Dr. John Osmundson
Faculty Advisor (Professor, Information Sciences)

RADM (ret.) Rick Williams
Technical Advisor (NPS Chair of Mine and Expeditionary Warfare)

<table>
<thead>
<tr>
<th>Castaneda, Phil</th>
<th>Koh Wee Yung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation (SH-60, USN)</td>
<td>Weaponry (MoD)</td>
</tr>
<tr>
<td>Drennan, Jim</td>
<td>Lim Choon Wee</td>
</tr>
<tr>
<td>SWO (USN)</td>
<td>Sensors (MoD)</td>
</tr>
<tr>
<td>Emmeresen, Tracy</td>
<td>Lu Zheng Liang</td>
</tr>
<tr>
<td>Aviation (P-3)/IW (USN)</td>
<td>Weaponry (MoD)</td>
</tr>
<tr>
<td>Saburn, Jon</td>
<td>Ng Kiang Chuan</td>
</tr>
<tr>
<td>SWO (USN)</td>
<td>Commando (SG ARMY)</td>
</tr>
<tr>
<td>Silvestrini, Christian</td>
<td>Ong Zi Xuan</td>
</tr>
<tr>
<td>SWO (USN)</td>
<td>Intelligence/Infantry (SG ARMY)</td>
</tr>
<tr>
<td>Walker, William</td>
<td>Pek Wee Kok</td>
</tr>
<tr>
<td>Submarines (USN)</td>
<td>Networks (MoD)</td>
</tr>
<tr>
<td>Wessner, Wes</td>
<td>Perh Hong Yih Daniel</td>
</tr>
<tr>
<td>Aviation (F-18)/IP (USN)</td>
<td>Infantry (SG ARMY)</td>
</tr>
<tr>
<td>Harvey, Scott</td>
<td>Sor Wei Lun</td>
</tr>
<tr>
<td>Submarines (USN)</td>
<td>Artillery (SG ARMY)</td>
</tr>
<tr>
<td>Malinowski, Matt</td>
<td>Tan Yick Fung</td>
</tr>
<tr>
<td>SWO/EDO (USN)</td>
<td>Communications (MoD)</td>
</tr>
<tr>
<td>Mills, Thomas</td>
<td>Teo Yong Kiong</td>
</tr>
<tr>
<td>SWO/IW (USN)</td>
<td>Combat Engineer (SG ARMY)</td>
</tr>
<tr>
<td>Chan Chung Wei</td>
<td>Wee Hong Chuan</td>
</tr>
<tr>
<td>Technician (RSN)</td>
<td>Weaponry (MoD)</td>
</tr>
<tr>
<td>Chiam, David</td>
<td>Wong Chee Heng</td>
</tr>
<tr>
<td>Operations Research (MoD)</td>
<td>Combat Engineer (SG ARMY)</td>
</tr>
<tr>
<td>Zhu, Kelvin</td>
<td>Combat Engineer (SG ARMY)</td>
</tr>
</tbody>
</table>
SEA-17B has developed an Advanced Undersea Warfare System that enables control of the future Undersea Battlespace using superior weapons, sensors, AND communications.

• Flexible
• Scalable
• Tailorable
Section 1
- Tasking
- Methodology

Section 2
- Problem Statement
- Stakeholder Analysis
- CONOP
- Needs Analysis

Section 3
- Functional Analysis
- Alternative Generation
- DOE

Section 4
- Design Concept Overview

Section 5
- Analysis of Alternatives
 - Performance
 - Cost
 - Risk

Section 6
- Recommendations
 - Primary
 - Secondary
 - Hybrid

Section 7
- Project Insights
- Project Recommendations

Section 8
- Conclusions
Section 1

Tasking

Methodology
Define a system of capabilities that would be necessary to create and sustain an underwater operational picture of areas of interest and counter and engage adversary manned and unmanned systems when required.
Systems Engineering Plan

SEA-17B Project Cycle

Problem Space

- Summer 2010
- Fall 2010
- Spring 2011

Milestone A:
- **Project Management Plan**
- **Decision Authority:** Project Advisor
- **Deliverable:** PMP

Milestone B:
- **Progress Review**
- **Decision Authority:** Project Advisor
- **Deliverable:** Statement of Requirements, and MOE, 25% draft report

