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ABSTRACT 

With conventional weapons nearing their peak capability, the need to identify alternative 

war fighting solutions suggests a look at Directed Energy Weapons (DEWs). The goal is 

to change the means by which warfare is conducted to improve operational efficiencies 

and overall effectiveness. The Naval Postgraduate School Systems Engineering and 

Analysis (SEA-19B) Capstone project team examined how existing directed energy 

technologies can provide performance across multiple warfare area domains and mission 

subsets for the U.S. Navy. The aim was to identify and characterize the capability gaps 

with conventional weapons systems, produce a coherent vision of naval missions that 

incorporate DEWs, and generate a roadmap for a DEW fleet. By conducting a thorough 

Analysis of Alternatives based on system performance, integration, schedule, and cost, 

the project team identified that the Tactical Laser System (with a laser beam power of 10 

kW) provided the best overall capability to defend surface combatants, although none of 

the analyzed DEWs have the capability to replace a current conventional weapon.   The 

Active Denial System (microwave) provided a niche capability in the Anti-

Terrorism/Force Protection mission set. 
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EXECUTIVE SUMMARY 

With conventional weapons nearing their peak capability, the need to identify alternative 

war fighting solutions suggests a look at Directed Energy Weapons (DEWs). The goal is 

to change the means by which warfare is conducted to improve operational efficiencies 

and overall effectiveness. DEW technologies have been paralyzed by runaway budgets 

and suboptimal performance without the emergence of an operational system.   It is the 

purpose of this project to examine how mature directed energy technologies can provide 

the U.S. Government with a “return on investment” and “added value” in the near term.  

The Naval Postgraduate School Systems Engineering and Analysis Cohort 19 

Team B (SEA-19B) Capstone project team examined how existing directed energy 

technologies can provide performance across multiple warfare area domains and mission 

sub-sets for the U.S. Navy. The aim was to identify and characterize the capability gaps 

with current conventional weapons systems, produce a coherent vision of naval missions 

that incorporate DEWs, and generate a roadmap for a DEW equipped fleet. To 

accomplish this task, SEA-19B developed a custom metamodel using the Global 

Information Network Architecture (GINA) environment, adapted the Map Aware Non-

uniform Automata (MANA) simulation tool to simulate DEWs, and conducted a Monte 

Carlo simulation of multiple combinations of weapons and threats to be simulated in a 

single sequence of engagements. 

GINA is a software metamodeling environment that allows users to describe 

system of systems behavior semantically in lieu of coding software. This ability is 

achieved through a reflexive modeling paradigm that is self-describing and incorporates 

predefined relationship constructs which exist in the environment of project data. The 

flexibility through relationships provides a significant advantage over the conventional 

object orientation paradigm of software development by predefining a finite set of 

relationship types between objects that can be extrapolated to represent any relationship 

between objects of all types and kinds. 
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The reflexive nature of the GINA semantic descriptions and the ability of GINA 

to leverage inherent relationship constructs in GINA allowed SEA-19B to build an 

engagement-centric model, that described relationships between engagements, threats, 

weapons, environments, weapon platforms, warfare areas, and missions. The GINA 

model (herein referred to as the “model”) was fully traceable, built on an iterative 

mapping method that linked the Navy’s Universal Naval Task List (UNTL) to Required 

Operational Capabilities (ROC) and Critical Capabilities Requirements (CCRs), and 

representative of SEA-19B’s tailored Systems Engineering process. The consequence of 

building the GINA model was that SEA-19B gained the ability to conduct cross-domain 

comparisons of weapon technologies in the context of engagements, missions, warfare 

areas, and environments in technology agnostic terms. The result was a means to 

construct and make a quantitatively and qualitatively objective comparison of DEWs and 

conventional weapons with a custom user interface to view and navigate the model data 

and results. External statistical analysis was then conducted using Minitab 16 to provide 

meaningful graphs of the raw data, modeled relationships, and complex object 

interactions in order to draw conclusions about DEW performance in various contexts. 

The GINA model was deterministic in nature, using physics-based equations 

implemented through external calculation software, written by SEA-19B with the 

Microsoft .NET Framework. Integration of these external software programs into GINA 

was straightforward via the custom GINA model content manager built by Big Kahuna 

Technologies, LLC (the developer of GINA). Because of the GINA model’s 

deterministic nature, two stochastic simulations were used to gain further insights about 

potential concepts of operations (CONOPS) for DEW employment, DEW effects on 

shipboard survivability, and weapon combinations in multithreat environments.  

SEA-19B developed a method of translating nominal average times for Type I 

Engagements (traditional ‘hard kill’ engagements) at static ranges for targets into 

probability of kill for a static range using MANA. MANA is an agent-based simulation 

tool developed by the New Zealand Defense Force originally for ground combat 

simulations. MANA has since been adapted to nearly every other type of conventional 
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warfare, but to the knowledge of SEA-19B and the NPS SEED Center not for DEW 

applications that need to accumulate energy to show damage effects as the DE beam 

tracks moving targets. MANA was then able to use that data to interpolate between a set 

of static ranges and probabilistic data to simulate DEW engagements, using a system of 

“life points” and “damage memory,” in which energy gets accumulated on the target in 

discrete packets based on a given range and the original time for a Type I Engagement at 

that range. Using this method of discrete packet damage accumulation on the target, we 

simulated a DEW engagement. These simulations provided insights into potential 

CONOPS for DEW employment on a surface combatant and illustrated the value of 

multiple platforms applying DE beams for defense against swarms and “hardened,” 

moving targets. 

SEA-19B built a Monte Carlo simulation in Excel to accommodate multiple 

weapons per agent in a straightforward manner. Whereas, MANA was not easily 

configured to handle multiple combinations of weapons and threats to be simulated in a 

single sequence of engagements based on the same physics principles behind the GINA 

model, the Monte Carlo simulation was used for the multiple combinations of weapons 

and threats. The Monte Carlo simulation allowed SEA-19B to gain insights into the 

interactions between multiple weapon systems and the effect of DEWs on shipboard 

survivability. 

In addition to modeling and simulation, SEA-19B conducted a cost analysis of the 

identified alternatives, as well as evaluated the shipboard integration aspects of each 

system type with respect to the DDG-51 class destroyer platform. Instead of conducting a 

total life cycle cost calculation, the objective was to determine and estimate the 

integration costs, as well as to ascertain the implementation cost of select directed energy 

technologies. After determining the baseline costs, the scope of the project cost estimate 

work was decomposed into smaller discrete components, whereby all required work 

breakdown structure (WBS) sub-elements were identified. For each system, the cost 

estimate was calculated by analogy (with like-kind systems), and based on a cost factors 

approach (a baseline costing figure is decomposed and reconciled with known aggregate 
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project data that is applicable to the task at hand). In terms of shipboard integration, the 

assessment examined primarily size, weight, and power (SWaP) considerations. Weapons 

coverage and the level of integration with current combat systems were also examined 

but played a smaller role than the SWaP considerations. 

By conducting a thorough Analysis of Alternatives based on multiple stakeholder 

perspectives with respect to system performance, integration, schedule, and cost, the 

project team identified that the Tactical LASER System (with a LASER beam power of 

10 kW operating at 1.6 micron wavelength) provided the best overall combination of (1) 

capability to defend surface combatants in the near term and (2) cost/schedule to 

purchase and integrate the system although none of the analyzed DEWs have the 

capability to replace a current conventional weapon.   Additionally, the Active Denial 

System (operating at 95 GHz radiation) was identified as the best option when looking at 

Cost as an Independent Variable (CAIV). The Active Denial System (100 kW 

microwave) provided a niche capability in the Anti-Terrorism/Force Protection (AT/FP) 

mission set which currently lacks a non-lethal standoff weapon.  
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I. INTRODUCTION 

Even today the mere concept of directed energy weapons (DEW) seems cutting 

edge and carries with it a bit of a science fiction undertone. However, in reality the idea is 

not new and has been the subject of research for quite some time. Even before the time of 

Christ, Archimedes experimented with the premise of directed energy. Through an array 

of mirrors he concentrated sunlight in an attempt to set ablaze the ships of the invading 

Roman fleet. It is justifiable to credit him with constructing the first primitive “death ray” 

in 212 BC during the siege of Syracuse (MIT 2.009ers 2005). More recently, Nikola 

Tesla spent nearly 30 years working with charged particle beams, studying their 

characteristics of projection through open air. He first published his work on directed 

energy in 1934 (Tesla Invents Peace Ray 2011). Years later, during the height of the Cold 

War, the Soviet Union conducted experiments on the effects of high intensity 

electromagnetic (EM) radiation on people at least as early as 1973. The Soviets 

determined that a relatively small amount of power at microwave frequencies was 

required to make people physically ill by exposure to EM radiation (Mcree 1980). In the 

roughly 40 years since, countless research and development (R&D) efforts related to 

DEW have been conducted by various nations around the globe. As a whole, the 

combined efforts of various programs over a span of 30 years have resulted in U.S. 

government, as well as private, spending totaling in the billions. To date, no resulting 

“program of record” has been initiated in the United States. Many promising concepts 

have been evaluated and their respective prototypes built; however, the idea of applying 

directed energy to warfare seems to have achieved little traction in proportion to the 

money spent. 

It should be noted that throughout this report, the terms DE and DEW are both 

heavily utilized. For the sake of clarification, DE refers to the entire gamut of 

technologies that makeup Directed Energy from beams such as LASERs and plasma 

weapons to area effect technologies such as high-powered microwaves and 

electromagnetic pulse bombs, to technologies that appear more like conventional 

weapons like the rail gun. When DEW is used, it refers to a specific Directed Energy 
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Weapon system like the LASER Weapon System (LaWS) or Active Denial System 

(ADS). 

A. PROJECT TEAM 

The Systems Engineering Analysis (SEA) Cohort 19 Team B (SEA-19B) project 

team was comprised of 23 officers and defense professionals from the United States, 

Taiwan, Israel, and Singapore. The varied backgrounds, cultures, and mindsets of our 

team were essential to the overall success of the project. The Surface Warfare Officers 

composed the majority of the SEA-19B members, all having similar professional 

experiences. The addition of personnel from Taiwan, Israel, and Singapore from different 

branches of the military and civilian professions incorporated viewpoints molded by 

unique differences in professional and cultural experiences. These individual viewpoints 

contributed an equally valued approach to achieving our objectives and goals throughout 

the project.   

The team was organized into various roles that included Project Leader, Lead 

Systems Engineer (SE), Speaker, Modeling Lead, Temasek Defence Systems Institute 

(TDSI) Lead, and Team Engineers. The Project Leader worked on the integration task 

and was responsible for the overall management of the team (which included scheduling 

team meetings, monitoring the progress of the project, serving as a liaison between the 

team and faculty advisors, and allocating assignments). The Lead SE was responsible for 

managing the overall SE process of the project and served as the chief editor of this thesis 

paper. The Speaker had the distinction of presenting all briefs in addition to being 

knowledgeable of all facets of the project and participating in all tasks spanning the SE 

portions to modeling. The Modeling Lead was responsible for managing the 

development, execution, and analysis of all computer models and simulations of the 

project, as well as heading the group of engineers who built the four models and two 

simulations. The TDSI Lead had duties that paralleled the Project Leader in terms of 

managing the TDSI students and their assignments for the various Team tasks. Team 

Engineers worked on all areas of the project from SE portions to Modeling. Team 

Engineer duties included research, writing, editing, conducting stakeholder interviews, 

and accomplishing tasks as assigned by the Project Leader, Lead SE, or TDSI Lead.  
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Table 1 contains a list of the team members, their roles on the project, and brief 

professional backgrounds with the number of years’ experience in that area: 

Table 1. Capstone Project Team 

 

Last First Rank Title Curriculum Community/Specialty

Shene Richard LT Project Leader SEA
Surface Warfare-Gunnery Officer (1 Year) Auxiliaries 

Officer (1 Year) Riverine Detachment Officer-in-

deLongpre Jeffrey LT Lead SE SEA
Surface Warfare-Main Propulsion Officer (3 Years), 

Training Officer (2 Years) Awesome (29 Years)

Ciullo Daniel LT Modeling Lead SEA Surface Warfare-First Lieutenat (2 Years) Navigator (2 

NowakowskiJakub LT Speaker SEA

Surface Warfare-Damage Control Assistant (2 Years), 

Training Officer (2 Years); Nuclear Machinist Mate / 

Engineering Laboratory Technician (7 Years)

Cheng Po-yu CPT Team Engineer SEA Simulator Maintenance Engineer (4 years)

White Rosevelt LT Team Engineer SEA

Surface Warfare -Gunnery Officer (1 Year), Electronic 

Warfare Officer (6 Months), Repair Division Officer (1 

Year) Training Officer (2 Years)

McArthur Sim LTC Team Engineer SEA
Army Officer Field Artillery (11 years), Operations 

Research Systems Analysis (5 years)

Taylor Earvin LT Team Engineer SEA
Surface Warfare-Electrical Officer (2 Years) N4 

Assistant (2 Years)

Teo Harn Chin TDSI Lead
Systems 

Engineering

Singapore (Defense Industry)

Senior Systems Engineer and CAPM (PMI) with 

experience in MALE UAV projects (4 years)

Heng Yinghui Team Engineer ECE Comms

Singapore (Defence Science and Technology Agency)

Communications Systems Engineering and Project 

Manager

Wong Chia Sern Team Engineer ECE Networks
Singapore (Defence Science and Technology Agency)

Networking Engineer and Project Manager

Neo Yong Shern ME5 Team Engineer
Guided 

Weapons

Republic of Singapore Airforce

Weapons Systems Engineer 

Choon Junwei Team Engineer
Guided 

Weapons

Singapore (Defense Industry)

Guidance, Navigation, and Controls Engineer 

Wong Wai Keat CPT Team Engineer Info Assurance
Republic of Singapore Army

Signal Officer 

Phua Yee Ling Team Engineer Info Assurance
Singapore (Defense Industry)

Senior Software Engineer

Lee Hsu Ann Daryl Team Engineer
Secured 

Comms

Singapore (Defense Industry)

Systems Engineer

Sheo Boon Chew Winson ME5 Team Engineer
Systems 

Engineering

Republic of Singapore Army

Logistics & Maintenance Support, Policy and  

Implementation

Soh Sze Shiang ME5 Team Engineer
Systems 

Engineering

Republic of Singapore Army

Artillery and personnel Trained

Personnel Training, Ops and Capability Development

Lim Zhifeng CPT Team Engineer
Systems 

Engineering

Republic of Singapore Army

Infantry Officer

Lee Guan Hock Team Engineer
Systems 

Engineering

Singapore (Defense Industry)

Assistant Principal Engineer in design, commissioning, 

and testing of shipboard systems 

Leo Valentine Team Engineer
Systems 

Engineering

Singapore (Defense Industry)

Asst Manager in design and development in land 

systems (3 years)

Chow Wen Chong Julian Team Engineer
Systems 

Engineering

Singapore (Defence Science and Technology Agency) 

Senior Engineer C4I-Development in Navy C2 Projects 

C2 S/W Developer and Project Manager

Zlatsin Philip CPT Team Engineer Ops Research
Israeli Air Force

Analyst
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B. TASKING STATEMENT 

In recent conflicts, the United States military has relied on superior technology to 

compensate for superior numbers or other advantages of our enemies. The ability for 

insurgents in Iraq and Afghanistan to blend in with the noncombatant population is one 

example of an advantage. Technological advancement in offensive naval weapons has 

outpaced advancement in defensive naval systems, as shown by the great advances to 

strike capability in the form of Tomahawks and experimentation in the railgun and the 

extended range guided munition (ERGM), but with little traction on increasing armor, 

reducing radar cross section, or defensive weapons (some notable exceptions are standard 

missiles and the Close-In Weapons System (CIWS)). It would appear the U.S. Navy has 

long held onto the adage of “A sudden powerful transition to the offensive—the flashing 

sword of vengeance—is the greatest moment for the defense” (Clausewitz 1976, 370) or 

more commonly heard as ‘the best defense is a good offense.’  The criticality of offensive 

power has been characterized as well in the Hughes’ Salvo Equation (Equation 1) which 

relates the number of ships put out of action by their tactics, number, circumstances, and 

power (both offensive and defensive).  

   
      

  
 

Equation 1. Number of force B ships put out of action by force A 

Where    is the number of force B ships put out of action,   is the striking power 

of each force A ship, A is the number of force A ships firing,    is the defensive power of 

each force B ship, B is the number of force B ships present, and    is the staying power 

of each force B ship (Hughes 2000, 268). 

There is an analogous equation for the change in force A. Specifically for naval 

combat, the force which gets the first strike has a tremendous advantage as the opposing 

force will likely be damaged prior to its initial salvo in return. Using this equation, there 

are four interpretations that will result in a reduction in the number of casualties to 

friendly ships (force B). 

 Shoot first. If friendly forces fire first, the enemy likely would not be able 

to return fire, thereby reducing friendly casualties. 
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 Reduce  . Reducing the effectiveness of enemy weapons would reduce 

the number of casualties, but is not something which is realistically 

achievable. 

 Increase   . Increasing the survivability of friendly ships would reduce the 

number of casualties through means of increased armor or improved 

damage control systems. Armor although relatively inexpensive to 

implement, increases operational costs by dramatically increasing 

operational costs (specifically fuel). Improving damage control systems 

would help as well, but a missile could still strike a crucial point. 

 Increase   . Increasing the defensive power of friendly ships would reduce 

the number of missile hits, thereby reducing casualties. Defensive 

weapons like Standard Missiles (SM) or the Close-In Weapons System 

(CIWS) currently fulfill this task. 

In any conflict short of total war, U.S. commanders generally do not want to 

engage a ship which may or may not be hostile, so allowing the enemy to take the first 

shot has nearly become a necessity (or may be so depending on the Rules of Engagement 

(RoE) for a specific area or situation). The possibility of taking the first shot coupled with 

the lethality of modern anti-ship cruise missiles (ASCMs), having an inexpensive, 

reliable, and effective defense against the ASCM threat would be a welcome addition by 

improving the survivability of ships. DE has the potential to provide this defense to U.S. 

forces by augmenting or potentially replacing current systems such as the SM family and 

CIWS, thereby increasing   . SEA-19B was tasked with exploring the feasibility of 

deploying an operational DEW on a U.S. Navy ship in the next four years and to 

determine if there is a comparative or augmentation advantage over current conventional 

systems. 

