, near Herrmann Hall, showing a subset of the results from the Maximum 
Likelihood classifier. Only the classes that are actually present in the respective area appear in the figure key. Figure 16 
displays the entire study area, classified by Maximum Likelihood with all 16 classes. 

 

 
Figure 13. Rule image graph for concrete class showing the probability of each point being concrete5. 

 

 

Proc. of SPIE Vol. 10191  101910J-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/18/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



White points are
"probably not"
concrete

T

Glasgow Hail

. - :' :'

V

-

Flat concrete section
of Herrmann Hall_
roof

:r
ì

tA!
. i .j.w.. r ' 'i ,'!

;L;.-:-=

Ground

-Grass
-Turf (Fake Grass)

- Dirt
Sidewalk Concrete

Red Brick

Road Asphalt

Building

MI Clay Tile Shingles

El Light Roof Concrete

EDark Roof Concrete

Tan /Gray Shingles

Vegetation

Shrubs

nTrees

 

 

 
Figure 14. Subarea of NPS point cloud colored according to rule image graph for concrete class5. 

 

 
Figure 15. Maximum Likelihood supervised classifier results near Herrmann Hall5. 

 

Proc. of SPIE Vol. 10191  101910J-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/18/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Grass
Turf

Clay -tile Shingles
Dirt/Mulch

Sidewalk Concrete
Red Brick

Shrub
Trees

Dark Bldg Concret
Tan /gray Shingle

sphalt Shingles

Sand
oad Asphalt

Light Bldg
ncrete 16 -Water

 

 

 
Figure 16. Maximum Likelihood supervised classifier results—full study area5. 

 

4. RESULTS 
The Maximum Likelihood supervised classification results are compared to the manually-classified 5% training subset 
(Table 4a, 5b, following references) for the following output classes (class number in parenthesis): “grass (# 1), turf (# 
2), clay-tile shingles (# 3), dirt and mulch (# 4), sidewalk concrete (# 5), red brick (# 6), shrubs (# 7), trees (# 8), dark 
building concrete (# 9), tan/gray shingles (# 10), dark asphalt shingles (# 11), red basalt/lava rock (# 12), sand (# 13), 
road asphalt (# 14), and light building concrete (# 15)” 5. Table 4 provides the confusion matrix for this ground truth 
comparison. Class accuracies are in bold-type on the diagonal, and red-text indicates the highest confusion for each 
class. 

Total accuracy is 75%, with grass—99.9% and turf—95% representing the greatest classification successes. The 
majority of classes have individual accuracies at or better than the total accuracy of 75%. Overall accuracy is largely 
affected by the 66% individual accuracy of the dirt and mulch class, which contains approximately 22% of all points. 
The sidewalk concrete class demonstrates the poorest accuracy of 46%, and it is often confused with dirt, sand, and road 
asphalt. Most classes demonstrate mid-range performances between 70% and 90% 

 

5. CONCLUSIONS 
Addition of the spectral LiDAR component increases classification diversity from four classes to 16. Overall 
classification accuracy is improved over spatial-only methods: 75% vs 60-70%; post-processing using the number-of-
returns attribute further improves total accuracy to approximately 80% 5.  It is important to remember that the spectral 
component is a compliment to, not a substitute for, the point clouds’ spatial attributes, such as AGL and number of 
returns. For example, it is difficult to classify ground and building concretes or trees and shrubs into different classes 
without the AGL metric. 
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Spectrally dark (flat signature) materials, such as water, powerlines, and trees, appear too similar and generate a high 
degree of confusion—especially water points misclassified as vegetation. Water points must be masked or cut-out 
entirely before classification, and powerlines should not be used as an input training class. Additionally, we may have 
seen better results in ground classification and overall accuracy by defining a distinct training cluster for dirt and mulch 
(as we do for sand), instead of leaving the dirt/mulch training class as a somewhat disperse class of the remaining ground 
points (see Figure 6). 

We agree with Miller et al. that Titan’s chosen laser channels are ill-suited for vegetation discrimination4. The green 
vegetation indices, in Table 2, provide no considerable improvement to the classification results. A visible red laser is 
needed to distinguish the IR-ledge (“red edge”) and to calculate the traditional vegetation indices in Richards13. Unlike 
Miller et al., this study benefits from easily-accessible ground truth. 

This study reinforces two concepts introduced by Thomas3 and Miller et al.4. First, tools designed for the spectral 
analysis of traditional imagery can be successfully adapted for multi-wavelength LiDAR data. Second, a spectral LiDAR 
offers a valuable contribution to the terrain classification process over traditional single-wavelength, spatial-only, 
methods. Future work could apply radiometric correction to the Titan spectral intensities, which may aid in the 
subclassification of vegetation and other spectrally-dark materials. Based on our high degree of success at spectrally 
segregating areas of true grass and fake grass (turf), we suggest that future work include analyzing a scene containing 
various military camouflage setups dispersed among true vegetation. 
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Table 4A. Confusion matrix comparing the Maximum Likelihood supervised classifier results to the 5% training subset5 . 

 

 

G
ra

ss
 

Tu
rf

 

C
la

y-
til

e 

D
irt

/M
ul

ch
 

Si
de

w
al

k 
C

on
cr

et
e 

R
ed

 B
ric

k 

Sh
ru

bs
 

Grass  
(26,204) 

26,181 
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Total Accuracy 414,303 of 553,406 points 75% 
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Table 4B. Confusion matrix comparing the Maximum Likelihood supervised classifier results to the 5% training subset5 . 
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Grass  
(26,204) 0 0 0 0 0 0 0 0 

Turf 
(122) 0 0 0 0 0 0 4 0 

Clay-tile Shingles 
(6,799) 48 36 130 0 734 0 2 2 

Dirt/Mulch 
(181,865) 0 1 0 0 0 6,504 12,664 0 

Sidewalk Concrete 
(31,872) 0 0 0 0 0 7,300 4,632 0 

Red Brick 
(298) 0 0 0 0 0 0 82 0 

Shrubs 
(5,995) 301 50 58 178 94 0 7 8 

Trees 
(190,083) 

151,666 
(80%) 1,283 1,729 6,978 3,950 0 0 23 

Dark Bldg 
Concrete 
(12,078) 

25 7,521 
(62%) 453 10 27 56 150 2,003 

Tan/gray Shingles 
(1,313) 0 8 1,098 

(84%) 181 2 0 0 0 

Asphalt Shingles 
(819) 3 1 32 767 

(94%) 0 0 0 0 

Red Basalt Lava 
Rock 
(2,588) 

15 0 22 0 1,935 
(75%) 0 0 0 

Sand 
(14,179) 0 0 0 0 0 12,441 

(88%) 298 0 

Road Asphalt 
(72,356) 0 0 0 0 0 130 60,875 

(84%) 0 

Light Bldg 
Concrete 
(6,835) 

0 724 0 0 0 0 0 6,066 
(89%) 
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