Milestone C:
- **Progress Review**
- **Decision Authority:** Project Advisor
- **Deliverable:** IPR 1 Presentation, Alternative Selection, 75% draft report

Solution Space

- TDSI Students arrive JAN 2011

Need

Preliminary Preparation Phase
- Organization
- Preliminary Research
- Networking

Research Phase
- Deep Research
- Problem Definition
- Requirements Analysis

Design Phase
- Functional Analysis and Allocation
- Analysis of Alternatives
- Modeling and Simulation
- Cost Research and Analysis
- Risk Analysis
- IPR 1

Deployment Phase
- Verification and Validation
- Refinement and Implementation
- Presentation of Results
- IPR 2

Capability

Milestone D:
- **Final Review**
- **Decision Authority:** SEA Chair
- **Deliverable:** FPR Presentation, Final Report
Systems Engineering Process

- Problem
 - Define
 - Solve
- Mission
 - Consider
 - Accomplish
- Need
 - Address
 - Identify
- Function
 - Perform
 - Analyze
- Evaluate
- Recommend

Physical Alternatives
- Physical Alternatives
- Physical Alternatives
- Physical Alternatives
Section 2
Problem Statement
Stakeholder Analysis
CONOP
Needs Analysis
Over the next twenty years the capacity and capability of USW platforms will not meet operational demands in non-permissive areas. Furthermore, the emergence of near-peer competitor navies, the distributed nature of the asymmetric maritime threat, and the development of autonomous undersea threats present a unique challenge that current platform-centric solutions are not ideally designed to confront.

Control the undersea battlespace with weapons and sensing superiority!
Future of USW in the Littorals
(if we maintain status quo)

- SHIPS
- AIRCRAFT
- SUBMARINES
- MINES
- DEPLOYED SENSORS

ASYMMETRIC (mines, diesel submarines,...)

CROSSOVER POINT

EMERGING TECHNOLOGY

NEAR-PEER COMPETITOR

US NAVY

THREAT

A Visual Representation

UNCLASSIFIED
Closing the Capability Gap

Future of USW in the Littorals

US NAVY

CAPABILITY + CAPACITY
- SHIPS
- AIRCRAFT
- SUBMARINES
- MINES
- DEPLOYED SENSORS
- AUWS

ASYMMETRIC (mines, diesel submarines,...)

Harness Technology

EMERGING TECHNOLOGY

NEAR-PEER COMPETITOR

Maintain Dominance

TIME
Considering Mission Areas

Limited resources, evolving threats, and emerging technologies all suggest leveraging the benefits of Mine Warfare in the undersea environment.

Technology is neutral!
Stakeholder Matrix

<table>
<thead>
<tr>
<th>Internal</th>
<th>Decision Makers</th>
<th>Integrators</th>
<th>Implementers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational</td>
<td>POTUS, SECDEF, SECNAV, CNO</td>
<td>COCOMs, CSG, ESG</td>
<td>CO, Wardroom, Crew</td>
</tr>
<tr>
<td>Industrial</td>
<td>CEO</td>
<td>Engineers</td>
<td>Technicians</td>
</tr>
<tr>
<td>Acquisitions</td>
<td>POTUS, Congress</td>
<td>DOD Acq</td>
<td>SUPPO/SK</td>
</tr>
<tr>
<td>RDT&E</td>
<td>PEO</td>
<td>LSE</td>
<td>SME</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td></td>
<td></td>
<td>Taxpayers</td>
</tr>
<tr>
<td>Friendly</td>
<td></td>
<td>Concerned Global Citizens and Governments</td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td></td>
<td>Concerned Global Citizens and Governments</td>
<td></td>
</tr>
<tr>
<td>Hostile</td>
<td></td>
<td>AFFECTED POPULATION AND GOVERNMENT</td>
<td></td>
</tr>
</tbody>
</table>
Concept of Operations

0. Shape
- COVERT ISR
 - Clandestine insertion
 - Battlespace preparation
 - ISR for Intelligence Operations

1. Deter
- SMART “MINE” THREAT
 - Hold-at-risk
 - Early Warning
 - Show of force

2. Seize
- ENGAGEMENT
 - Engage hostile targets as directed

3. Dominate
- PERSISTENT ASSET
 - Area Denial
 - Maintain persistent presence

4. Stabilize
- FORCE MULTIPLIER
 - Protect friendly assets
 - Monitor area to contribute to COP
Needs Analysis

AUWS

Threat Discrimination

Platform Independence

Detection Avoidance

Operational Picture Development

Adjustable Autonomy

Enemy Prosecution (manned and unmanned)