The tasking for the capstone project of SEA-19B was directed by OPNAV N9I, 

the Systems Engineering Analysis curriculum sponsor, through Captain (Retired) Jim 

Eagle, the Systems Engineering Analysis curriculum chairman, and Professor Gary 

Langford, the capstone project faculty advisor. The tasking for SEA-19B was to: 

Design a family of systems or a system of systems of Directed Energy 

Weapons (DEW) that can be integrated with manned and unmanned forces 

to address a broad spectrum of missions commensurate with the needs of 

the U.S. Navy. Consider current fleet structure and funded programs as the 

baseline system of systems to conduct current missions. Develop the 

concept(s) of operations for the range of current and future missions that 

incorporate DEW, then develop alternative fleet architectures for 
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platforms, ships, manning, command and control, communications, 

logistics, and operational procedures to advantage DEW capabilities. 

Consider the potential technology gaps for both DEW and integrating 

DEW into Naval forces; determine a more streamlined architecture for the 

combined DEW – Navy forces; and identify and characterize the “gap” 

fillers. Iterate the task, as approved by your primary faculty advisor. 

Produce a coherent vision of U.S. Navy missions that incorporate DEW; 

identify the requirements for support and collaboration with coalition 

forces; and discuss the interoperability issues with these collaborative 

efforts. Provide a roadmap of DEW to improve the effectiveness for future 

Navy ships. (Langford, SEA-19B Directed Energy Weapons 2012) 

The key points in this tasking statement are to: 

 Address a broad spectrum of missions commensurate with the needs of the 

U.S. Navy 

 Consider current fleet structure and funded programs 

 Develop the concept(s) of operations  

 Consider the potential technology gaps for both DEW and integrating 

DEW into current and future Naval forces 

 Identify and characterize the gap fillers 

 Produce a coherent vision of U.S. Navy missions that incorporate DEW 

 Provide a roadmap of DEW to improve the effectiveness for future Navy 

ships 

This statement was further refined by the project team with assistance from our 

project faculty advisor, Dr. Gary Langford. These refinements, incorporating external 

restraints and internal constraints, are further discussed in the next section. 

C. PROBLEM DEVELOPMENT 

The problem statement developed by SEA-19B to address the tasking statement 

was driven by two factors. The first is any potential solution must be fielded in the short 

term. While short term was not a defined period of time, the project team specified the 

period to four years. This timeframe capitalized on current DE technology while still 

allowing some time for improvements and modifications prior to deployment. The second 

factor supported the four year period in that only DEW technologies with operationally 

tested prototypes were considered. Testing was required in real-world environments 

against possible targets, vice a laboratory setting. A technology that has not advanced 
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beyond the laboratory stage would not be ready to be fielded in four years due to 

inevitable “improvements” coupled with the requirement for extensive operational test 

and evaluation. Additionally, the funding required for system and platform integration as 

part of the progression from a laboratory to an operational testing environment is 

considerable adding typically 60% of the total costs (National Institute of Standards & 

Technology 2002). The Airborne LASER (ABL) and Tactical High-Energy LASER 

(THEL) are two examples of the time and funding required to make an operational (or at 

least ready to be fielded for additional testing) DEW. The ABL program started in 1996, 

had the prototype fully constructed and ready to fly in 2003, with testing conducted from 

2008 to 2010 (FAS 2010). For seven aircraft, including all development and testing, the 

total cost was expected to be 1.6 billion dollars in fiscal year 2005 dollars (Lockridge 

2001). Similarly, the THEL program started in 1996, was ready for testing in 1998, with 

several tests conducted starting in 2002 (Pike 2011), at a cost of between 150 to 200 

million dollars (Sirak 1999). The two driving factors of conforming to a four year 

timeframe and using operationally tested prototypes shaped the problem statement for the 

SEA-19B Capstone Project. 

1. Problem Statement 

In order to focus the work of the project team, it was necessary to identify the 

problems facing the U.S. Navy with respect to DEW and produce a clear and concise 

problem statement to guide the team. Among the problems facing the Navy are that 

conventional weapons are nearing their peak technical capability, DEW technologies 

have been paralyzed by runaway budgets and sub optimal performance without the 

emergence of an operational system, as well as the fact that DEWs are currently being 

pursued by other countries throughout the world.   

Conventional gun systems have not changed significantly since World War II. 

They have become smaller with less range but have greater accuracy and a higher rate of 

fire. The largest guns on current U.S. ships are 5 inch guns with a range of 13 nautical 

miles (United States Navy 2012) compared to the 16 inch guns on the Iowa Class 

battleships with a range of nearly 21 nautical miles (Fischer, et al. 2006). Several 
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programs have attempted to improve conventional guns further, specifically the Extended 

Range Guided Munition (ERGM) but that program failed to field an operational round.  

Missile systems have similarly reached their pinnacle. Missiles can be made faster 

than bullets or more agile, but are still be limited by the laws of physics and properties of 

the materials used in the manufacture of the missile (not to mention engineering and 

manufacturing limitations). Eventually, using a missile will be a question of economics as 

it is not financially sustainable to engage a relatively inexpensive rocket propelled 

grenade (RPG) with a multimillion dollar missile (although the need to defend the 

potentially multi-billion dollar unit from the RPG does exist). The Standard Missile 

family continues to be modified and improved from the original SM-1MR put into 

service in 1967. These missiles have been the main air defense weapon on surface ships 

since their development and are now used for ballistic missile defense and anti-satellite 

missions in addition to the traditional air defense mission. The newest Standard Missile, 

SM-6, has a unit cost of 3.64 million dollars in fiscal year 2012 dollars (Oestergaard 

2012).  

DEWs offer advantages over conventional weapons by providing attack at the 

speed of light, precise targeting, rapid engagement of multiple targets, adjustable damage 

capacity, low operational cost, reduced logistic support, a nearly unlimited magazine, and 

wide area coverage for offensive and defensive purposes. DEW also seem to be at the 

forefront of the next revolution in military weapons (Deveci 2012). Unlike conventional 

kinetic energy weapons, DEWs are minimally affected by the effects of wind and gravity. 

Because the evolution of conventional weapons has essentially plateaued, there is the 

potential for our adversaries to close the capability gap and therefore pose a greater 

threat. The United States must pursue improved technologies to maintain the military 

edge that it has enjoyed and depended on over the years. 

Another problem with DEW is that they are expensive to research and develop. 

Sunk costs associated with current weapons and ways of thinking, bureaucratic 

inflexibility, and an inability to institutionally embrace disruptive change could stand in 

the way of the development and fielding of these highly promising weapons (McGrath, 

Directed Energy and Electric Weapons Systems (Serial 1) 2012). While these DEW 
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technologies offer tremendous promise, funding spread across multiple programs may 

threaten the emergence of those that may provide a return on investment of these sunk 

costs. Navy leadership must make cohesive decisions to focus funding during these 

budgetary constrained times into only those areas that will provide the greatest benefit. 

The project will seek out these areas and make recommendations to funnel future funding 

into producing effective weapons that provided added capability to the warfighter.   

The United States is not the only country pursuing DEWs. China, Russia, India, 

Iran, South Korea, France, Israel, and Germany all have made commitments to and 

technical progress in DEWs research and development programs (McGrath, Directed 

Energy and Electric Weapon Systems (DEEWS) Serial 3: China 2012). With these 

countries actively pursuing DEW technology, the United States may be at risk of 

suffering technological surprise form the very technologies it originally developed 

(McGrath, Directed Energy and Electric Weapons Systems (Serial 1) 2012). If the United 

States is going to continue their global military preeminence, it must continue to seek the 

military advantage offered by DEWs.  

A concise problem statement was formed considering the limitations for 

conventional weapon improvement, the military potential of DE, and the two 

aforementioned factors from the tasking statement. The problem is: 

Conventional weapons are nearing their peak technical capability. As a 

result, Directed Energy Weapons (DEWs) are the next logical step. In the 

past, DEW technologies have been paralyzed by runaway budgets and 

sub-optimal performance. Several countries are pursuing DEWs, therefore, 

it is important for the United States Navy to maintain the upper hand by 

continuing to research and develop these weapons. However, given the 

increasing budgetary restraints, U.S. Navy leadership must identify viable 

short-term DEW technologies that offer an immediate return on 

investment and the potential for continued development and improvement. 

DEWs offer the U.S. Navy an avenue to maintain a technological 

advantage to help defend maritime platforms. 

2. Scope 

For decades, research has been conducted on the feasibility of employing directed 

energy in the form of weaponry with hopes of achieving both the potential of “deep 

magazines,” as well as the prospect for enhanced “force continuum” options. However, 
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the challenges associated with weaponizing directed energy are numerous. They include 

overcoming atmospheric attenuation, power requirements beyond current shipboard 

generating and cooling limits, and R&D roadblocks such as beam director quality, energy 

storage materials (batteries), and cycle time. Since much of the DEW research is very 

broad in nature, and there are dozens of technologies with various maturity levels. It was 

necessary for the project team to limit the scope of the project to a manageable level. In 

the briefest of terms, the scope is to determine the requirements, the concept for 

operations, and characterize the fielding and operations of a DEW within the next four 

years. 

Like most aspects of the Systems Engineering (SE) Process, the project scope was 

molded through an iterative process that determined what aspects of DE would be 

included in the project, as well as those that would not be addressed. Based on initial 

tasking, we focused on the capability gap faced by unit commanders to address the fast 

paced nature of force protection scenarios that both limit the amount of time to make 

informed decisions, and determining the actual intent of a potential adversary. It was the 

intent of the project sponsor and the NPS faculty to provide an initial tasking that would 

focus on a specific warfare area that DEWs could potentially improve, thus reducing the 

overlap from the countless studies that have already been conducted of these weapons. 

The project team determined the scope of their research was too broad for the timeline of 

the project, and that Navy specific recommendations were not necessarily explored with 

adequate depth.  

Another feature common across much of the contemporary research is it focuses 

on what DE could be opposed to what it actually is. Therefore, we decided to focus on a 

short term perspective, and concentrate on only those technologies that have reached a 

relevant level of maturity. We achieve this short term perspective by closely examining 

only those systems that have a built and operationally tested prototype. Our goal is to 

offer added value to the warfare commander, as well as a return on investment by 

providing a net result for federal dollars already spent. By added value we mean that a 

chosen technology must offer a comparative advantage over what already exists, or that it 

can provide an additional capability to augment how current systems are employed. 

Instead of focusing on the potential capabilities of future DEWs, we were interested in 
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determining what, if anything, the existing DEW prototypes could accomplish in an 

operational environment in the near term. 

a. In Scope 

Since the project was scoped to fielding potential DEWs in the near term, 

it was necessary to define a notional timeline to guide the DEW from concept of 

operations to the validation of operational capability. Therefore, the following timeline 

was considered in selecting those technologies that would be selected for further analysis.   

 12 months to the development of concept of operations 

 Includes a platform specific integration plan, the co-uses, 

training, logistics, and support 

 24 months to the demonstration of operational utility 

 36 months to initial operational capability 

 48 months to validation of operational capability  

This compressed timeline was the driving force behind identifying only 

those technologies that could potentially be fielded relatively quickly. The project team 

conducted extensive background research through open source documents to identify the 

directed energy technologies that have achieved a Technology Readiness Level (TRL) of 

6 or higher, which represents a system or prototype that has been demonstrated in a 

relevant environment. A TRL of 7 represents a system that has been successfully tested in 

an operational environment. The minimum TRL 6 requirement was essential to ensure 

that the chosen technologies were able to meet the strict four year timeline. 

b. Out of Scope 

There are several limitations and constraints with respect to DEW that 

have influenced what has been scoped out of the project. The limitations of DEWs that 

were discovered during the background research assisted in further scoping the potential 

mission areas described. For example, DEWs were not assessed for their potential 

capability of supporting the Anti-Submarine Warfare (ASW) mission due to high 

attenuation of the electromagnetic spectrum in an underwater environment as shown in 

Figure 1 compared to the atmosphere shown in Figure 2. 
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Figure 1. Attenuation of electromagnetic radiation in sea water (after Harney, 

Combat Systems Volume 1 2004) 

 

Figure 2. Molecular absorption of the atmosphere (after Harney, Combat Systems 

Volume 1 2004) 
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Unlike some conventional weapons, DEWs are limited to line of sight 

(LOS) operations, thus over-the-horizon firing scenarios were not considered. Due to the 

design power characteristics of currently fielded DEW prototypes, the technologies 

designed to provide a Ballistic Missile Defense (BMD) capability were excluded. 

Similarly, we excluded the evaluation of space-based weapons, in this case largely due to 

limitations associated with LASER system optics. Through discussions with the project 

sponsor, the project focus was placed on beams not bombs, and therefore we did not 

consider Electromagnetic Pulse (EMP) bombs or any variant of this technology.   

There are also a number of constraints that have contributed to the scoping 

of the project. Since the project was a multi-national effort, the obtainment of classified 

or proprietary data for these systems fell outside the scope of the project. The project 

group found an acceptable level of open source data to carry out the project.  

From a political perspective, DEW technologies whose primary purpose is 

to blind, or were designed to cause suffering and/or superfluous injuries to enemy 

combatants were excluded to ensure compliance with Protocol IV of Convention on 

Certain Conventional Weapons of 1980 (International Committee of the Red Cross 

2012). In addition, our project assessment did not concern itself with the politics 

surrounding the use and/or employment of DEW in the field; however, due diligence will 

be given to ensure proposed solutions do not violate U.S. or international commitments 

and treaties. 

Due to the inherent size, power, cooling requirements, and limited 

implementation time of the DEW prototypes only surface combatants were considered 

with respect to systems integration. Since directed energy weapons operate LOS, all 

technologies were evaluated and assessed primarily on their ability to provide a defensive 

capability, and each technology’s offensive capability (as applicable) was not excluded 

from the analysis, but was given secondary consideration. 

We determined that several of the current ships in the fleet could 

potentially support directed energy weapons, however, by focusing on the mission areas 

of each platform we narrowed our focus to three platforms. We investigated Cruisers, 

Destroyers, and the Littoral Combat Ship. The Cruisers were scoped out of the project 
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because they are approaching the end of their life cycle amid talks to decommission those 

remaining in the fleet in the near term. The Littoral Combat Ship was scoped out of the 

project since we determined that any system which could operate on a DDG could also 

operate on a LCS. LCS has four 750 kW generators, two of which will be online at any 

given time for normal operations (Potts 2013). With 1500 kW of excess power generation 

capability, there is sufficient excess power to operate any of the potential DEW systems 

analyzed for this paper, and if required, the mission bay of the LCS could be configured 

to hold the DEW equipment. DDGs will still make up the bulk of the surface fleet in the 

next four years, so focusing on installing a DEW on a DDG would have a larger impact 

Navy wide. Once more LCS get introduced into the fleet and their CONOPS is tested, 

LCS would be a potential candidate in the future. Therefore, we focused our attention on 

the integration of these technologies on the Arleigh Burke (DDG-51) Class Destroyer as 

this appears to be the most probable choice to implement these weapons in the fleet in the 

near term. 

3. Project Approach 

The burden of progress implies that new systems should provide either increased 

capability, or achieve it through more efficient means. Sometimes certain unique 

capabilities within a mission capability set are gapped. These gaps need to be identified 

and equipment or doctrine needs to be developed to fill the gap. This project addresses 

both completing mission areas currently fulfilled by conventional weapons as well as 

mission areas which do not have a current conventional solution and are therefore 

gapped. 

The lack of standoff non-lethal options within the use of force continuum, 

particularly applicable to the force protection mission, is one such gap. Current forces 

have numerous lethal weapons with long (greater than 100m) standoff range such as 

rifles and crew-served weapons, and several non-lethal options with either short (less 

than 30m) or no standoff range. Rubber bullets and beanbags fired from pistols and 

shotguns respectively are the non-lethal option with a short standoff range, while 

chemical sprays and batons have no appreciable standoff range. Fire hoses can be used in 

a force protection situation, but greatly lose effectiveness beyond the range of the rubber 
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bullets and beanbags. It should be noted that these weapons are usable against individuals 

or small groups of people while no non-lethal weapon is in the U.S. Navy arsenal 

effective against vehicles. 

In this non-lethal case, a “gap” exists in the proportional list of responses 

available to the combatant commander since there are no alternatives options between 

“warn” and “kill.”  Combatant commanders are forced to either do without, or improvise 

with respect to these gapped capabilities. As a result, the goal for our research project is 

mission oriented, and more specifically, to ensure that mission capability gaps are 

adequately evaluated.  

With respect to directed energy weapons procurement, Hollywood fiction has 

biased many individuals by ingraining in them unreasonable expectations. Iron Man is a 

recent example. Developing game-changing technologies would be ideal, but should 

never be expected in a short period of time. When game-changing technologies are 

evolutionary, they must be built upon from seemingly less significant technologies. 

Evolutionary development is the same approach many successful civilian corporations 

are taking with respect to product development. Staying competitive means not only 

having the foresight to anticipate trends, but also possessing the ability to evolve current 

technological capability over time (Burrus 2012). With regards to DE, it is important to 

remember that directed energy “is what it is,” and more importantly it “is not what it is 

not.” 

Through our research we have identified a short list of technologies with already 

constructed and operationally tested prototypes. This list was determined by broadly 

researching numerous DE technologies from chemical LASERs like ABL and THEL, to 

Microwave Amplification by Stimulated Emission of Radiation (MASERs), to plasma 

beams and Electromagnetic Pulse (EMP) weapons. Using this large list, the team 

removed items that fell outside the scope of the project like EMP and sonic weapons. The 

team then further researched remaining technologies to determine what prototypes have 

been built and operationally tested at least to some extent. The four technologies which 

remained were Chemical LASERs (CL), Solid State LASERs (SSL), Free Electron 

LASERs (FEL), and High Powered Microwaves (HPM). Our objective is to analyze each 
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of the technologies on our short list to determine if they can provide the combatant 

commander with some sort of advantage. 
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II. BACKGROUND 

A. STATE OF CONVENTIONAL WEAPONS 

The concept of skilled aimed fire remains a treasured ability on the modern 

battlefield. Every new weapon when first introduced must be trained on to hone the skill 

needed to be employed in battle (Eshel 2012). Precision fire has long been the underlying 

principle to the exploitation of gunpowder. The Chinese standardized the formula for 

gunpowder in 1044 CE. However, many innovations were implemented before simple 

muskets could be used as the standard weapon for most armies. Over the course of six 

centuries, innovations such as tapered projectiles, advances in the gunpowder formula, 

and rifling made gunpowder a necessity in every armory (Needham 1986). 

Guns continued to advance in terms of accuracy, range, rate of fire, and 

destructive potential. Increasing the caliber generally increased both the range and 

destructive potential of a round, while more technological approaches were required for 

improving the accuracy and rate of fire. Cannons used on land and ships both had to 

develop before becoming weapons of choice and many of the same innovations that 

worked to forge muskets into rifles by rifling the barrels greatly improving accuracy and 

interrupted screw which dramatically improved rate of fire. These upgrades were 

integrated into their large projectile brethren and made artillery the focus of many land 

armies and dreadnaughts the prized ship in any fleet throughout most of the 20
th

 century. 

The pure destructive potential and ability to turn the tide of battle led many historians to 

regard artillery as the “King of Battle” (McKenney 2007).  

Missiles were the next major evolution in trying to create a more destructive 

weapon. Early missiles in development during World War II helped to add a new 

dimension to the battlefield (Zaloga 2003). The one major use of rockets was in 

bombarding London with V-1 and V-2 rockets with limited success. The rocket attacks 

killed 6,184 people compared to the bomber raids during ‘The Blitz’ which killed over 

43,000 (Cleary 2011). Due to the unreliability of the technology, both Axis and Allied 

forces continued the more dangerous (from the point of view of the attacker) practice of 

bombing from aircraft vice long range rocket attacks. Using aircraft risked not only 
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bombers, but fighter escorts and the crews for all the planes as well. At that time, aircraft 

were a much more dependable method compared to long range rocket attacks of 

delivering the massive amounts of ordnance needed (Corvisier 1994). Leveraging 

technology from the space program, missile technology greatly improved in terms of 

speed, payload, and accuracy, making missiles the preferred method of long distance 

ordnance delivery for current forces (North 2001). 

B. STATE OF DIRECTED ENERGY WEAPONS 

There are numerous examples of functional DEW projects in that have been built 

and “operate as designed.”  Although some of the technologies have achieved significant 

milestones such as having prototypes built and achieving operational demonstrations such 

as the ABL and THEL, DE has never been able to attain priority status with respect to 

conventional weapons in their designated roles in military operations. It would appear 

decision makers do not want to invest in a system unless it replaces an existing system or 

fulfills a capability gap. ABL and THEL are examples of this of systems which had 

traction due to the ballistic missile defense (BMD) gap. From the perspective of plug and 

play, a lack of mission needs, misguided expectations, or conventional systems that just 

perform better have stood in the way of successful DE programs. For example in the 

1980s, President Ronald Reagan’s Strategic Defense Initiative, more commonly referred 

to as “Star Wars,” nearly brought directed energy technology to the forefront of 

weaponry research. Legal complications coupled with a diminishing Soviet threat caused 

the program to be canceled and resources diverted to other priorities (Correll 2012). 

Unfortunately, “Reagan did not understand the science of missile defense and the quality 

of advice he was getting as spotty” (Correll 2012). Concurrently, the U.S. Air Force had 

been working on a revolutionary ABL Laboratory project, putting a chemical type 

LASER aboard a wide-body airframe with the objective of shooting down enemy 

missiles.  “It had to face numerous operational challenges, such as the need to fly above 

hostile territory waiting for target missiles to be launched and to focus its LASER at a 

single point on a moving missile” (Collina and Davenport 2012). Appropriations 

shortfalls, poor test results, and significant doubts as to Star Wars’ operational viability 
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resulted in significant concerns over the program’s future. Eventually, the 16-year and $5 

Billion effort was cancelled (Collina and Davenport 2012). 

The lesson learned from numerous failed DEW programs is that both a clearly 

identified need and reasonable expectations based on credible scientific knowledge are 

necessary precursors required to generate momentum for DEW projects. In addition, 

technologies must be relevant to the current trends prevalent throughout the services, the 

Navy in the case of this project. After initial background research was conducted on 

various DE programs, four technologies were deemed as plausible for shipboard use by 

the project team. Solid State LASERs (SSL), Chemical LASERs (CL), High Powered 

Microwaves (HPM), and Free Electron LASERs (FEL) were identified as either having 

current prototypes in testing (several SSLs and HPM), programs which were successfully 

tested but canceled (several CL), or programs which are nearing the operational prototype 

phase (FEL). These four technologies and specific programs are detailed below. 

1. Solid State LASER (SSL) 

a. Technology History 

Solid state LASERs have evolved over the years and several uses have 

been found for military application. The first LASER was built in 1960 by T. Maiman 

and utilized a synthetic ruby rod with mirrors on both ends (one semitransparent) pumped 

with a helical xenon flash lamp surrounding the rod. The result was an intense pulse of 

coherent red light at 694nm. This early ruby LASER system output contained irregular 

spikes that stretched over the duration of the pump pulse. This problem was improved in 

1961 by R.W. Hellwarth with a method called Q-switching which concentrated the output 

of the ruby LASER into a single pulse. However, the Q-switch consisted of a cell filled 

with nitrobenzene and required very high voltages. The Q-switch was soon replaced by 

spinning one of the resonator mirrors, and a further refinement was the insertion of a 

spinning prism between the fixed mirrors of the resonator. One of the earliest applications 

was in LASER range finding, which operated by measuring the time-of-flight of LASER 

pulse reflected from a target and calculating the distance (Koechner and Bass 2003). 
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In 1964 the best choice of a host for neodymium ions (Nd), namely 

yttrium aluminum garnet (YAG), was discovered by J. Geusic. Nd:YAG has a low 

threshold of excitation which permits continuous operation, and the host crystal has good 

thermal, mechanical, and optical properties. High Purity Nd can be grown with relative 

ease (Koechner and Bass 2003). Since its discovery, Nd:YAG remains the most versatile 

and widely used active material for solid-state LASERs and immediately replaced the 

ruby in the military rangefinder application (Koechner and Bass 2003). 

During the 1970s, efforts were concentrated on engineering 

improvements, such as an increase in component and system lifetime and reliability. The 

early LASERs often worked poorly and had severe reliability problems. At the 

component level, damage resistant optical coatings and high-quality LASER crystals had 

to be developed; and the lifetime of flash lamps and arc lamps had to be drastically 

improved (Koechner and Bass 2003). On the system side, the problems requiring 

solutions were associated with water leaks, corrosion of metal parts by the cooling fluid, 

deterioration of seals and other parts in the pump cavity due to the ultraviolet radiation of 

the flashlamps, arcing within the high-voltage section of the LASER, and contamination 

of optical surfaces caused by the environment (Koechner and Bass 2003). Also during 

this time, improvements were made in the performance of diode LASERs. Solid State 

LASERs started moving out from being research tools in laboratory settings into 

industrial use as machining tools and medical instruments (Koechner and Bass 2003). 

During the 1980s with the discovery of alexandrite, titanium-doped 

sapphire, some solid state LASERs became tunable between 660 and 980 nm. 

Improvements to diode LASERs provided devices with longer lifetimes, lower threshold 

currents and higher output powers, and were capable of continuous operations at room 

temperatures. Since the early LASER diodes were very expensive, their use as pump 

sources could only be justified where diode pumping provided an enabling technology. 

Therefore, the first applications for diode-pumped Nd:YAG LASERs were for space and 

airborne platforms, where compactness and power consumption is of particular 

importance (Koechner and Bass 2003). The evolution of diode pumping solid state 

LASERs offers significant improvements in overall systems efficiency, reliability, and 

compactness (Koechner and Bass 2003). 
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The evolution of the solid state LASERs over the past several decades has 

resulted in the design and weaponization of these LASERs for military use. A SSL DEW 

contains four major components: a tracking subsystem, a LASER subsystem to contain 

the medium which generates the LASER beam, a beam director with stabilizer through 

which the LASER is fired, and a fire control computer interface. While some programs 

have been cancelled for various reasons, several still exist and possess the potential to 

change how the United States fights and wins our Nation’s wars. 

b. Programs 

(1) LASER Weapon System (LaWS). The LASER Weapon 

System (LaWS) was built by Raytheon and has reached a technology readiness level 

(TRL) of 6 and has been operationally tested (O'Rourke, Navy Shipboard LASERs for 

Surface, Air, and Missile Defense: Background and Issues for Congress 2012). A 33kW 

continuous wave (CW) operational prototype shown in Figure 3 is currently installed on 

the USS Dewey (DDG-105) and has achieved a near perfect record in shooting down 

UAV’s and stopping small boats. The Navy stated the following regarding tests of LaWS: 

In June 2009, LaWS successfully engaged five threat-

representative UAVs in five attempts in tests in combat-representative scenarios in a 

desert setting at the Naval Air Weapons Station at China Lake, in southern California 

(O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile Defense: Background 

and Issues for Congress 2012). 

In May 2010, LaWS successfully engaged four threat-

representative UAVs in four attempts in combat-representative scenarios at a range of 

about one nautical mile in an over-the-water setting conducted from San Nicholas Island, 

off the coast of southern California. LaWS during these tests also demonstrated an ability 

to destroy materials used in rigid-hull inflatable boats (RHIBs) at a range of about half a 

nautical mile, and to reversibly jam and disrupt electro-optical/infrared sensors 

(O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile Defense: Background 

and Issues for Congress 2012). 
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Figure 3. Photograph of LASER Weapon System (LaWS) Prototype (from 

O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile Defense: Background 

and Issues for Congress 2012) 

While there is discussion that the LASER may be capable of 

conducting ASCM, the capability has yet to be proven. The Navy has envisioned LaWS 

being used for operations such as disabling or reversibly jamming electro-optical (EO) 

sensors, countering Unmanned Aerial Vehicles (UAVs) and EO guided missiles, and 

augmenting radar tracking (O'Rourke, Navy Shipboard LASERs for Surface, Air, and 

Missile Defense: Background and Issues for Congress 2012). The system’s unclassified 

operating characteristics are 5 sec on/5 sec off for 4 minutes followed by a 16 minute 

recharge down time and uses the ship’s electrical plant to charge in normal underway 

power configuration of two generators (O'Rourke, Navy Shipboard LASERs for Surface, 

Air, and Missile Defense: Background and Issues for Congress 2012). The 33kW 

prototype currently utilizes lead acid batteries, although the goal is to go to lithium ion 

which will reduce the overall battery size by 2/3 making shipboard integration easier 

(Chernesky 2012).  

According to the Deputy Program Manager of the Naval Directed 

Energy Program Office PMS-405, this program has been given the green light by 
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NAVSEA 05 and a 125–150 KW LASER has been determined to be technically feasible 

to be fitted onto a DDG-51 class ship, and integrated into LCS-4 and LCS-5 classes 

(Chernesky 2012). All blueprints and technical drawings currently exist to facilitate this 

installation with both lead acid and lithium ion batteries. The system is comprised of 95% 

Commercial off the Shelf (COTS) technology (Chernesky 2012). 

(2) Maritime LASER Demonstration (MLD). The Maritime 

LASER Demonstration (MLD) (Figure 4) is the marine variant of Northrop Grumman’s 

Joint High Power Solid State LASER (JHPSSL) the “Firestrike.”  The JHPSSL was 

funded in 2006 for Phase 3 of the project by the Office of the Assistant Secretary of the 

Army for Acquisition, Logistics, and Technology, Office of the Secretary of Defense – 

High Energy LASER Joint Technology Office, Air Force Research Laboratory, and the 

Office of Naval Research. Program execution was conducted by the U.S. Army Space 

and Missile Defense Command / Army Forces Strategic Command. The U.S. Navy 

awarded Northrop Grumman with a $98 million contract for the Maritime LASER 

Demonstration and it has reached a technology readiness level (TRL) of 7 (O'Rourke, 

Navy Shipboard LASERs for Surface, Air, and Missile Defense: Background and Issues 

for Congress 2012). 

 

 
Figure 4. Photograph of the Maritime LASER Demonstration (MLD) (from Angell 

2012) 
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The MLD combines the electric LASER module technology from 

the JHPSSL with a purpose designed beam-control and fire-control system. The MLD 

module technology consists of stackable 15kW units that can be phase controlled and 

combined into a single beam to increase the output power. In 2009, Northrop Grumman 

became the first U.S. company to reach the 100kW power level threshold with this 

LASER, which measured at more than 105kW by stacking seven 15kW units. Although 

mission dependent, many consider power requirements of 100kW or greater to classify 

the LASER as weapons grade (O'Rourke, Navy Shipboard LASERs for Surface, Air, and 

Missile Defense: Background and Issues for Congress 2012). There is no open source 

data detailing the maximum number of 15kW LASERs that can be stacked, but this could 

affect the scalability of the system. The following are the test and evaluation milestones 

of the Maritime LASER Demonstration. 

 In July 2010, the ability of MLD to track small boats in a marine 

environment was tested at NSWC Port Hueneme, CA (O'Rourke, Navy 

Shipboard LASERs for Surface, Air, and Missile Defense: Background 

and Issues for Congress 2012).  

 In late August and early September 2010, MLD was tested in an over-the-

water setting at the Navy’s Potomac River Test Range against stationary 

targets, including representative small boat sections (O'Rourke, Navy 

Shipboard LASERs for Surface, Air, and Missile Defense: Background 

and Issues for Congress 2012). 

 In November 2010, an at-sea test of the system against small boat targets 

reportedly was stopped midway because one of the system’s components 

needed to be replaced. The test was resumed in April 2011 (O'Rourke, 

Navy Shipboard LASERs for Surface, Air, and Missile Defense: 

Background and Issues for Congress 2012). 

 On April 6, 2011, the system successfully engaged a small target vessel. 

According to the Navy, this was the first time that a LASER of that energy 

level had been put on a Navy ship, powered from that ship, and used to 

counter a target at range in a maritime environment (O'Rourke, Navy 

Shipboard LASERs for Surface, Air, and Missile Defense: Background 

and Issues for Congress 2012). 

 In May 2011, Northrop stated that it could build the first unit of a full-

power engineering and manufacturing development (EMD) version of the 

weapon within four years, if the Navy could find the resources to fund the 

effort (O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile 

Defense: Background and Issues for Congress 2012). 



 

 

25 

The MLD test platform for the April, 2011 testing was 

accomplished from the former USS PAUL FOSTER, a decommissioned Spruance Class 

Destroyer where it was integrated into the ship’s radar and navigation systems, as well as 

the ship’s electrical system. The MLD demonstrated the ability the disable a small boat in 

actual maritime conditions of 8 ft. waves, 25kt winds in both rain and fog (Northrop 

Grumman 2012). 

(3) Tactical LASER System (TLS). The Tactical LASER 

System (TLS) has a beam power of 10kW and is designed to be added to the Mk 38 25 

mm machine guns installed on the decks of many Navy surface ships. A rendering of the 

TLS mounted system is shown in Figure 5. TLS would augment the Mk 38 machine gun 

in countering targets such as small boats and could also assist in providing precise 

tracking of targets (O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile 

Defense: Background and Issues for Congress 2012). The TLS program is a collaborative 

effort between Boeing and BAE where full system testing was expected to take place in 

the summer of 2012. This test was intended to target surface and air targets but 

permission was not granted in time for the targeting of UAVs. The test resulted in 

successful engagements of the surface targets at “several thousands of meters” but was 

not tested against air targets (O'Rourke, Navy Shipboard LASERs for Surface, Air, and 

Missile Defense: Background and Issues for Congress 2013). 

 

 

Figure 5. Rendering of Tactical LASER System (TLS) Integrated on Mk 38 

Machine Gun Mount (from O'Rourke, Navy Shipboard LASERs for Surface, Air, and 

Missile Defense: Background and Issues for Congress 2012) 
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2. Chemical LASER (CL) 

a. Technology History 

Chemical LASERs were first conceived over fifty years ago. Canadian 

chemist J.C. Polanyi (Superstars of Science 2011) first proposed the idea of chemical 

based LASERs in 1961 (Lin 1983). The hypothesis was that a chemical reaction of 

excited elements would create an infrared LASER. The chemicals could be excited by 

light, heat, or electricity. A reaction of hydrogen atoms with ozone or chlorine could be 

used to create an infrared LASER. Then that LASER could be amplified to create a 

useable beam (Lin 1983).     

The first chemical LASER demonstration would come 3 years later in 

1964. Jerome Kasper and George Pimentel were able to optically pump Hydrogen 

Chloride (HCl) to create a suitable LASER. Pimentel and others continued their 

experiments throughout the 1960s to expand the chemicals that could produce a LASER. 

Hydrogen Fluoride (HF) and Deuterium Fluoride (DF) were quickly demonstrated as 

viable as well (Pimentel 1965).  

Through continued experimentation other elements were found to be able 

to produce LASERs such as the Chemical Oxide Iodine LASER (COIL). The following 

chemicals also produced LASER: Cyanide (CN), Nitric Oxide (NO), Carbon Monoxide 

(CO), and Hydrogen Bromide [Deuterium Bromide] (HBr [DBr]) (Lin 1983). The most 

reliable forms for chemical LASERs are HF, DF and COIL (Kopp 2008). There are three 

types of initiation for a chemical LASER: 

 Vibrational:  The oldest and most established method of making a 

LASER. Mixing the elements in a cavity to create a reaction. Sometimes 

using a pump to vibrate the elements. Then focusing that reaction to create 

the LASER (Lin 1983).  

 Rotational:  Here the elements are in a chamber that rotates to mix them. 

Just like with vibrational, the mixing creates a reaction. And the reaction is 

focused to make a LASER (Cohen, et al. 1986).  