Persistent Forward Presence

UNCLASSIFIED
Section 3

Functional Analysis
Alternative Generation
Design of Experiments
Controllable:
- Power Consumption
- Operator Inputs
- System Parameters
- Mission Data
- Training Methodology
- Peer System Input

Uncontrollable:
- Contact Signature
- Unknown Threat Tactics
- Weather
- Environmental

Intended:
- Threat Classification
- Threat Prioritized
- Mobilization of Kinetic Subsystem
- Automated Engagement of Threat
- Threat Elimination
- Sensor Data
- Communication with Command and Control
- BDA

By-Products:
- Unintended Casualties
- “Stray” Signals
- Impact to Ecosystem
Conduct AUWS Operations

1.1 Provide Structure

1.2 Provide Power
 - 1.2.1 Receive Power
 - 1.2.2 Store Power
 - 1.2.3 Manage Power
 - 1.2.4 Distribute Power
 - 1.2.4.1 Re-allocate Power
 - 1.2.4.2 Maintain Allocation
 - 1.2.5 Generate Power
 - 1.2.5.1 Conduct Recharge
 - 1.2.5.2 Omit Recharge

1.3 Perform C3
 - 1.3.1 Command
 - 1.3.1.1 Receive Order
 - 1.3.1.2 Process Status
 - 1.3.1.2.1 Receive Compon...
 - 1.3.1.2.2 Analyze Compon...
 - 1.3.1.3 Process ISR Data
 - 1.3.1.3.1 Receive ISR Data
 - 1.3.1.3.2 Analyze ISR Data
 - 1.3.1.3.3 Develop Environ...
 - 1.3.1.3.4 Develop Tactical Picture
 - 1.3.1.4 Analyze Order
 - 1.3.1.5 Execute Order
 - 1.3.2 Control
 - 1.3.2.1 Operate Autonomously
 - 1.3.2.2 Operate Semi-aut...
 - 1.3.2.3 Operate via Rem...
 - 1.3.3 Communicate
 - 1.3.3.1 Receive Communications
 - 1.3.3.2 Distribute Data
 - 1.3.3.3 Transmit Data Externally
 - 1.3.3.4 Transmit Data Internally

1.4 Maneuver
 - 1.4.1 Deploy
 - 1.4.1.1 Deploy from Surface Asset
 - 1.4.1.2 Deploy from Shore
 - 1.4.1.3 Deploy from Air
 - 1.4.2 Patrol
 - 1.4.2.1 Loiter
 - 1.4.2.2 Rove
 - 1.4.2.3 Sprint
 - 1.4.2.4 Transit
 - 1.4.3 Navigate
 - 1.4.3.1 Establish Location
 - 1.4.3.2 Propel
 - 1.4.3.3 Steer
 - 1.4.4 Recover
 - 1.4.4.1 Recover via Sub...
 - 1.4.4.2 Recover via Surface Asset
 - 1.4.4.3 Scuttle

1.5 Perform ISR
 - 1.5.1 Search
 - 1.5.2 Detect
 - 1.5.3 Track
 - 1.5.4 Classify
 - 1.5.5 Collect Intelligence
 - 1.5.5.1 Collect ACINT
 - 1.5.5.2 Collect COMINT
 - 1.5.5.3 Collect SIGINT
 - 1.5.5.4 Collect ELINT
 - 1.5.5.5 Collect EO/IR Data

1.6 Prosecute
 - 1.6.1 Monitor
 - 1.6.2 Deter
 - 1.6.3 Engage
 - 1.6.3.1 Employ Non-Leth...
 - 1.6.3.2 Employ Lethal Measures

1.7 Provide OPSEC
 - 1.7.1 Minimize Risk of Detection
 - 1.7.1.1 Provide EMCON
 - 1.7.1.2 Change Operation...
 - 1.7.2 Minimize Risk of ...
 - 1.7.2.1 Conduct Evasive Action
 - 1.7.2.2 Self-Neutralize
• 3 elements, 7-8 variants
 • Over 1 billion possibilities