 Electronic:  The newest method of creating a LASER. Elements are 

bombarded by electrical impulses. The product of the electrical reaction 

creates the LASER (Basov, et al. 1989). 
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Chemical LASERs currently have the capability to deliver kilowatts of 

power over long ranges. There is potential for delivering megawatts, but is unrealized at 

this time. The weapons focus has been achieving kilowatts of power that will destroy 

targets at a distance. The one major difference between a SSL and a CL DEW is the 

medium in which the beam is generated, the other major components remain the same. 

b. Programs 

(1) Mid-Infrared Advanced Chemical LASER (MIRACL). 

Mid-Infrared Advanced Chemical LASER (MIRACL) is a DF LASER that was 

developed by the U.S. Navy and has been operational since 1980. It was cancelled by the 

Navy in 1983, but since 1990, U.S. Army Space and Strategic Defense Command has 

maintained the MIRACL (Sherman 1998).  

The MIRACL has a very strong beam quality to be used against 

target in flight. It operates at a wavelength of 3.8 microns and can lase for 70 seconds 

continuous on a single target. It has been tested against both flying drones including the 

BQM34 and missiles such as the VANDAL missile (Sherman 1998). 

(2) Airborne LASER (ABL). Airborne LASER (ABL) is a 

COIL in a 747 developed for the Air Force by Boeing in 1996. The first flights were 

conducted in 2003 with the entire systems configured. From 2008 to 2010; Boeing 

conducted testing using the system (FAS 2010).  

The ABL was created to be used against missiles. It operates at 

1.315 microns wavelength (FAS 2010). It can lase its target for three to five seconds on 

the target after a solid state LASER acquires the target. The COIL has been tested against 

an NC-135E (Grill 2007). It has also been tested against missiles with great success 

(Cadena and Selinger 2009) (MDANews 2010). 

(3) Airborne Tactical LASER (ATL). Advanced Tactical 

LASER (ATL) is a COIL in an AC-130 aircraft developed for the Air Force by Boeing in 

1996. The first flight testing was conducted in 2005. In 2009, it was adapted to fit into a 

MV-22 aircraft as well. The testing for the ATL was conducted from 2005 -2010 (Global 

Security 2011). 
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 The ATL was created to attack ground targets. It operates at 1.315 

microns wavelength (Alexander 2003). The ATL can generate between 100–300 kW for 

five seconds (Global Security 2011). When there is not excessive attenuation, the range 

can increase to 20 kilometers (Hambling, New Scientist 2008). ATL has been used to 

defeat ground targets (Wallace 2009). 

(4) Tactical High Energy LASER (THEL). Tactical High 

Energy LASER (THEL) is a truck and trailer based weapon developed for the U.S. and 

Israel by TRW (now part of Northrop Grumman) in 1996. The THEL was ready for use 

in 1998. It was tested in 2002 (Pike 2011).  

The THEL was created to defend against missiles, rockets, artillery 

shells, and aircraft. The THEL operates at 3.8 microns wavelength. The THEL has lased 

long enough to destroy Katyusha rockets, artillery shells, and mortar shells (Kopp 2008). 

3. High-Power Microwave (HPM) 

a. Technology History 

Research into the use of microwaves began with studies of radio 

frequency technology, specifically for communication purposes (Morrison 2008). 

Microwaves were artificially created by Heinrich Hertz in 1888. The invention of gridded 

tubes brought about the use of radios in the early twentieth century. Using resonant 

cavities connected to electrical circuits, researchers discovered how to create higher 

frequencies (Benford, Swegle and Schamliglu 2007). Higher frequencies were sought 

after once it was discovered that they are more advantageous in terms of the amount of 

information they could carry (T. Williams 2011). Assuming amplitude modulation to 

carry the data, the bandwidth (amount of data able to be carried) is increases at twice the 

rate of the frequency (Harney, Combat Systems Volume 1 2004). 

Early physicists believed that electromagnetic waves could be powerful 

sources used to take down aircraft. Research in this field led to the creation of radar 

systems in the 1930s (Guoqi, Benqing and Lu 2005). During World War II, several 

developments such as extrapolation of the magnetron, invention of the traveling wave 

tube, and invention of the backward wave oscillator (BWO) spurred growth in the field. 
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Moreover, significant developments in regards to High-Powered Microwaves (HPM) 

occurred from the investigation of nuclear power effects, specifically in regards to the 

interaction of waves and particles.   

Part of the future generation of abundant nuclear power involves 

controlling the nuclear fusion (as opposed to fission) process. Research into how 

electromagnetic wave stimulation could support the fusion process fostered a better 

understanding of how waves and particles interact in the production of thermonuclear 

power (Benford, Swegle and Schamliglu 2007). This fusion research coincided with 

developments of pulse power technology with focus on generating and emitting strong 

electronic beams (Guoqi, Benqing and Lu 2005).    

In terms of weaponry, HPM roots are traced back to the technology race 

between the Soviet Union and the West. Development has gone from first 

electromagnetic bomb testing in 1962 to more recent developments in crowd control 

technology (Weinberger, High-Power Microwave Weapon Systems Start to Look Like 

Deadend 2012). 

HPM weapons are designed to exploit parts of the electromagnetic 

spectrum in order to neutralize targets. Through concentrated radio waves, HPM weapons 

transmit high amounts of energy which can be used to disrupt electronic equipment or 

produce devastating biological effects. HPM weapons consist of three main components. 

These components are a pulse power source, a high power microwave source, and an 

antenna (Benford, Swegle and Schamliglu 2007).   

The pulse power source drives the HPM weapon by generating a highly 

amplified electronic pulse. There is a variety of pulsed power types which include 

modulators, Marx-generators, pulse forming lines (PFL), pulse forming networks (PFN), 

and inductive energy storage in combination with opening switches. Normally, the pulse 

components are connected in series with other pulse components, i.e., a Marx-generator 

in series with a PFL (Benford, Swegle and Schamliglu 2007).   

The HPM source acts as the heart of the weapon converting the energy of 

the electronic pulse into electromagnetic form, specifically into microwaves. The 

interface between the pulse power source and the HPM is extremely important because if 
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the impedances of the pulse source and HPM are not properly matched then power losses 

could occur. As a result, this interface determines the size and mass of the overall system 

(Benford, Swegle and Schamliglu 2007). The HPM source has other components 

designed for support, such as vacuum pump, magnet, a collector for capturing the beam, 

and cooling system. Finally, the antenna is the physical interface between the atmosphere 

and the microwaves. The antenna directs the beam at targets. Source parameters influence 

the connection to the antenna, most notably the waveguide mode (Benford, Swegle and 

Schamliglu 2007).   The waveguide mode is responsible for transmitting the 

electromagnetic waves. Characteristics of the antenna such as frequency, power, 

directivity, and gain influence the output beam propagation. These characteristics 

determine the bandwidth, signal strength, power efficiency, and the amount of beam 

spreading (antenna-theory.com 2011).  

 These components come together to produce a system that uses 

directed energy to produce weaponry capable of engaging targets in a non-lethal manner. 

Traditional non-lethal weapons use kinetic energy (rubber rounds or bean bags for 

example) which still have chance to kill or permanently injure the target if hit in specific 

areas (eyes or throat for example). HPM poses a lower risk of accidental lethal exposure 

compared to kinetic non-lethal weapons. However, HPM weapons affect personnel in the 

same manner and have a greater range than most small arms which can be useful in open 

areas (DOD Non-lethal Weapons Program 2007). 

b. Programs 

The Active Denial System (ADS) is designed as a nonlethal crowd 

dispersal weapon. The system works by focusing wave energy in the form of a beam. 

This beam produces a powerful heat sensation when directed at targets causing them to 

move away instinctively. The beam is composed of millimeter waves at a frequency of 

95GHz. These waves are able to penetrate human skin up to 1/64 of an inch which is 

roughly about three sheets of paper. Due to this shallow penetration, there is minimal risk 

of severe permanent injury (although lasting minor injuries to nerves, fat cells, and ducts 

are possible). In addition, the effects of the weapon cease when a target moves out of the 

way of the beam (Air Force Research Laboratory 2006). 
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Operational testing of ADS involved a series of Joint Military Utility 

Assessments (JMUA) conducted over an 8 month period beginning in 2005 (LeVine 

2009). The first JMUA tested the system 1 version of the technology which is composed 

of the HPM weapon system attached to a Humvee. Personnel from the Marines, Air 

Force, Coast Guard, Army, and Border Patrol operated the system in a series of urban 

terrain and entry control point scenarios in order to evaluate its performance  (LeVine 

2009). The first test was conducted at Creech Air Force Base in August 2005 and resulted 

in the ADS system achieving 914 hits off of 657 shots due to the use of beams.   

The second JMUA test was conducted in Fort Benning, GA and included 

testing the system in search and rescue, entry control point, and perimeter security 

scenarios. This JMUA test resulted in 1473 hits off of 979 shots  (LeVine 2009). And, the 

third JMUA conducted tests of the system in port and harbor environments. JMUA 3 was 

conducted in 2006 at Santa Rosa Island, Eglin AFB FL and focused on force protection 

missions in port. Scenarios included boat-on-water iterations and pier side security 

demonstrations. JMUA 3 was the first time the ADS system carried out live fire scenarios 

over water. JMUA 3 resulted in 474 hits off of 305 shots. 

In all three assessments, the consensus by operators and test evaluators 

was ADS has military utility and is highly effective as a non-lethal counter personnel 

weapon  (LeVine 2009). Following these assessments the ADS system was certified for 

deployment with hopes of it being used against insurgents in Iraq. Eventually, it was 

deployed to Afghanistan in 2010; however, the weapon was not used due to potential 

public scrutiny issues (Fortin 2012). 

4. Free Electron LASER (FEL) 

a. Technology History 

In 1971, John Madey invented and developed the Free Electron LASER (FEL) 

that generates a relativistic electron beam in an open optical cavity resonator. Madey, at 

Stanford University, measured gain from an FEL configured as an amplifier at 10-µm 

wavelength, which was an important step in FEL development. This experiment, and the 

successful operation of the same FEL configured as an oscillator in 1977 at 3-µm 
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wavelength, created a large interest in FEL research. Two important FEL attributes, 

tunability and design flexibility, were demonstrated by these two experiments at 

significantly different wavelengths using the same apparatus (National Research Council 

1994). FEL’s differ from conventional LASERs in that they use an electron beam as the 

lasing medium rather than a gas or a solid. The FELs are usually based on the 

combination of a linear electron accelerator followed by a high-precision insertion 

device, which may also be placed in an optical cavity formed by mirrors. Under certain 

circumstances, the accelerated electrons in the insertion device bunch together more 

tightly than usual (also known as microbunching). Over the length of the insertion device 

or during multiple passes back and forth through the optical cavity, the electrons in the 

microbunches begin to oscillate in step, thereby giving rise to light with properties 

characteristic of conventional LASERs. Because the microbunches are so spatially small, 

the light generated presents as in ultrashort pulses that can be used for strobe-like 

investigations of extremely rapid processes. Current FEL’s cover wavelengths from 

millimeter through infrared and are nudging into the visible (Jefferson Lab 2005). 

b. Programs 

FEL currently has a technology readiness level (TRL) of 4 which is 

defined as component and/or breadboard validation in a laboratory environment 

(O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile Defense: Background 

and Issues for Congress 2012). There are numerous FEL facilities across the U.S., with 

the Thomas Jefferson National Accelerator Facility having the most advanced FEL 

technology. The Office of Naval Research (ONR) is currently overseeing the 

development of FEL technology. 

C. DIRECTED ENERGY AND CONVENTIONAL WEAPON COMPARISON 

Dating back to the 1950s, science fiction films captivated audiences with tales of 

futuristic weapons that had unlimited capability. These weapons could project beams of 

light capable of disintegrating intended targets as in 1951’s The Day the Earth Stood Still. 

Soon after when Charles Townes and Arthur Schawlow published designs for a LASER 

in 1957 with the first one built three years later, this Hollywood fantasy became real, 
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although unweaponized (Salisbury 1999). Past fantasies of futuristic weapons are soon 

becoming reality due to advancements in DE technology namely increased power levels, 

tracking abilities, and miniaturization. These advancements along with advantageous 

aspects of DEWs make them attractive alternatives to current conventional weapon 

systems.   

DEWs can provide multiple benefits to the warfighter. Speed of light 

engagements and deep magazines are the two most eye catching capabilities of DEWs. 

DEWs have the potential to equip the U.S. military with the ability to have a high depth-

of-fire with speed of light delivery, allowing a more powerful means of self-defense. 

Moreover, the variability of the energy level provides graduated lethality with minimum 

collateral damage and a low cost-per-engagement when compared to the projectile and 

logistics support costs of conventional explosive or kinetic munitions. Against specific 

low-value, light-armored targets (UAVs or small boats for example) DEWs have the 

potential to be an effective alternative to the use of expensive missile systems. 

Ultimately, DE weapons can provide speed-of-light and precision engagements against 

high speed vessels, complex ASCMs, swarm attacks, and slow speed aircraft.  

Despite the benefits of DE weapons, there are some drawbacks to their 

employment. Due to the technology being relatively new, there are still concerns over the 

reliability of DE weapons in an operational environment. Conventional gunpowder 

weapons have been reliable since the advent of percussion caps in the mid-1800s. For this 

reason, many military decision makers are hesitant to replace current conventional 

systems with unproven DEWs. In addition, conventional weapons currently have a 

greater range than directed energy weapons due to not being constrained by line-of-sight 

and do not require nearly the power levels of DEWs. Due to atmospheric attenuation, the 

range of directed energy weapons can be considerably degraded, especially in poor 

weather conditions. Although weather affects current radar and targeting systems, kinetic 

rounds are not hampered by rain. As a result of atmospheric attenuation, there is no 

guarantee that the DE impinging on the target will be of sufficient intensity to cause 

expected damage despite being projected at the speed of light. Furthermore, many DEW  

must be charged prior to use (SSL or the cooling requirement of HPM for example) 



 

 

34 

which requires a significant power source compared to conventional weapons which must 

be loaded but then can generally remain ready to fire for extended periods of time.  

Despite the aforementioned drawbacks to DEWs, it is worthwhile to the U.S. 

military to achieve DEW superiority on the battlefield. The capability of having a near 

limitless magazine and the ability to conduct speed of light engagements are very 

enticing. Additionally, since DEWs are still in their infancy, there are considerable 

opportunities for improvement. On the other hand, conventional weapons have reached 

their peak capability and any major performance breakthroughs are not expected. 

Table 2 shows many of the advantages and disadvantages of the various LASER 

technologies considered for this project. Additionally, power efficiency can be a problem 

with large scale DEWs. SSLs have power efficiencies between 20–30% with LaWS at ~ 

25. For LaWS to achieve the current output of 33kW, 130kW would have to be provided. 

Table 2. Comparison of LASER Types (from Deveci 2012) 

Type of Laser Wavelength Advantages Disadvantages 

HF 

2.7 - 3.3 

µm 
Most Developed                            

Megawatt level 

Size and Weight         

Safety requirements            

Sophisticated logistics DF 

3.3 - 4.2 

µm 

COIL 1.3 µm 

SSL 1.06 µm 

Less complex                                                         

Compact                                                            

Less sensitive to shock                      

Low electric energy 

requirements                                                

High efficiency 

Cooling problem                                                  

Kilowatt level 

FEL Tunable Selectable wavelength 

Most complex                         

Kilowatt-level limits                        

Large Systems 
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III. SYSTEMS ENGINEERING PROCESS 

A. APPROACH 

The approach to solving the problem of defending maritime platforms with DEW 

previously identified in Chapter I started with identifying what the U.S. Navy is required 

to do. We used the Universal Naval Task List (UNTL) as a way to identify key needs at a 

general level for the Navy. The UNTL is a functional decomposition of warfare areas, 

which can be mapped back to the Department of Defense-wide Universal Joint Task List 

(UJTL). In order to determine the Naval Tasks that might be applicable to DEWs, the 

assumption was made that the only limiting factors for DEWs at this phase was the laws 

of physics (restricting the missions by available prototypes came later and were being 

researched concurrently). By only considering the theoretical physical limitations of 

DEWs, a list was made of the UNTL mission area requirements where DEWs could have 

some role (even if that role was very small or better fulfilled by conventional weapons). 

B. METHOD 

Specific mission requirements that rolled up into the warfare area requirements 

also had to be determined. For example: the UNTL lists “attack air targets” as a 

requirement, which includes shooting down missiles and aircraft. This UNTL 

requirement is the Navy’s Air Warfare area under which many specific missions reside. 

To determine the specific mission requirements, an evaluation similar to that of the 

UNTL was made of the Navy’s Required Operational Capabilities (ROC) and Projected 

Operating Environments (POE) document as well as the Surface Force Training Manual 

(SFTM) for Anti-Terrorism/Force Protection (AT/FP) Critical Capability Requirements 

(CCRs), where the ROC/POE was silent in that regard. Like was done with the UNTL, a 

determination of which missions had potential DEW applicability (only based on the laws 

of physics, the specific abilities of current DEW prototypes would come later) was made 

and then those specific missions were mapped back to the UNTL requirements.  

 Figure 6 describes the process of mapping needs to tasks to missions. This 

process was an iterative process due to revisions to the continued scoping of the problem 

statement, continued project team research on available DEW prototypes, and the 
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eventual selection of specific prototypes to be analyzed. These iterations in scoping the 

project required several re-evaluations of the described mapping process in order to 

ensure that the mapping process continued to match the problem statement and project 

goals.   

 

 

Figure 6. Navy Needs to Weapon Mapping Concept  

Following our mapping process, the mission areas where DEW can have a 

theoretical impact (based on the laws of physics) is shown in the following mapping: 

 NTA 3: Employ Firepower 

o NTA 3.2.1 Attack Enemy Maritime Target 

 NTA 3.2.1.1 Attack Surface Targets 

 SUW 1.6 Engage surface ships with DEW 

 SUW 1.10 Conduct close–in surface self-defense using 

crew operated DEW 

 SUW 2.2 Conduct SUW to support surface forces 
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 SUW 2.3 Engage surface targets with assigned anti-surface 

sector 

o NTA 3.2.2 Attack Enemy Land Targets 

 AMW 14.3 Conduct direct fire 

o NTA 3.2.3 Attack Enemy Aircraft and Missiles 

 AW 1.1 Provide area defense for a strike group 

 AW 1.2 Conduct air self-defense using DEW 

 AW 1.4 Provide area defense for a convoy or underway 

replenishment group 

 AW 1.5 Provide area defense for amphibious forces in transit and 

in the amphibious objective area 

 AW 1.6 Provide area defense for a surface action group 

 AW 1.7 Engage air targets during joint/group operations 

 AW 1.10 Provide sea-based theater BMD for Navy area 

 AW 1.12 Provide air defense for non-combatant evacuations 

operations 

 AW 1.13 Provide air defense for naval/joint/combined TF 

operations 

 AW 2.1 Provide air defense of a geographic area (zone) 

 AW 9.1 Engage medium/high altitude, high-speed airborne threats 

with DEW 

 AW 9.3 Engage low altitude threats with DEW 

 AW 9.4 Engage low/medium altitude airborne threats with DEW 

 AW 9.5 Engage airborne threats using installed anti-air weapons 

 AW 9.6 Engage airborne threats utilizing soft-kill weapons 

systems (e.g., chaff/decoys) 
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o NTA 3.2.4 Suppress Enemy Air Defenses 

 AMW 14.3 Conduct direct fire 

 IO 2.2 Conduct electronic jamming of target acquisition/target 

tracking/fire control/missile seeker radars 

 IO 2.3 Conduct electronic jamming of communications/data link/ 

identification systems 

o NTA 3.2.5 Conduct Electronic Attack 

 NTA 3.2.5.1 Conduct C2 Attack 

 IO 2.2 Conduct electronic jamming of target 

acquisition/target tracking/fire control/missile seeker radars 

 IO 2.3 Conduct electronic jamming of 

communications/data link/ identification systems  

o NTA 3.2.9 Conduct Non-Lethal Engagement 

 ATFP CCR 12 Pier Demonstration/Passive Protest Exercise 

 NCO 19.6 Conduct seizure of noncombatant vessels 

 NCO 19.9 Conduct drug traffic suppression and interdiction 

operations 

 NCO 19.13 Support enforcement of fisheries law and treaties 

 NCO 19.15 Support drug traffic suppression and interdiction 

operations 

 NCO 19.16 Support illegal entry suppression operations 

 NCO 33.1 Operate as chokepoint patrol unit 

 NTA 6: Protect The Force 

o NTA 6.1 Enhance Survivability 

 NTA 6.1.1 Protect against combat area hazards 
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 NTA 6.1.1.1 Protect Individuals and Systems 

 NTA 6.1.1.2 Remove Hazards 

o NTA 6.1.1.2.1 Conduct Explosive Ordinance 

Disposal 

o NTA 6.2 Rescue and Recover 

 NTA 6.2.2 Conduct Personnel Recovery 

 NTA 6.2.2.2 Perform Combat Search and Rescue 

o FSO 6.1 Support/conduct combat/noncombat SAR 

operations by fixed or rotary wing aircraft 

o FSO 6.2 Conduct combat/noncombat SAR 

operations by surface ships 

 NTA 6.2.2.3 Conduct Tactical Recovery of Aircraft and 

Personnel 

o FSO 6.1 Support/conduct combat/noncombat SAR 

operations by fixed or rotary wing aircraft 

o FSO 6.2 Conduct combat/noncombat SAR 

operations by surface ships 

o NTA 6.3 Provide Security for Operational Forces and Means 

 NTA 6.3.1 Protect and Secure Area of Operations 

 NTA 6.3.1.1 Establish and Maintain Rear Area Security 

 NTA 6.3.1.2 Protect/Secure Installations, Facilities and 

Personnel 

 NTA 6.3.1.3 Provide Harbor Defense and Port Security 

o NCO 33.1 Operate as chokepoint patrol unit 

 NTA 6.3.1.4 Protect Lines of Communication 

 NTA 6.3.1.5 Establish and Enforce Protection Perimeter 
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 NTA 6.3.1.6 Conduct Surveillance Detection Operations 

o NCO 45.8 Conduct surveillance and interdiction 

operations of swimmers/swimmer delivery vehicles 

 NTA 6.3.2 Conduct Military Law Enforcement Support (Afloat 

and Ashore) 

 NTA 6.3.2.2 Maintain Law and Order 

o NCO 19.6 Conduct seizure of noncombatant vessels 

o NCO 19.9 Conduct drug traffic suppression and 

interdiction operations 

o NCO 19.13 Support enforcement of fisheries law 

and treaties 

o NCO 19.15 Support drug traffic suppression and 

interdiction operations 

o NCO 19.16 Support illegal entry suppression 

operations 

o NCO 33.1 Operate as chokepoint patrol unit 

 NTA 6.3.3 Combat Terrorism  

o ATFP CCR 2 Deter, detect, defend against, and 

mitigate Terrorist Activities 

o ATFP CCR 4 Entry Control Point (ECP)Threat  

o ATFP CCR 8 Pier side Small Boat Attack Exercise 

o ATFP CCR 9 Terrorist A/C Attack Exercise 

o ATFP CCR 12 Pier Demonstration/Passive Protest 

Exercise 

o ATFP CCR 14 Swimmer Attack 
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o ATFP CCR 15 Nighttime Small Boat Attack at 

Anchor 

A second mapping of potential mission areas appropriate for a DEW was 

conducted after the problem statement had been refined. This revision of the missions 

appropriate for a DEW was based on what was thought to be implementable within four 

years. This revision also incorporated technologies which had been operationally tested 

and were still funded: 

 NTA 3: Employ Firepower 

o NTA 3.2.1 Attack Enemy Maritime Target 

 NTA 3.2.1.1 Attack Surface Targets 

 SUW 1.6 Engage surface ships with SUW weapons 

 SUW 1.10 Conduct close–in surface self-defense using 

crew operated weapons 

 SUW 2.3 Engage surface targets with assigned anti-surface 

sector 

o NTA 3.2.3 Attack Enemy Aircraft and Missiles 

 AW 1.1 Provide area defense for a strike group 

 AW 1.2 Conduct air self-defense using DEW 

 AW 1.4 Provide area defense for a convoy or underway 

replenishment group 

 AW 1.5 Provide area defense for amphibious forces in transit and 

in the amphibious objective area 

 AW 1.6 Provide area defense for a surface action group 

 AW 1.12 Provide air defense for non-combatant evacuations 

operations 

 AW 1.13 Provide air defense for naval/joint/combined TF 

operations 
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 AW 9.1 Engage medium/high altitude, high-speed airborne threats 

with DEW 

 AW 9.3 Engage low altitude threats with DEW 

 AW 9.4 Engage low/medium altitude airborne threats with DEW 

o NTA 3.2.9 Conduct Non-Lethal Engagement 

 ATFP CCR 12 Pier Demonstration/Passive Protest Exercise 

 NCO 19.6 Conduct seizure of noncombatant vessels 

 NCO 19.9 Conduct drug traffic suppression and interdiction 

operations 

 NTA 6: Protect The Force 

o NTA 6.3 Provide Security for Operational Forces and Means 

 NTA 6.3.3 Combat Terrorism  

 ATFP CCR 4 Entry Control Point (ECP)Threat  

 ATFP CCR 8 Pier side Small Boat Attack Exercise 

 ATFP CCR 9 Terrorist A/C Attack Exercise 

 ATFP CCR 12 Pier Demonstration/Passive Protest Exercise 

 ATFP CCR 15 Nighttime Small Boat Attack at Anchor 

 This second evaluation of the needs to mission mapping also scoped out anything 

that was not shipboard. Although the tasking statement directed the project team to 

“integrat[e] DEW into Naval forces” (Langford, SEA-19B Directed Energy Weapons 

2012), the team further scoped the project to strictly naval ships (and eventually solely 

the DDG-51 class) for several reasons, chief among them being that at the time that this 

mapping had been done, the prototypes to be evaluated had been selected and none of the 

selected prototypes were deemed able to fit on existing ship-borne aircraft. Shipboard 

platforms seemed to be the only suitable platform for short term fleet integration. This 

was determined due to the current space and excess power available on many classes of 

ships in the fleet. Analyzing the integration of DEW onto other naval platforms (LCS and 
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CVN for example) would provide additional insights to an appropriate fleet wide 

procurement strategy (in terms of systems purchased), but would not change the 

effectiveness of DEW systems in a maritime environment (if a given DEW is effective 

onboard a DDG-51, it will be effective onboard another class assuming the other ship can 

support the DEW logistical requirements in terms of power, space, and cooling). 

Additionally, further background research by the project team and preliminary analysis of 

the selected DEW prototypes revealed that missions related to theater-wide missile 

defense or ballistic missile defense (BMD) was unrealistic for the systems available for 

analysis. The only system to have successfully engaged a ballistic missile was ABL was 

not selected as a potential shipborne prototype as discussed in the technology selection 

section of this chapter. Finally, several missions that were similar or duplicates were 

eliminated (an example being SUW 1.6-Engage surface ships with SUW Weapons and 

SUW 2.2-Conduct SUW to support surface forces). SUW 2.2 was eliminate as the core 

task of engaging a surface ship is covered under SUW 1.6. With the final list of missions 

applicable for the use of DEW determined, it was possible to map missions to threats and 

weapons (see Appendix A). 

C. TAILORED SYSTEMS ENGINEERING PROCESS 

We evaluated the relative net worth of a DEW by developing a unique systems 

engineering (SE) process with emphasis on needs, mission, weapon, performance, cost, 

and integration mapping. This tailored SE process was created to provide context to the 

analysis comparing potential DEW to current conventional weapons. A context driven 

approach is critically important to avoid the failures of the ABL program. The ABL 

program, which had a hefty price tag and spent a long time in development, was changed 

from an acquisition program to a research and development (R&D) program and the 

second aircraft cancelled in 2009. Then Defense Secretary Robert Gates made this 

change to the ABL program due to “significant affordability and technology problems, 

and the program’s proposed operational role is highly questionable” (Gates 2009) before 

it was ultimately canceled in 2012. According to the operational concept for the ABL, the 

aircraft would have to loiter in or near enemy airspace waiting for a ballistic missile to be 
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fired and then attempt an intercept. Although the ABL was effective at shooting down 

missiles throughout several tests, the operational concept was not viable. 

Conversely, our process required that in order for a weapon to be effective, it 

must fill some mission gap or improve upon current capabilities using an appropriate 

concept of operations. The utilization of the UNTL to map weapons to missions was 

extended as shown in Figure 7. The larger systems engineering process for the project 

evolved out of the approach of ensuring a need was being fulfilled while using the 

method of mapping needs to missions to weapons and threats described above. A strongly 

iterative waterfall process with feedback loops was tailored to accommodate the mission 

mapping process, the extrapolation from various sources of data for DEWs, and the 

consolidated analysis using several modeling and simulation tools. 

 

 

Figure 7. Tailored Systems Engineering Process (Tailored Waterfall) 
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D. STAKEHOLDER ANALYSIS 

With this project carried out at the unclassified level and with the inclusion of 

foreign nationals, many potential stakeholders chose not to be involved, specifically those 

companies developing the prototypes that we analyzed. The decisions by these companies 

to acknowledge our work but not participate limited the stakeholders of this project to a 

select few as shown in Table 3. This table represents the different stakeholders along with 

their needs, goals, and concerns. Stakeholders are those individuals or entities that have a 

vital interest in the outcome of the project. Primitive needs are the basic necessities 

expressed by the stakeholders while effective needs are the needs of the stakeholder in 

the context of DE and this project. Concerns are issues the stakeholders view as being 

critical to their needs. Goals are the outcomes stakeholders desire pertaining to the DE. 

Table 3. Stakeholders 

Stakeholder Primitive 

Needs 

Effective 

Needs 

Concerns Goals Type 

NPS Provide high 

quality 

education  

for Armed 

Forces and 

government 

civilians 

Foster 

research that 

supports 

development 

of DE 

Potential 

roadblocks 

of research 

and 

education 

Increase 

combat 

effectiveness 

of Armed 

Forces 

through 

research and 

development 

of DE  

Educational 

Institution 

N9I Enhance 

naval 

warfare 

capability   

Ensure 

development 

of integrated 

DEW for 

Naval 

Forces  

Integrated 

warfare 

requirements 

of DEW 

Successful 

integration 

of DEW on 

naval 

platform 

Naval 

Division 

Operator Accomplish 

mission 

Use DEW 

System to 

accomplish 

mission 

objectives 

System 

performs as 

intended and 

is user 

friendly 

Fulfill 

mission 

requirements 

using DEW 

system 

User 
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Naval Postgraduate School (NPS) is a higher learning institution responsible for 

educating graduate-level personnel across not just DoD, other U.S. governmental 

agencies and defense industry professionals, but members of Allied nations’ 

corresponding agencies as well. Part of providing an education is fostering the 

intellectual growth of students and faculty through research. This research is invaluable 

to the increase of combat effectiveness throughout the Armed Forces. As a stakeholder of 

this project, NPS desires to advance the combat effectiveness of the Navy through 

supporting the study of DEW and its integration onto a naval vessel. Concerns of NPS 

include any potential roadblocks that may impede this study.   

N9I is the Warfare Integration Division of the Navy and the sponsor of the 

project. The purpose of the division is to integrate warfare goals and objectives with force 

requirements, resulting in enhanced warfare capability. N9I is therefore concerned with 

the successful integration of DEWs on naval platforms and that this integration fulfills 

battle force requirements. 

Operators are the individuals (Sailors) who will utilize the system. Users have 

requirements to meet and employ the system in order to fulfill a given mission. For this 

reason, it’s important that the system performs as intended or the mission could be 

jeopardized.   

  Although interests in the outcome of this project involve many other agencies 

and businesses, the unclassified nature of the project has led to little acceptance among 

those entities as previously discussed. The project team has spent a considerable amount 

of time formulating workarounds to this reluctance to cooperate. This workaround led to 

a gap in the amount of data received which the project team augmented by utilizing open 

source information, applying the physics based solutions to the characteristics of the 

weapons, and using analogist information in cost and integration issues where possible. 

No classified or distribution limited data is included in this analysis, but the process could 

be used with such data if it were to become available. 

E. SELECTED SOURCES OF INFORMATION (SSOI) 

DEWs are produced and studied by a host of businesses, agencies, and research 

facilities all of which could have served as potential sources of information. However, 
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due scoping the project to those systems which could feasibly be integrated onto naval 

platforms within a four year timeframe, sources of information were narrowed to those 

entities that supplied DEW technologies at TRL 6 or above. 

The SSOI Distribution shown in Figure 8 represents the various selected sources 

of information (SSOIs) that are associated with the project. SSOIs are those individuals 

and entities that can provide information that pertains to the project. The SSOIs are 

mainly contractors that supplied DEW prototypes for testing. Raytheon supplied the 

LASER Weapon System (LaWS) and the Active Denial System (ADS). Northrop 

Grumman supplied the Maritime LASER Demonstration (MLD). Boeing and BAE 

developed the Tactical LASER System (TLS). Some other SSOIs include PMS-405, the 

Navy’s Directed Energy Program Office, 129
th

 Rescue Wing who has used GINA in 

several search and rescue exercises, and the USS DEWEY which currently is being used 

as the test bed for LaWS. 

  

 

Figure 8. Selected Sources of Information (SSOI) Distribution 

As with the stakeholders previously, the SSOI as potential stakeholders have the 

same categorical needs, concerns, and goals. These needs, concerns, and goals are 

fundamentally different than the stakeholders as any public company is responsible to be 

profitable for their respective stockholders. Also, as these SSOIs are all contractors, their 
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needs (both primitive and effective), concerns, and goals are all similar and apply to them 

all. The SSOIs are detailed in Table 4. 

Table 4. Selected Sources of Information (SSOIs) 

SSOI 
Primitive 

Needs 

Effective 

Needs 
Concerns Goals Type 

Boeing, 

BAE, 

Northrop 

Grumman, 

Raytheon 

Gain 

substantial 

market share 

Sell their 

DEW 

System 

Customers 

deeming 

systems worth 

purchasing 

Obtain 

contract for 

producing 

DEW 

Contractor 

Brand 

recognition 

Build cadre 

of experts 

DEW is 

sufficiently 

tested 

Obtain 

contract for 

supporting 

DEW 

Attract new 

employees 

Employ 

premier 

workforce 

Sufficient 

systems are 

sold to recoup 

R&D money 

and make 

profit 

Obtain 

contract to 

develop next 

DEW 

Attract new 

shareholders 
      

Secure future 

R&D money       

 

Contractors are businesses, and businesses need to make revenues and profits. In order to 

gain a substantial portion of the market, the above contractors desire to sell their 

respective DEW to the government or any other entity which desires them and can legally 

buy the DEW. Gaining market share is accomplished through gaining contracts, having 

their brand recognized by potential users, and having a high quality workforce that will 

allow them to manufacture, supply, and potentially maintain units. In general, contractors 

are focused on providing systems that meet the requirements of their customers, with the 

expectation that the customer provides clear requirements (which accurately address the 

needs of the customer preventing requirement creep during development) and then 

purchases the system assuming the requirements are met. 
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F. TECHNOLOGY SELECTION PROCESS 

There are numerous challenges to developing directed energy technology 

including R&D roadblocks, high power requirements, and mission effectiveness. As 

might be expected, the potential benefits are significant as well. The possibility of “deep 

magazines” and expanded “use of force continuum” opportunities has long been sought 

out by military commanders; literally dozens of potential technologies and permutations 

exist. Our tasking called for a thorough analysis of issues that address a broad spectrum 

of missions commensurate with the needs of the U.S. Navy. We then factored in current 

fleet structures, as well as currently funded programs. Next we developed the associated 

concepts of operation. From here we were able to evaluate the potential technology gaps 

for not only directed energy weapons, but also for their integration into U.S. Naval 

forces. This process for formulating a technology gap resulted in our conclusion to only 

consider DEW technologies that currently have an operationally tested prototype. The 

technology must be both feasible and applicable to the current U.S. Navy mission. In 

addition, deployment of a DEW must have the ability to comply with the four year 

timeline previously discussed. 