• Eliminated infeasible, least promising variants
 • Warfare Innovation Workshop
 • 33,000 possibilities

• Made operational assumptions
 • 48 possibilities

• Work groups
 • 7 preliminary concepts

• Scoring and Screening
 • 4 concepts selected
• Used as a validation tool
 • Goal: adequately cover the design space

• Critical elements (Factors)
 • Weapons, sensors, and communicators

• Levels
 • Large/small
 • Centralized/distributed
 • Smart/dumb
 • Mobile/stationary
 • Combined/separate

• Led to a change from Swarm to LD-UUV
Section 4
Design Concept Overview
V-CAP
LD-UUV
Glider
Squid
Twin torpedo-shaped autonomous UUVs

Power
High-capacity Battery supplemented with wave-motion recharge unit

Mobility
Hybrid Electric/OTTO fuel propulsor

Communications
LOS RF, Iridium, and Acoustic modem (internal)

Sensors
Acoustic and EO sensors Deployable distributed sensor nodes

Armament
2x mini-torpedoes per Killer unit
V-CAP Deployment
V-CAP Employment
V-CAP Recovery
Large Diameter autonomous undersea payload delivery and engagement UUV

Power
High-capacity Battery

Mobility
Electric-drive propulsor

Communications
LOS RF, Iridium, and Acoustic modem (internal)

Sensors
Acoustic and EO sensors
Deployable distributed paired sensor nodes

Armament
4x lightweight torpedoes
LD-UUV Deployment
LD-UUV Employment
Networked Autonomous high-endurance UUVs

Power
Fuel cell with supplemental solar cell recharge

Mobility
Adjustable ballast and control surfaces with OTTO-fueled terminal homing propulsor drive

Communications
LOS RF, Iridium, and acoustic modem (internal)

Sensors
Passive sonar

Armament
10 kg HE shaped charge
Glider Deployment
Distributed network of stationary weapons and comms nodes, each with onboard sensors

Power
Non-rechargeable batteries

Mobility
N/A

Communications
LOS RF and Iridium (external) and acoustic modem (internal)

Sensors
Passive sonar mounted to Weapons and Comms nodes

Armament
Multiple 1 kg HE sub-munitions
Squid Employment
- Expendable design

- Disarm and Self-neutralize on command or via timer

Squid Recovery

High Volume of Units + No Internal Propulsion = Recovery not Feasible
Section 5
Analysis of Alternatives
Performance
Cost
Risk
AoA Methodology

TRACEABILITY

Recommended Alternative(s)
- Cost Analysis
- Risk Analysis
- Performance Analysis (OMOE)
- Factor Weighting

QFD

Functional Analysis
- AHP
- MOE
- Non-Stochastic Analysis
- M&S

Needs
- Stakeholder Preferences
- Quantitative Analysis
- Qualitative Analysis
Non-Stochastic Analyses

• MOE: Capability to Operate for a Minimum of 30 Days

<table>
<thead>
<tr>
<th>Concept</th>
<th>Endurance in Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-CAP</td>
<td>123</td>
</tr>
<tr>
<td>LD-UUV</td>
<td>126</td>
</tr>
<tr>
<td>GLIDER</td>
<td>987</td>
</tr>
<tr>
<td>SQUID</td>
<td>16</td>
</tr>
</tbody>
</table>

• MOE: Capability for Deployment from Current and Future Platforms

<table>
<thead>
<tr>
<th>Concept</th>
<th>Capability Score (1-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-CAP</td>
<td>2.5</td>
</tr>
<tr>
<td>LD-UUV</td>
<td>1.5</td>
</tr>
<tr>
<td>GLIDER</td>
<td>1.0</td>
</tr>
<tr>
<td>SQUID</td>
<td>1.0</td>
</tr>
</tbody>
</table>

• MOE: Capability for Recovery by Current and Future Platforms

<table>
<thead>
<tr>
<th>Concept</th>
<th>Capability Score (0-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-CAP</td>
<td>3.0</td>
</tr>
<tr>
<td>LD-UUV</td>
<td>1.5</td>
</tr>
<tr>
<td>GLIDER</td>
<td>2.0</td>
</tr>
<tr>
<td>SQUID</td>
<td>0.0</td>
</tr>
</tbody>
</table>