In determining which of the four technologies identified in the background 

section (Solid State LASERs (SSL), High-Powered Microwaves (HPM), Free-Electron 

LASERs (FEL), and Chemical LASERs (CL)) deserve further analysis, each technology 

was measured against three criteria. The technology has to be capable of working 

successfully in the established four-year timeframe, has to improve the mission 

effectiveness of the ship, and has the ability to be integrated onto a ship. Based on these 

criteria, FEL and CL were removed from further consideration in the project. 

Although a FEL has tremendous potential as a DEW with the ability to modify the 

wavelength as required and the high power output, the drawbacks of the technology are 

prohibitive of a shipboard environment and do not have the potential to be implemented 

in four years. These drawbacks include large size, radiation hazard, high power 

requirement, and large weight. CL were also eliminated from further consideration. 

Although CL are the most technologically mature of any of the potential DEWs as shown 

with the ABL and THEL programs, the requirement of a logistics train providing (and 
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removing after firing) toxic chemicals does not reduce (and would likely increase) the 

reliance on the logistics train. This elimination of FEL and CL from further consideration 

constrains the project to two technologies, HPM and SSL. Each of the remaining two 

technologies provides a different capability and will be analyzed separately. 
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IV. MODELING AND SIMULATION 

A. MODELING METHODOLOGY AND BACKGROUND 

In order to accomplish our goal of evaluating each weapon in a specific 

engagement, in the context of a mission, we built a meta-model and two simulations. The 

meta-model aggregated different engagements into a single, searchable database and 

provided an interactive mapping of that engagement to weapons, threats, missions, 

warfare areas, environments, and weapon platforms. The simulations would help to gain 

insights in what combination of weapons would be best, how DEWs could affect ship 

survivability, and what the CONOPS of a potential DEW employment might look like. 

With the mission requirements evaluated for applicability and mapped from the 

top down, starting with the UNLT and ending with a ROC/POE or CCR defined mission, 

the next step was to define the context for evaluation within a model to evaluate each 

weapon’s effectiveness within those mission contexts. We chose an engagement centric 

view around which to construct the model. A visual representation of the model of the 

model parameters for an engagement between a ship and its target are depicted in Figure 

9. An engagement centric view was chosen because a directed energy weapon is not 

equally effective against all threats and in all environments. Therefore, we needed to 

place a weapon into a specific context, evaluate its performance in that context and 

environment, and then aggregate all of the weapon’s engagements. Weapon performance 

would be aggregated in a database, with meta-tags embedded in the engagement file to 

link that engagement to all of the objects that are represented in that specific 

engagement’s context. The aggregated engagement results for all weapons can then be 

compared on a one-to-one basis, comparing conventional, LASER, and microwave 

weapons in equivalent, quantifiable terms, to determine the exact advantages and niches 

for each weapon.  

The model is based on the following assumptions. For each engagement we 

assumed that the earth was flat, that the weapon platform was the center of the universe, 

that all threat motion was relative and direct towards the weapon platform, and that 

weapon and threat speeds remained constant (no acceleration, no drag). Assuming a flat 
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world negated the need to know the exact weapon height and all engagements were 

entered such that the slant range to the threat was within a line of sight to the weapon 

(assumed to be at an altitude of 0 meters relative to mean sea level). Assuming no drag or 

acceleration was necessary because unclassified weapon and threat cross-sectional areas 

were unavailable and provided a counter weight for conventional weapons against DEWs 

being able to instantaneously move to the next target without delay. Upon the intercept of 

a threat by a weapon, we then accounted for some weapon effect delay, during which the 

threat is not killed until the end of that delay (i.e., no instantaneous kill or damage). We 

also assumed an infinite number of successive threats that can only be engaged one at a 

time, which allows us to get a rough order of magnitude of how many kills a weapon can 

achieve against a specific threat type in each specific context. Finally, we assumed that 

the vital area radius was mission specific and that the threat detection slant range was 

engagement specific. Each vital area radius represents that distance by which a threat 

must be successfully engaged or the model assumes that the engagement is a failure. This 

was based on the expertise of the team members to account for situations such as an 

inbound ASCM, where if it is engaged at less than a certain distance, it will still impact 

the ship, causing high amounts of damage regardless of a successful intercept. Also, this 

was done because even very low powered DEWs can produce a very high power density 

on a target if it is extremely close (i.e,, within a few meters) and allowing threats to get 

that close to the weapon in the model would result in an unrealistically high number of 

successful engagements. 
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Figure 9. Model Engagement Diagram 

B. GLOBAL INFORMATION NETWORK ARCHITECTURE (GINA) 

In order to realize the true potential of the output of the Systems Engineering 

Process for this project, it was determined that Global Information Network Architecture 

(GINA) was the best tool available for complex meta-modeling. Team members 

interviewed the Chief Technology Officer of Big Kahuna Technologies, LLC,   Mr. 

Frank Busalacchi, who developed GINA and the U.S. Army Corps of Engineers, 

Engineer Research and Development Center (ERDC) liaison officer (LNO) to TRAC 
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Monterey, Dr. Thomas Anderson who has multi-domain experience working with the 

architecture including the network certification of the architecture for the U.S. Army. In 

addition, the project team researched several official reports and articles about GINA 

modeling to help make the decision to use GINA. We determined that the GINA 

environment allow both integration and interoperation behavior of system components to 

be specified, not programmed (Dolk, et al. 2012) (Anderson, Dolk and Busalacchi 2012). 

GINA is a natural extension of object oriented software engineering that 

recognizes that a finite number of relationship types (in GINA called vectors) exist 

between data objects (X-Types) in the enterprise architecture, and that a great majority of 

object oriented coding is spent defining these relationships in brittle code. In GINA the 

relationships, or vectors, are objects themselves. Additionally, GINA is implemented 

with the ethos that to build a model of the software’s functionality is superior in time 

savings and errors over physically coding and compiling traditional software (Dolk, et al. 

2012). GINA also allows variables (called elements), X-Types, and vectors to be 

assigned a Globally Unique Identifier (GUID), which means that a GINA model and all 

of its components can be globally accessible and identifiable, and version control (such as 

with a spreadsheet) is effectively mitigated against. 

Inherently defined vectors are the key difference in programing with GINA’s 

Vector Relational Data Modeling (VRDM) compared to an object oriented language like 

Java or C++. Inherently defined means that the constructs for the different relationship 

types are pre-configured in GINA, whereas in the C++ or Java APLs, there are no pre-

configured or pre-defined relationship keywords, objects, or methods: they must be 

created by the programmer. VRDM is the “language” of GINA in software engineering 

terms and it is the building blocks and connections of and between objects in modeling 

terms. VRDM is the GINA mode or engine that GINA applications are built with 

underneath the user interface. When building an object model using conventional object 

oriented software engineering techniques, a programmer or engineer will spend a 

significant amount of time writing code to define relationships between objects, whereas 

in GINA those relationship constructs have already been defined and are immediately 

available to be implemented within the model, allowing the model design team to focus 

their efforts on the model’s functions and characteristics rather than its mechanics (Dolk, 
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et al. 2012, 4). In GINA a vector is a relationship object and there are four base types of 

relationships: collection, derivation, declaration, and union. In our project, these vector 

relationships represent the results of our tailored Systems Engineering process. A 

collection is a relationship based on proximity. This proximity could be based on time, 

distance, or association. For example, two students at NPS have a proximity relationship 

based on attending NPS. A derivation is a second-order relationship which means that for 

example: two people have a relationship due to a third person they know in common. A 

declaration is a relationship that exists because a party says it does. For example, a man 

and woman could have a relationship that is declared by an official marriage license. A 

union is a collection of relationships all treated in the same manner. These four 

relationship types are configured into GINA allowing the user to apply them without 

doing any traditional programming. These relationships are implemented as vectors in 

GINA. 

Figure 10 shows the composition of GINA objects. It should be noted that the 

diamond indicates that the item is (or can be) made up of several of the objects that the 

arrow is pointing to (an X-Type consists of several elements and services but a vector 

consists of only one X-Type). As shown in Figure 10, a Service (such as “Save”) is 

invoked by an Event (such as “User clicks save button”). The “Save” Service is invoked 

by a Directive that (such as “On user form x, give the user the option to ‘Save’ form 

inputs”), which is then part of a larger collection of Directives housed in a Content 

Manger. A Content manager might then also contain Directives, for example to download 

new data, update user forms, or perform arithmetic operations on data (Busalacchi, 

Tinsley, et al. 2010). Using a Content Manager, Elements perform their various functions 

such as storing, displaying, or manipulating data for example. 



 

 

56 

 

Figure 10.  Global Information Network Architecture (GINA) Information Object 

Structure (from Busalacchi, Tinsley, et al. 2010) 

There are two basic object types in GINA, X-Types and Vectors. X-Types are the 

objects in traditional programming languages. Vectors are the relationships between X-

Types. As the relationship has data associated with it, the vector is also an X-Type. The 

fact that a Vector is a specialized X-Type allows for the relationship to be easily 

implemented because of the supermetadata tagging attributes inherent in an X-Type 

provide the necessary constructs to hold relationship specific and unique identifying data 

tags necessary to implement a relationship between two objects. At its most basic level of 

coding, in the GINA bootstrapped process that compiles and runs GINA, an X-Type is 

comprised of three primitives, an element, an X-Type, and a directive. The element 

contains the information. The element can store the information and output the 

information when queried. A directive allows for changing the information stored in the 

element (such as user entered data or data from an online database via an external 

connection). A vector is made up of a single primitive defining what object or objects it is 

related to. These relationships are shown in Figure 11. 
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Figure 11. Universal Modeling Language (UML) Model of Global Information 

Network Architecture (GINA) 

These levels are interpreted in the terms of written language. The third level 

(which is actually a subset of the second level) can be thought of as a collection of 

several documents. The second level would be an individual document. The document is 

made up of a collection of ideas all expressed in words. The first level represents these 

words that describe the ideas. Each word contains a little bit of information, but when the 

words are combined, the document as a whole represents the interaction between the 

defined objects and vectors. The words are made up of a finite selection of letters, these 

letters are the primitives.   Each letter serves a specific purpose, as does each primitive. 

This recursive form of building allows for describing GINA as a GINA model a key 



 

 

58 

aspect of GINA. The recursive nature and simple yet well-defined building blocks allows 

for straightforward implementation of a GINA model. 

In Java, an object is a subroutine that would be called by another program. There 

are some that are programed into Java, but these libraries must be imported to give 

access. One example is the math functions library. There is not an innate way to do a 

square root in Java, but the math library has one. Once everything is coded, the program 

must be compiled in order to become an executable. Assuming there are no syntax errors, 

this compiled code can be run and tested. This debugging takes the majority of time for 

any program, especially if compiling time is counted as well. Once the code is as correct 

as possible, it is compiled to be used. The compiled code cannot be altered in any way 

and there is not an easy way to go from the compiled code to the source code again if 

anything must be changed. This reliance on compiling is perhaps the greatest drawback 

of object oriented languages. 

GINA gets around this major issue as the compiled code never needs to be 

changed. GINA consists of the relationships and the workings of the X-Types and 

vectors, but the actual X-Types and relationships are defined with the compiled code. 

Each entity is given a globally unique identifier (GUID) allowing for easy traceability. 

GINA is accessible through a web browser to the GINA database, facilitated by the 

correct permissions and the Internet. The user interface, referred to as “Task Oriented,” 

and outputs can also be customized to fit the needs of the users. The linked databases can 

be changed readily and the vector X-Types only need to be updated to reflect the units of 

the new database. For example, if linking a new database to the existing model, you 

might need to add additional elements with the target X-Type to store data types from the 

new database that were not present in the previous databases that were linked to the 

model. Unlike the need for applying traditional programming to customize the user 

interface, GINA allows unskilled programmers to implement complicated models with 

minimal training. The benefit of GINA is these modifications and customizations can be 

accomplished without having knowledge of the details of the model (Busalacchi, Chief 

Technology Officer, Big Kahuna Technologies, LLC 2012). 
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The ability to build a complex metamodel without intensive software coding, the 

ability to define a project specific language and framework within which to evaluate and 

visualize model data from multiple disjoined sources, and the ability to easily extend and 

upgrade the model with new or more accurate data at a later date provided the basis for 

determining GINA’s appropriateness for SEA-19B’s project. Additionally, since GINA is 

a software modeling language, its outputs are 100% traceable to their source X-Types, 

Directives, and data. In other words, the GINA model is not a black box (where the user 

has no knowledge of  and no ability to discover the processes or functions that translate 

data from input to output), and any validation of the model’s results can be easily and 

visually explained and can be shown to map back to a logical systems engineering 

process. From an analytical perspective, a GINA model provides a means of comparison 

between weapons in the context of various missions. A most important aspect of GINA is 

that we were able to make a direct comparison of seemingly unrelated data and systems. 

An example of this ability to make direct comparisons is shown in Figure 12 below. 

Many different data inputs (such as Threat Parameters or Weapon Parameters) are pulled 

from unrelated sources (such as SQL database tables) and are read into objects (Threat X-

Type or Weapon X-Type). Then those objects, based on their relationships with all of the 

other objects in the model (including X-Types such as Environment and Weapon 

Platform) are able to be analyzed in a multidimensional fashion, meaning the data can be 

explored through the paradigm of a specific X-Type or a collection of X-Types via a 

user-defined GINA form or set of hyperlinked forms for a web interface, allowing for a 

model of the system to be built. Before knowing exactly what questions are to be 

answered, the allowable relationships are characterized in GINA and made available for 

exploration and evaluation with minimal to no rework required to modify the model. 

Consequently, the GINA model can be structured around a problem domain and context 

and reused with higher levels of fidelity without reword. However, the same cannot be 

said for spreadsheet analysis. One way to think about a GINA model is like a building 

with many doors. Each door represents an X-Type and each hallway represents a vector. 

The same building is expressed and described, no matter which door you enter through, 

but depending on the chosen door, your perspective of the building will look different 

and provide a unique view that may not be available from any other entrance. This 
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changing of perspective without changing the model is the GINA advantage over typical 

model representations. The object intersection, created by hyper planes of metadata in 

Figure 12 illustrates this concept. 

 

 

Figure 12. Inputs to Objects to Model to Analysis in Global Information Network 

Architecture (GINA) 

While GINA excels at meta meta modeling, it is not a practical method for 

explicit advanced mathematical operations beyond basic arithmetic operations. In order 

to provide for this capability, Big Kahuna Technologies, LLC (the GINA inventor) has 

developed a custom content manager to take variable data and perform complex 

mathematical operations on them. Through the content manager, SEA-19B was able to 

carry out our analysis of weapon effectiveness with respect to a threat, mission, and 

environment. The content manager code is shown in Appendix B. 

SEA-19B’s GINA model is depicted in Universal Modeling Language syntax in 

Figure 13. Each box with text that is underlined represents an X-Type object. By tracing 

each X-Type’s relationship to the other X-Types, the tailored systems engineering 

process described in Chapter 3 is apparent. For ease of implementation, each X-Type was 

built initially using MySQLServer Manager which defined a database for each X-Type, 

listing all of the columns in each X-Type. Once completed, the database was exported to 

the GINA server to build vectors and populate the column elements. The two X-Types 

surrounded with red-dashed lines were part of the original model design, but were not 
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used in the final implementation. These two X-Types originally intended functions were 

absorbed by the Engagement X-Type because an attenuation would need to be 

recalculated for each engagement based on that engagement’s slant range to the threat 

and the value added by saving those attenuation calculations for global reuse later was 

jointly assessed by the project team and Mr. Frank Busalacchi as being greatly 

outweighed by the additional time and complexity associated with implementing that 

feature into the model. The enumeration X-Type can be used to add more complexity to 

environmental variables and the attenuation X-Type can be used to save previous 

attenuation calculations in order to reduce processing time by reusing previously 

calculated values. 

 

 

Figure 13. SEA-19B Global Information Network Architecture (GINA) Model 

Universal Modeling Language (UML) Diagram 

The GINA model allows the user to complete many engagements, and then query 

the whole model for results, meaning that each Engagement instance pulls data from 

every X-Type in the model and that combined Engagement data, for all engagements, can 

be aggregated in an SQL query to a spreadsheet for external statistical analysis. Several 
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X-Types stand alone in the sense that they are independent of engagements in the real 

world: Platform (such as DDG-51), Environment (such as marine with 2 mm/hr rainfall), 

Atmospheric Attenuation (such as 0.8 dB/km), and DEW Enumeration (such as 

Environment Characteristic). Each naval combatant has differences such as combat 

systems, maneuvering ability, and damage control features, from other combatants that 

allow it to accomplish certain missions. However, because the Navy must be able to 

respond on short notice and with the time to reconfigure ships and platforms while 

forward deployed, most combatants cover the same missions (at least to some extent). 

When called to respond to a crisis, the nearest ships (regardless of class) will be capable 

of responding. Therefore, this analysis presumes that platforms are independent from 

engagements and are only related to engagements and missions by installed weaponry. 

That presumption is why there is a derived relationship from Engagement to Platform via 

Weapon. Similarly, the Environment is not dictated by the objects that find themselves in 

a specific environment; rather, objects exist in an environment that is variable (i.e., 

changes). Therefore, Environment is linked to Engagement by characterizing 

Engagements as a collection of N Environments—whether those Engagements are 

successful or not. Related to Environment is Atmospheric Attenuation. For each 

Environment, there is an infinite number of Atmospheric Attenuations: one for each 

specific wavelength and propagation path. DEW Enumeration is an X-Type that allows 

multiple environmental variables to be selected easily. Originally, DEW Enumeration 

would have allowed the project team to have multivariate environments available; 

however, due to time constraints and complexity only rain rate was used to differentiate 

environments since the largest source of scattering is water particles in the atmosphere 

(Harney, Combat Systems Volume 1 2004) and DEW Enumeration was not used. DEW 

Enumeration is available and accessible in the model should a future project wish to 

expand the number of Environments available for modeling. 