• MOE: Capability to Avoid Detection

<table>
<thead>
<tr>
<th>Concept</th>
<th>Capability Score (0-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-CAP</td>
<td>1.0</td>
</tr>
<tr>
<td>LD-UUV</td>
<td>1.0</td>
</tr>
<tr>
<td>GLIDER</td>
<td>0.25</td>
</tr>
<tr>
<td>SQUID</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Neutral/Friendly Surface Vessel
Threat Surface Vessel
Enemy Submarine

Environmental Characteristics
- Sea State: 2-3
- Winds: <30kts
- Currents: <5kts
- Depth: 300 ft
- Bottom Type: Mud, Sand

Traffic Characteristics
- Vessel Type: Various (merchants, tugs, fishing boats, small and large naval ships, and submarines)
- Average Speed: 15 kts
- Arrival Rate: 7 ships/hr
- Threat Frequency: 5%
- Position: Uniformly Distributed on Long Axis
- Ambient Noise: Heavy Traffic in Shallow Water
4 Killers with 2 CRAW torpedoes each, 1 Hunter with 8 sensor nodes

- Sensor Range: 2.7 nm
- Comms Range: 1.6 nm
- Kill Range: 3000 yds
- Hunter serves as gateway
- Sensor Nodes report all contacts and relay all messages
1 LD-UUV, 16 sensor nodes, 4 Mk-50 torpedoes

- Sensor Range: 2.0 nm
- Comms Range: 1.2 nm
- Kill Range: > 10 nm
- Cable: 1000 yds (8 pairs)
- At least 2 nodes required for classification
- Nodes “decide” which contacts to report (group based)
- UUV serves as gateway
17 Gliders

- Sensor Range: 2.7 nm
- Comms Range: 1.6 nm
- Speed: 2 kts
- Lateral Intercept Range: 0.55 nm (from Approaching Target Model)
- Coordinated Barrier Search (1.43 nm segments)
- Middle Gliders primarily for comms relay
- Gliders “decide” which contacts to report
- Gliders surface for external communications
SQUID Model

130 sensor/weapon nodes, 1 communications gateway

- Sensor Range: 1.35 nm
- Comms Range: 0.8 nm
- Kill Range: 50 yds
- Squid nodes randomly placed (e.g. artillery, air drop)
- Nodes must have path to gateway to be “in network”
- Must be in network to report contacts and engage threats
- 126 nodes in network on avg.
- Each node determines shortest path to Gateway
- Nodes report all contacts and relay all messages
M&S Results

<table>
<thead>
<tr>
<th>Sensor Profile</th>
<th>Avg TTC (min)</th>
<th>P_d</th>
<th>P_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glider</td>
<td>13.3-15.0</td>
<td>0.74-0.75</td>
<td>0.16-0.22</td>
</tr>
<tr>
<td>LD-UUV</td>
<td>2.9-3.1</td>
<td>0.80-0.81</td>
<td>0.33-0.43</td>
</tr>
<tr>
<td>Squid</td>
<td>3.5-3.7</td>
<td>0.97-0.99</td>
<td>0.07-0.09</td>
</tr>
<tr>
<td>V-CAP</td>
<td>4.5-4.7</td>
<td>0.80-0.82</td>
<td>0.54-0.65</td>
</tr>
</tbody>
</table>

Sensor Profile

- **Probability of Detection**
- **Range of CPA**
Analytic Hierarchy Process

Need Area Weighting

<table>
<thead>
<tr>
<th>Need Area</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrimination between Threats & Non Threats</td>
<td>0.151</td>
</tr>
<tr>
<td>Avoid Detection</td>
<td>0.066</td>
</tr>
<tr>
<td>Achieve Adjustable Autonomy</td>
<td>0.031</td>
</tr>
<tr>
<td>Maintain Persistent Forward Presence</td>
<td>0.184</td>
</tr>
<tr>
<td>Engage Manned and Unmanned Assets</td>
<td>0.266</td>
</tr>
<tr>
<td>Provide Operational Picture</td>
<td>0.273</td>
</tr>
<tr>
<td>Be Platform Independent</td>
<td>0.029</td>
</tr>
</tbody>
</table>
Quality Functional Deployment

MOE Weighting

- Capability to Operate for Minimum of 30 Days: 0.162
- Average Message Completion Time: 0.221
- Capability for Deployment by both Current and Future Platforms: 0.082
- Capability for Recovery by both Contemporary and Future Platforms: 0.022
- Probability of Detection: 0.224
- Probability of Kill: 0.167
- Capability to Avoid Detection: 0.122
Performance Analysis Results

Non-Stochastic Analysis

QFD MOE Weighting

M&S

Performance Analysis Results

<table>
<thead>
<tr>
<th></th>
<th>V-CAP</th>
<th>LD-UUV</th>
<th>Glider</th>
<th>Squid</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMOE Score</td>
<td>0.705</td>
<td>0.656</td>
<td>0.406</td>
<td>0.436</td>
</tr>
</tbody>
</table>
20-yr Rough Cost Estimate

- **RDT&E Costs** - excluded
- **Production Costs**
 - Based on Component Costs
- **O&S Costs**
 - Consumables – Fuel, Warheads, Replacements
 - Personnel (excluded)
- **Disposal Costs** - excluded

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Cost (FY2011$M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-CAP</td>
<td>359</td>
</tr>
<tr>
<td>LD-UUV</td>
<td>690</td>
</tr>
<tr>
<td>GLIDER</td>
<td>75</td>
</tr>
<tr>
<td>SQUID</td>
<td>2418</td>
</tr>
</tbody>
</table>

- **V-CAP**: Good balance
- **LD-UUV**: High per-unit cost
- **GLIDER**: Low procurement & consumable cost
- **SQUID**: High cost due to large number of expendables
Risk Analysis Results

Overall Risk Factor Analysis

Consequence vs. Likelihood (Probability of Failure)

Risk Factor by Concept

Risk Factor for V-CAP, LD-UUV, GLIDER, and SQUID

Technical Risk, Schedule Risk, Cost Risk
Options for the given scenario

- Mines
- Surface Combatants
- Submarines

Superior performance

Cost is debatable

- Assume AUWS provides no LCC savings!

Operational risk is unacceptable

- $2B strategic asset and hundreds of lives at risk
- Even one SSN is “overkill”

AUWS can be scaled to balance risk with performance
Section 6

Concept Recommendations
Primary: V-CAP
Secondary: LD-UUV
Hybrid
Primary Concept: V-CAP

Pros:
- Best P_k
- Good P_d
- Ease of Deployment & Recovery
- Follow-on Salvo
- Cost

Cons:
- Slower Comms
- Shorter Endurance
Secondary Concept: LD-UUV

Pros:
• Rapid Comms
• Better Endurance

Cons:
• Limited Deployability
• Limited Recoverability
• Limited Salvo
• Cost
Hybrid Recommendation

- Double Deployment
- Improved P_d, P_k
- LD-UUV Paired Nodes
- Improved Comms
Section 7
Project Insights
Project Recommendations
Flexibility
- Network Integration
- Platform Integration
- Command & Control

Scalability
- Balance required w/ Cost & Performance
- Trade-off w/ Flexibility (Physical size of units)
- Unlike Current Systems

Tailorability
- Mission-reconfigurable modular design
- Optimal redundancy (heterogeneous vs. homogenous)
- Separation & distribution yield tactical advantage
AUWS Tradespace

- USN Mines
- Squid
- Glider
- LD-UUV
- V-CAP
- SSN

This is the AUWS goal!
Recommendations

• Near Term (FYDP 2012-2016)
 • Continue detailed analysis of superior AUWS concepts
 • Review and update doctrine (ROE, tactics, training, etc.)
 • Use this analysis to help ONR define Science and Technology Gap
 • ONR assigns Future Naval Capabilities Manager for AUWS concepts R&D
 • Get prototypes *of any kind* in the hands of sailors!

• Mid Term (FYDP 2016-2020)
 • Develop Initial Capability Document based on this analysis
 • Initiate AUWS Program of Record based on current best assessment of capability gap
 • Do not wait for technology to advance to optimal levels

• Far Term (FYDP 2020 →)
 • Maintain a goal of achieving AUWS full operational capability by 2030
Section 8
Closing Remarks
The undersea battlespace of the future is a complex, dynamic environment that cannot be divided neatly along platform or community lines.

Advanced Undersea Warfare Systems are just one element of a comprehensive, unified approach to maintaining and enhancing USW dominance in the future.