The remaining X-Types in the GINA model are directly related to Missions and 

each Mission has a collection of possible Engagements. Each Mission has a collection of 
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Mission Threats and a collection of Mission Weapons. Each Mission Threat has a 

collection of Threats. Each Mission Weapon has a collection of Weapons. Therefore, 

each Mission has a finite set of Threats and Weapons that change based on the Mission 

selected. This configuration of X-Types makes sense because a threat defines a mission, 

which necessitates a weapon. Each Mission then has a collection of Engagements 

consisting of a specified Threat, Weapon, and Environment. From our analysis of the 

UNTL, each Warfare Area has a collection of Missions. The Xreferences in the model 

allow each X-Type to “know” its uniquely identifiable instance of an X-Type. For 

example, an Engagement has some Mission and the Xreference specifies that this 

Engagement’s Mission is AW 1.1. The referencing system in GINA, based on Global 

Unique Identifiers ensures that regardless of the number of objects that are instantiated in 

the model, each object will be identifiable and uniquely traceable1. A full listing of X-

Types, Vectors, and Elements can be found in Appendix C. 

C. MODELING DIRECTED ENERGY WEAPON (DEW) PERFORMANCE 

GINA is well suited for modeling the complex contextual relationships between 

weapons, missions, warfare areas, environments, platforms, and atmospheric attenuation. 

Using the content manager, GINA facilitates sophisticated mathematical tools to apply 

principles of fundamental physics to drive DEWs. In addition, GINA incorporates some 

innovative ways to address what a DEW means in a tactical sense by qualifying the data 

and relationships in GINA and quantifying a weapon’s full range of performance with 

math. 

To develop our model, we considered the current state of the art in weapons 

modeling. Currently, weapons effectiveness models consider effectiveness in binary 

terms: hit or miss. More specifically, a hit equals kill. In a 2012 report by Naval Surface 

Warfare Center, Dahlgren, VA, the Navy concluded that “conventional air-to-air warfare 

                                                 
1 The project GINA model is hosted at p4ie.nps.edu. For access, contact NPS Information Technology 

and Communications Services. 
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(AAW) models…are not well suited for showcasing current or near-term laser-weapon 

capabilities” (Staton and Pawlak 2012). When evaluating DEWs, degraded performance 

(after “hit”) must take into account the accumulation of energy required for a “kill” over 

a period of time. This deposit of energy on the target over time is especially relevant 

when evaluating the current continuous wave operations of the latest prototypes. The 

prototypes have been operationally tested at relatively low output power levels whose 

effects are observed to be cumulative over time. 

Separate mathematical models were developed to model LASER and microwave 

weapon effectiveness. Separate models were chosen because the ADS is used against 

human targets (Ackerman 2012) and the LaWS, MLD, and TLS LASER weapons are 

primarily intended to be used against non-human targets (O'Rourke, Navy Shipboard 

LASERs for Surface, Air, and Missile Defense: Background and Issues for Congress 

2013). Good analytical models exist for calculating the effects of electromagnetic 

radiation against non-human materials (Harney, Combat Systems Volume 3 2004); 

however, due to ethical implications of intentionally subjecting humans to 

electromagnetic radiation, our research did not result in finding any analytical models for 

human radiation effects. Therefore, empirically derived data was used to develop a 

human effects model for microwave radiation. 

In order to make a one-to-one comparison between the LASER and the 

Microwave devices to conventional weapons, it was necessary to define exactly what the 

outcome of an engagement was, which may not necessarily be lethal. Therefore, we 

assumed all engagement end states were be broadly categorized as either a Type I 

Engagement or a Type II Engagement as shown in Table 5. 
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Table 5. Engagement End State Definitions 

Weapon/Engagement 

End State 

Type I Engagement Type II Engagement 

LASER Burn though threat armor 

before the threat breaches 

the vital area 

Threat armor failure under 

stress due to structural 

weakening 

Microwave Probability of death from 

exposure > 1% before the 

threat breaches the vital area 

Exposure causes the pain 

threshold to be reached 

before the threat breaches 

the vital area 

Conventional Ability to intercept a threat 

before the threat breaches 

the vital area 

Not applicable 

 

1. LASER Model Development 

In developing a mathematical model for LASER performance the textbook 

Combat Systems, Volumes 1–6 by Dr. Robert C. Harney, Senior Lecturer, Naval 

Postgraduate School, Systems Engineering Department, was predominately used. 

Additionally, subject matter expert input was received from Dr. Gary O. Langford, 

capstone advisor. 

Two methods were considered as defeating a threat using a LASER: burn through 

and structural weakening. Burn through involves transmitting enough radiant energy such 

to melt and/or vaporize the target. The damage mechanism is to cause the threat material 

properties to degrade through erosion, evaporation, or melting. Structural weakening 

involves the buildup of energy on a target such that when the target is placed under 

dynamic stress (e.g., from moving very fast as in a missile or withstanding waves/wake 

as in a speedboat) the target structure fails before the point of melting or vaporization has 

been met. The process of calculating what it means to “kill” a threat with a LASER is 

outlined in Chapter 17 of Combat Systems Volume 3. It involves calculating the amount 

of fluence, measured in Joules per square-centimeter, required to melt a threat material, 

and then calculating the amount of fluence over time (the intensity in Watts per square-
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centimeter) that can be applied to a target via a LASER. A method of calculating that 

fluence is given in Combat Systems Volume 3, equation 17.8. 

       (   (              )          )  (
 

    
) 

Equation 2. Target LASER Fluence for Type I Engagement 

In order to calculate fluence, the threat’s density (g/cm
3
) ρ, thickness (cm) h, 

specific heat (J/g-K) Cp, melting temperature (K), ambient temperature (K), reflectivity 

(%) Rf, and heat of fusion (J/g) ∆H are determined. For all analysis, ambient temperature 

was assumed to be 15° C. The fluence for a Type II Engagement was estimated by 

dividing by 6. This factor of one-sixth is an estimate for all LASER between 0.6 to 10.6 

microns (based on an interview with Dr. Gary Langford, citing empirical data from 

gasdynamic and chemical laser fluences on military hardened targets in the marine 

environment). The effects of the atmospheric absorption, thermal blooming, turbulence 

fostered beam wander, beam jitter, and beam divergence, and beam width and quality 

factors (profile and astigmatism) contributed to this factor of 6 reduction in fluence. 

In order to simplify the GINA model inputs and make use of the data available for 

evaluation, the following assumptions were made for LASER analysis. In order to 

combine multiple beams into a single beam, we assumed that the adaptive optics in the 

beam director perform as advertised and that the individual beams are combined in phase 

to form a single coherent beam, spherical, Gaussian beam. The radiation was assumed to 

be continuous wave, not pulsed. Aerodynamic induce erosion of the surface material of 

the threat was incorporated into the factor of one-sixth use to calculate fluence. The 

ambient temperature of the threat material was assumed equal to the ambient temperature 

of the environment. And, atmospheric attenuation included scattering and absorption, but 

not turbulence (issues also incorporated into the factor of one-sixth used to calculate 

fluence). 
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The minimum LASER inputs for engagement modeling were determined to be 

peak output power (Watts), aperture/lens diameter (meters), wavelength (meters), and the 

Gaussian beam matching factor (unitless). Additionally, the total atmospheric attenuation 

(dB/km) (scattering + absorption) and the target range (meters) are necessary model 

inputs. Using these inputs, the following parameters can be calculated: Gaussian beam 

waist, Rayleigh range, beam half angle, beam divergence, spot size at range, peak 

intensity at range, and average intensity at range. These parameters can describe a 

Gaussian beam as shown below. 

 

 

Figure 14. Gaussian Beam Profile Characteristics (from Harney, Combat Systems 

Volume 2 2004, 1004) 

From Combat Systems Volume 2, equation 3.7, the beam waist is calculated as: 

   
 

√ 
 

Equation 3. Beam Waist 

D is the aperture diameter and M is the Gaussian beam matching factor. The 

square root of M is “the number of beam waist distances that can fit across the aperture 
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diameter. M is typically between 5 and 8” (Harney, Combat Systems Volume 2 2004, 

1026). Unless provided by the manufacturer, our model assumed M = 6.5. 

 

From Combat Systems Volume 2, equation 3.37, the Rayleigh range is calculated 

as: 

 

   (  
 ) (  ) 

 

Equation 4. Rayleigh Range 

From Combat Systems Volume 2, equation G.69, the beam half angle divergence 

is calculated as: 

 

   
 

    
 

Equation 5. Half Angle Beam Divergence 

From Combat Systems Volume 6, equation M.6, the beam full angle divergence at 

the 1/e power points is calculated as: 

 

   √     
 

Equation 6. Full Angle Beam Divergence (1/e power point) 

With these values, you can then calculate the peak intensity on the target at range 

R (meters) from Combat Systems Volume 6, equation M.5. 

     
        (

 
    

)

  (  
       )

 



 

 

 

 

69 

Equation 7. Peak Intensity at Range 

α is the total atmospheric attenuation coefficient in km
-1

 and P is power in Watts. 

Intensity is given in Watts per square meter. To convert to Watts per square centimeter, 

you must divide by 10,000. As part of the GINA model, in order to calculate atmospheric 

attenuation, a MODTRAN 5 integration program was written. The output from 

MODTRAN 5 is transmittance through the slant range, which replaces the e
-α(R/1000)

 term 

with T, which is the percentage of total Intensity output from the LASER that is received 

on the threat. Due to the factor of one-sixth used to calculate fluence, this is a very 

conservative estimate for intensity received by the target. 

Peak intensity is at the very center of the LASER beam and falls off with a 

Gaussian profile. This profile is shown in Figure 16 from Combat Systems Volume 6, 

Appendix M. Jitter, which is the random movement of the LASER beam in space, 

normally measured in micro-radians per second, will slew and break up the point of peak 

intensity on the target, sometimes creating “hotspots” that are displaced from the 

geometric center of the beam. A nominal value for jitter is about 10 µRad/s (Harney, 

Combat Systems Volume 3 2004). Over several kilometers jitter has the potential to 

reduce significantly the ability to focus the LASER beam at the target. Therefore, jitter 

must be accounted for in some manner.  Figure 15 shows a sample error analysis for 

factors affecting total energy on target. In this example the total intensity is reduced by 

about 30% due to jitter. However, the project team did not have access to weapon control 

metrics, jitter values, or beam quality definitions (which vary widely across the LASER 

community (Harney, Associate Professor, NPS Systems Engineering Department 2013)). 
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Figure 15. Sample LASER Beam Error Budget (from Merritt 2011) 

Since the project team did not have access to the data required for a full LASER 

beam quality analysis, it was the recommendation of Dr. Robert Harney and Dr. Gary 

Langford to include jitter in the fluence calculation, by assuming that suitable control 

systems have been developed, as evidenced by the fact that each of these systems has 

successfully engaged targets in operational testing. Therefore, we accounted for jitter by 

using average intensity over the beam spot size. That being said, without confirmation of 

the specific beam control parameters associated with each system, it is possible that the 

intensity predicted using this method was overestimated by as much as 30%. However, 

we attempted to correct for that by adjusting our assumed target reflectance to match 
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actual tests results that have been reported in open sources. We recommend that further 

analysis be done with the actual data to confirm these results. 

 

 

Figure 16. Gaussian Beam Intensity Profile (from Harney, Combat Systems Volume 

6 2011) 

To account for the fact that jitter reduces the peak intensity and will move the 

beam such that point of peak intensity will not necessarily be held on the same point on 

the threat body throughout the engagement, we first assumed that instead of the 3-

dimensional Gaussian profile, that the beam intensity profile is conical (Figure 17), which 

is much simpler to calculate as a triangular distribution rather than a truncated normal 

distribution. If the peak intensity is the height of the cone and the jitter-expanded beam 

spot size is the base of the cone, then the volume of the cone is the total intensity at range 

R in the LASER beam. This triangular geometry makes analysis fast and less error prone 

by eliminating the integral and truncating the intensity to the relevant area around the 

target. To calculate spot size, accounting for jitter with a triangular geometry, we used the 

following parameters: beam waist without jitter at the target (calculated with Equation 8), 
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the range to the target, the wavelength and the sine of the angle of jitter multiplied by the 

range to the target as shown in Figure 17. 

      (  [
 

  
]
 

)

   

 

Equation 8. Gaussian Beam Spot Size at Range (from Svelto 2010, 153-155) 

Using the spot size WR as a baseline, we then expanded that spot size to account 

for jitter by using the sine of the jitter angle multiplied by the range to the target and 

added that value to the original spot size to calculate an expanded spot size as shown in 

Figure 17.  

 

 

Figure 17. Conical Intensity Profile Approximation of Gaussian Profile 

The total intensity in the beam at the range of the target distance was computed as 

volume of the cone (integrate over the jitter expanded spot size). Dividing the total 

intensity by the area of the spot size gives the average intensity in the beam in the spot on 

the target. Then we take the average power in the beam spot at any range to be one-third 

of the peak intensity at that range. The average intensity is a good, conservative estimate 

and it does not rely on testing to get the actual jitter value. The factor of one-third 

accounts for targeting/slewing system contributions to jitter and eliminates the need for 

detailing the beam intensity fluctuating over the target.  

𝐽𝑖𝑡𝑡𝑒𝑟 𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝑆𝑝𝑜𝑡 𝑆𝑖𝑧𝑒 

 𝑊𝑅  𝑆𝑖𝑛(𝜽𝒋𝒊𝒕𝒕𝒆𝒓 )*R 
𝜽𝒋𝒊𝒕𝒕𝒆𝒓 

𝑰𝒑𝒌 
R 

Vcone = (1/3)*πr
2
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Calculating the average intensity at a given range, facilitates the summing up of 

the beam the intensity over time (e.g., per second, in units of Joules per square-centimeter 

on target in 1 second) over the entire engagement range. This formulation of beam 

intensity on target can then be used to solve for the number of Type I and Type II 

Engagements possible against a given threat over a specific range. Fluence for a Type I 

Engagement is calculated using Equation 2. 

                             
                        

                             
 

Equation 9. Number of LASER Type I Engagements Possible 

                              
                        

                             
 

 
                        

                             
 

Equation 10. Number of LASER Type II Engagements Possible 

This method of calculating kills by a LASER weapon is superior to the 

conventional models of evaluating kills when applied to LASERs because it allows for 

the gradual deposit of energy onto a target over time in an engagement unlike current 

combat models that would evaluate a LASER kill as instantaneous (just like an exploding 

bomb would be modeled) which is more comparable to predicted Mega Watt class 

LASER weapon performance (O'Rourke, Navy Shipboard LASERs for Surface, Air, and 

Missile Defense: Background and Issues for Congress 2012). In order to incorporate this 

method of calculating kills, an analysis class was written in Visual Basic .NET to be 

integrated with the GINA model, enabling on-the-fly calculations. The code is available 

in Appendix D. 
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Figure 18. Sample Maritime LASER Demonstration (MLD) Intensity Profile over 

20km Against a Mach 1.8 Threat 

A simple spreadsheet analysis of this method of integrating intensity over range 

was performed in order to verify the project code used with GINA. The intensity received 

versus range was calculated and summed over all range increments during the 

engagement.  Figure 18 shows intensity per range based on the 105 kW MLD LASER 

and a threat closing at 800 m/s. We chose to use an integral approximation of the total 

intensity on the threat by using a 1 second time increment for the numerical summation. 

By evaluating the Rayleigh Range of the LASER and the amount of intensity at the target 

range, it was clear that the Rayleigh Range represents a maximum tactical range because 

the intensity level at the Rayleigh Range, as a percentage of the total fluence required for 

a Type I or II Engagement, is so miniscule that to attempt to engage a target at or beyond 

that range would be a waste of power for the weapon platform as it would not produce 

any relevant damage effects against a non-human target at that range. Therefore, it is 

necessary to evaluate what the actual maximum effective range of the weapon is against 

military equipment, hardware, and structures. By inspection of sample LASER data 

presented in Figure 18, we decided to assume that the maximum effective range of a 
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LASER weapon is the range at which the total intensity of the LASER accumulated on 

the target equals 1% of that required for a Type I Engagement. The threshold of 1% was 

an arbitrary choice, but it is justified because the range at which 1% of the fluence 

necessary for a Type I Engagement is accumulated can be thought of as the “trigger 

range,” at which the weapon can begin to effectively (having measurable and noticeable 

damage effects) engage a given threat which is shown by the knee in the curve in Figure 

18. This calculated maximum effective range will be unique to different threat 

types/materials and speeds for the same LASER weapon. Another way to think of this 

definition of maximum effective range is that any potential engagements attempted 

beyond this range are wasting power and cooling resources on the weapon platform due 

to a miniscule amount of intensity being received at the target due to normal range loss as 

well as atmospheric attenuation. As the range to the target increases beyond the Rayleigh 

Range, the triangular factor of one-third is insufficient to account for the effects of jitter 

(due to larger spot size and lower peak power) and a factor of one-sixth is more 

appropriate (at 2 to 3 times the Rayleigh Range) (Langford, Senior Lecturer, SE 

Department, Naval Postgraduate School 2013). Therefore, the GINA model specified all 

detection ranges to be less than or equal to the Rayleigh Range for LASER weapon 

engagements. 
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Equation 11. Threat Kill Fluence Integral Approximation 

2. Microwave Model Development 

When considering what it means to have a Type I Engagement and Type II 

Engagement with a microwave weapon, it becomes difficult to define clear metrics. 

There is little if any research in this area due to obvious ethical concerns of exposing 
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humans to microwave radiation and then measuring the damage effects. Safety limits 

provide some insight, but most limits are orders of magnitude away from actual 

lethal/weapon’s grade limits of exposure and are difficult to apply to weapon metrics.  

Damage can be caused by a microwave weapon in two ways: thermal heating and 

electrical inductance. Electrical inductance was scoped out of the project because 

background research showed that microwave weapon interest was primarily as a non-

lethal weapon against humans (Department of Defense Unkown). Thermal heating, as 

with a LASER, involves the accumulation of Joules over the threat surface area and some 

capacity for energy absorption leading to an increase in temperature. Unlike LASER 

weapons, microwave weapons, such as ADS, have been designed primarily as anti-

personnel weapons with purposely less-than-lethal effects. One source that our research 

uncovered is a collection of empirical data published by the Institution of Chemical 

Engineers called Thermal Radiation: Physiological and Pathological Effects. This 

reference provides detailed analysis of thermal burns caused by radiation, explosions, and 

laboratory experiments over the past several decades. The empirical data shown allowed 

a relationship between intensity and time to reach the threshold of pain in addition to an 

average time to achieve a lethal dose. 

To determine the intensity on target produced by a microwave weapon, peak 

output power, frequency, attenuation, threat range and antenna area were considered. 

  
    

    
 

Equation 12. Microwave Weapon Antenna Gain (Payne 2012, 35) 

Microwave antenna gain is dependent on: antenna efficiency (%) ρ, antenna 

physical area (m
2
) A, antenna constant of proportionality (assumed to be 4/π) k (Payne 

2012, 33), and microwave wavelength (m) λ. The antenna proportionality constant 

assumption is based on “an intermediate or typical pattern” because although the project 

team has pictures of the antenna, the actual antenna array configuration for ADS was 
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unavailable (Payne 2012, 33). The antenna gain is then used to calculate intensity 

(normally referred to as irradiance for microwaves, but we used intensity to keep the 

same terms throughout the project as the units are the same). The equation used to 

calculate microwave intensity is a combination of a simplified microwave propagation 

equation from the text book Principles of Naval Weapon Systems 2
nd

 Ed. and an 

atmospheric transmittance term from Combat Systems Volume 3. Although simplified, in 

that the propagation equation’s gain component does not include detailed terms that 

might take into account factors such as electronics temperature during operations, and a 

more specific mathematical description of the antenna array’s properties, the other terms 

remain the same with the addition of the attenuation term to the equation. Therefore, the 

intensity equation used is a valid way of calculating the intensity that can be adjusted in 

future studies with the simple addition of correction factors to account for more specific 

information that might then be available to study. To account for atmospheric attenuation, 

the intensity equation is multiplied by percent atmospheric transmittance (T) to calculate 

the actual intensity at the target. 

  
         

      
 

 

Equation 13. Microwave Intensity on Target (Payne 2012, 39) 
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Table 6. Irradiance and Pain Threshold for Microwave Radiation on Humans (from 

Hymes, Boydell and Prescott, Thermal Radiation: Physiological and Pathological Effects 

1996, Table 4.3 & 4.4) 

Irradiance 
(kW/m2) Time to Pain Threshold (S) 

3.7 20 

4.2 13 

5.2 10 

6.2 10 

6.3 8 

8.4 5.5 

9.7 5 

14.5 3 

18 2 

 

Table 6 shows various amounts of irradiance (intensity) incident on humans and 

the average time in seconds to reach their threshold for pain. Using power regression, a 

relationship between intensity and pain can be constructed as shown in Figure 19. 

 

 

Figure 19. Time to Pain Threshold Regression 
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Additionally, Thermal Radiation provides a method of calculating radiation dose 

units, based on the intensity and the exposure time. This method provides a unitless and 

relative measure of radiation based on empirical data. 

           
 
       

Equation 14. Microwave Dose Calculation (from Hymes, Boydell and Prescott, 

Thermal Radiation: Physiological and Pathological Effects 1996, 21) 

 Time (t) is in seconds and intensity (I) is in kW/m
2
. When the radiation doses are 

calculated for pain thresholds, the average dose is approximately unitless 92 ( (Hymes, 

Boydell and Prescott, Thermal Radiation: Physiological and Pathological Effects 1996, 

21).   

To reach a lethal exposure limit, the dose must exceed unitless 1050, which 

corresponds to a 1% chance of death from exposure. It is important to note for the 

purpose of interpreting this analysis that a 1% chance of death essentially corresponds to 

the beginning of 2
rd

 degree burns (which can be fatal depending on the percentage of the 

body that has been burned) (Hymes, Boydell and Prescott, Thermal Radiation: 

Physiological and Pathological Effects 1996, 2). This lower limit was chosen because 

microwave weapons, specifically ADS, have been sought out as a less-than-lethal options 

(LeVine, The Active Denial System: A Revolutionary, Non-lethal Weapon for Today’s 

Battlefield 2009), and it is important to understand when to turn off the weapon, how 

long to radiate for, or whether some variable power option is needed. At unitless 2300, 

the probability of death increases to 50% (Hymes, Boydell and Prescott, Thermal 

Radiation: Physiological and Pathological Effects 1996, 2). The dose level for a lethal 

dose is approximately one order of magnitude greater than required to reach the pain 

threshold. This lethal dose corresponds to the rule of thumb that safety exposure limits 

for electromagnetic radiation are about one order of magnitude less than the actual lethal 

limit (Harney, Associate Professor, NPS Systems Engineering Department 2013). For 

follow-on research, it should be noted that the four thirds exponent is based on data that 
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was derived from many sources of burns, not just radio-frequency burns, and can (and 

should) be adjusted to correspond to actual test data. 

 (     )          ( 
 
   )       

 Equation 15. Lethality Probability from Radiation Exposure (from Hymes, Boydell and 

Prescott, Thermal Radiation: Physiological and Pathological Effects 1996, 36) 

 We constructed a spreadsheet model of the source data to confirm (that by 

dividing the intensity by 10 (1 order of magnitude), and substituting that value into the 

regression equation for pain) the resultant time to reach the lethal limit. This lethal limit 

was confirmed by using the original intensity, and the calculated lethal exposure time 

back into the radiation dose formula, which consistently produced a radiation dose 

between the 1% and 50% probability of death limits. Therefore, an accurate method of 

calculating microwave weapon Type I and Type II Engagements was derived and 

validated. 

                              
              

                     
 

Equation 16. Microwave Type II Engagements Possible 

                             
       (

 
  )

      

                     
 

Equation 17. Microwave Type I Engagements Possible 

For both LASERs and microwaves, the total engagement time is equal to the 

detection range of the threat divided by the threat speed. The equations for calculating 

microwave Type I and II Engagements were translated into Visual Basic .NET code and 

incorporated into the DEWAnalysisSEA19B class, see Appendix D. 
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Figure 20. Directed Energy Weapon (DEW) Analyzer Software Screen Shot 

For testing the model during development (to ensure the equations were 

calculating properly) and in order to provide a quick analysis tool, a simple user interface 

was built into a DEW Analyzer application (Figure 20). This application allows the user 

to input the weapon and threat characteristics and export to text file (with an optional 

CSV file for easy import into Excel) the engagement effectiveness in terms of Type I and 

Type II Engagements possible. 

3. Conventional Weapon Comparison 

In order to make a usable comparison of DEWs to existing weapons, a method of 

calculating the effectiveness of conventional weapons must be made in the same terms as 

DEWs. For the purposes of the GINA model, and in accordance with the current 

modeling paradigms which express conventional weapon success as a binomial process,  
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and do not account for a gradual accumulation of damage to a target (O'Rourke, Navy 

Shipboard LASERs for Surface, Air, and Missile Defense: Background and Issues for 

Congress 2012), we assumed that conventional weapons were not capable of Type II 

Engagements. Therefore, in order to calculate the number of Type I Engagements 

possible, a linear engagement model was used with a designated boundary between Type 

I and Type II engagements. The GINA model assumes that if a conventional weapon can 

reach the threat before the threat has breached the vital area, then the weapon will achieve 

a Type I Engagement. We consider conventional weapons and DEWs on the same terms 

in order to attempt to achieve an accurate comparison. 

This type of engagement analysis is based on missile engagement analysis in 

Combat Systems Volume 6, chapter 7. A depiction of this type of analysis is show in 

Figure 21. 

 

 

Figure 21. Simple Missile Engagement Analysis (from Harney, Combat Systems 

Volume 6 2011, 323) 



 

 

 

 

83 

The number of Type I Engagements possible is based on the threat detection 

range, threat speed, weapon launch delay, and weapon speed. The assumption is made 

that the engagement will not begin beyond the weapon’s maximum range. By launch 

delay, we mean the total time between successive launches or firings (as we are 

extending this analysis to bursts of bullets, such as from the CIWS). This delay includes 

tracking, firing solution, launch preparation, and possibly re-targeting. Threat and 

weapon data used for this portion of the model is shown in Appendix E. 
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Equation 18. Number of Conventional Type I Engagements Possible 

4. Modeling Atmospheric Attenuation 

For this project, MODTRAN 5 was chosen to model atmospheric attenuation for 

ship-based DEWs. While other radiative transfer programs have been written that give 

more precise results for the LASER region, MODTRAN 5 was acceptable and readily 

available for use by the project team. Also, there existed a wealth of knowledge in 

operating MODTRAN in the form of faculty at NPS. Finally, MODTRAN 5 is an 

“extensively validated…narrow band model” for use by the U.S. Department of Defense 

to calculate atmospheric attenuation over both the microwave and LASER wavelength 

regions of the electromagnetic spectrum (Spectral Sciences, Inc. 2012). 

In setting up MODTRAN for use by the project team it was necessary to make 

several input assumptions for MODTRAN. The default Tape 5 input file format used is 

the Navy Maritime model (see Appendix F) which includes atmospheric data specified by 
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the U.S. Navy.  Table 7 outlines the specific assumptions that were made. All model 

values used were picked from the default MODTRAN 5 options, both of which (values 

and options) have been validated. 

Table 7. MODTRAN Default Variable Options Selections (LASER Spectral 

Region) (from Berk, et al. 2011) 

MODTRAN Model Variable SEA 19B Model Set Assumption 

Base Tape 5 File NavyMaritime.tp5 (U.S. Navy base 

MODTRAN model) 

Slant Path Option Between 2 Altitudes, of which the weapon 

(H1) is always at 0 

Model 1976 U.S. Standard Atmosphere 

Season Spring-Summer 

Extinction Maritime Extinction (23 km visibility) 

Clouds None 

Rain Rate Variable based on GINA Model: 0, 2, 5, or 10 

mm/hr 

Wind 7.2 m/s (from NavyMaritime option) 

Wavelength DV 0.005 micrometers 

Full Width Half Maximum (for slit 

function) 

0.01 micrometers 

Slit Function Rectangular 

Output NavyMaritime.tp6: Average transmittance 

percent over center wavelength +/- 0.005 

microns 

 

For calculating microwave attenuation in MODTRAN 5, several adjustments 

were made to the input from the standard form used for the LASER spectrum. 

MODTRAN only accepts lower wavelength inputs in the form of wavenumbers in units 

of cm
-1

. Therefore, prior to being executed the following conversion was made: 

               (     ) 

Equation 19. Wavelength to Wavenumber for Microwave in MODTRAN5 (from 

French 1971, 214) 
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 Then in Card4, Flags1 and Flags2 must both be set to null (a blank space) and 

FWHM must be set to 0.1. This allowed MODTRAN to compute microwave attenuation 

accurately. 

5. Atmospheric Model Global Information Network Architecture 

(GINA) Integration 

In order to make an application accessible to GINA, it must have a well-defined 

application programing interface (API). MODTRAN is a fully compiled program with no 

such API available. Therefore, a “class wrapper” was needed to access MODTRAN 

through GINA. A class wrapper is used to “[marshal] data between managed and 

unmanaged code, on behalf of the wrapped object” (Microsoft 2013). In this case with 

our GINA model, the object is MODTRAN and we need to be able to define variables 

corresponding to the values that make up the input Tape 5 file that MODTRAN reads in 

order to compute atmospheric attenuation. The Tape 5 file would normally be edited in a 

text editor by the user. By defining variables for each file parameter, GINA can be used 

to pass the relevant data to the class wrapper, which then translates that data into the 

MODTRAN file format, executes the MODTRAN console application, reads the 

MODTRAN Tape 6 output file, translates that output value into a model relevant format, 

and then passes that value back to GINA for use in the GINA model. The process of data 

flow from user input to, to MODTRAN, and back to an output that the user can interpret 

is shown in Figure 22. The class wrapper code is available in Appendix G. 
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Figure 22. MODTRAN Class Wrapper Gateway for Global Information Network 

Architecture (GINA) Integration 

The benefit of writing this class wrapper and placing it in the GINA context is 

that future variations of the model can take advantage of the class wrapper and context, 

and then incorporate any of the variables that have been hardcoded as predefined values 

and make them model inputs. Additionally, the class wrapper can be used by anyone else 

who needs to more easily access the input-output parameters of MODTRAN. A detailed 

software development process for the MODTRAN5 class wrapper can be found in 

Appendix H. 

D. DIRECTED ENERGY WEAPON (DEW) MODEL VALIDATION AND 

ATMOSPHERIC EFFECTS 

1. Model Data Collection 

The only data available for analysis was unclassified, open-source data. If a 

parameter was missing that was necessary for carrying out analysis, we based our GINA 

model inputs on reference material and subject matter expert advice as shown in Table 8 

(values in red italics).  Table 8 represents the consolidated data available to the project 

team for DEW analysis. The model was built around the figures shown in Table 8. 

Conventional Weapon data used for comparative analysis is listed in Table 9. 
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Table 8. Directed Energy Weapon (DEW) Model Data Assumptions 

System Power Wavelength/ 
Frequency 

Aperture 
Diameter/ 
Area 

Gaussian 
Beam Waist 
Matching 
Factor/ 
Antenna  
Constant 

Antenna  
Efficiency 

Power 
Efficiency 

ADS 100kW 
(Miller and 
Svitak, NATO 
NAVAL 
ARMAMENTS 
GROUP 
Workshop on 
Counter 
Piracy 
Equipment 
and 
Technologies 
2009, 5) 

95 GHz 
(Department of 
Defense 
Unkown) 

4.772 m2 
(Miller and 
Svitak, NATO 
NAVAL 
ARMAMENTS 
GROUP 
Workshop on 
Counter 
Piracy 
Equipment 
and 
Technologies 

2009, 5)2 

4/π (Payne 
2012, 33) 

0.8 (Payne 
2012, 35) 

0.5 (LeVine, 
The Active 
Denial 
System: A 
Revolutionary, 
Non-lethal 
Weapon for 
Today’s 
Battlefield 
2009) 

LaWS 33kW 
(O'Rourke, 
Navy 
Shipboard 
LASERs for 
Surface, Air, 
and Missile 
Defense: 
Background 
and Issues 
for Congress 
2013) 

1.064 μm 
(O'Rourke, 
Navy Shipboard 
LASERs for 
Surface, Air, 
and Missile 
Defense: 
Background 
and Issues for 
Congress 2013) 

0.66 m 
(Tressler 

2010)3 

6.5 
(Harney, 
Combat 
Systems 
Volume 2 
2004, 1026) 

N/A 0.25 
(O'Rourke, 
Navy 
Shipboard 
LASERs for 
Surface, Air, 
and Missile 
Defense: 
Background 
and Issues for 
Congress 
2013) 

LaWS+ 150kW 
(Chernesky 
2012) 

1.064 μm 
(O'Rourke, 
Navy Shipboard 
LASERs for 

0.66 m 
(Tressler 
2010)2 

6.5 
(Harney, 
Combat 
Systems 

N/A 0.25 
(O'Rourke, 
Navy 
Shipboard 

                                                 
2 Assuming a perfectly square array 

3 Estimated from CIWS installation diagram by counting 7.25 beam director’s able to fit across 188 
inches 
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Surface, Air, 
and Missile 
Defense: 
Background 
and Issues for 
Congress 2013) 

Volume 2 
2004, 1026) 

LASERs for 
Surface, Air, 
and Missile 
Defense: 
Background 
and Issues for 
Congress 
2013) 

MLD 105kW 
(O'Rourke, 
Navy 
Shipboard 
LASERs for 
Surface, Air, 
and Missile 
Defense: 
Background 
and Issues 
for Congress 
2013)  

1.064 μm 
(O'Rourke, 
Navy Shipboard 
LASERs for 
Surface, Air, 
and Missile 
Defense: 
Background 
and Issues for 
Congress 2013) 

0.49 m 
(O'Rourke, 
Navy 
Shipboard 
LASERs for 
Surface, Air, 
and Missile 
Defense: 
Background 
and Issues for 
Congress 

2013)4 

6.5 
(Harney, 
Combat 
Systems 
Volume 2 
2004, 1026) 

N/A 0.225 
(O'Rourke, 
Navy 
Shipboard 
LASERs for 
Surface, Air, 
and Missile 
Defense: 
Background 
and Issues for 
Congress 
2013) 

TLS 10kW (Keller 
2009) 

1.6 μm (Keller 
2009) 

0.3 m 
(Department 
of Defense 

2010)5 

6.5 
(Harney, 
Combat 
Systems 
Volume 2 
2004, 1026) 

N/A 0.30 
(O'Rourke, 
Navy 
Shipboard 
LASERs for 
Surface, Air, 
and Missile 
Defense: 
Background 
and Issues for 
Congress 
2013) 

 

  

                                                 
4 1ft*2ft = A = π*(D/2)^2,  ∴ D≈0.49m 

5 Based on an analogous system because the Air Force LASER is also small and low powered 
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Table 9. Conventional Model Data Assumptions 

Weapon 

Designator 

Weapon Name Weapon Speed 

(m/s) 

Weapon Max 

Effective Range 

(m) 

Weapon 

Type 

MK 15 Close-In Weapon 

System 

1113 1490 CONV 

MK 38 Mod 2 25mm Bushmaster 1100 2460 CONV 

MK 54 5 Inch/54 Cal. Deck 

Gun 

808 15000 CONV 

RIM-116 Rolling Airframe 

Missile 

681 9000 CONV 

RIM-66 MR SM-2 Block III 

Medium Range 

1191 166680 CONV 

 

Threat material data used to represent the armor that a DEW would affect to 

produce damage and thereby measure success in the GINA model also needed to be 

collected and input into the GINA model. Aluminum, Stainless Steel, Titanium, and 

Wood stood out in our research as those that would encompass most threats to be 

evaluated. Since melting temperature is not applicable for wood, the ignition temperature 

was substituted. During an engagement, the reflectivity of the threat will change due to 

oxidation, carbonization, and other thermal induced processes. Also, specific threat 

reflectivity values were not available (if known at all). Therefore, for all targets, 

reflectivity was assumed to be 86% (Langford, Senior Lecturer, SE Department, Naval 

Postgraduate School 2013). The specific data used in our analysis is consolidated in 

Table 10. 
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Table 10. Threat Material Thermal Properties Assumptions (after Stanmech 

Technologies, Inc. n.d.)6 

Material Density 

(g/cm
3
) 

Specific Heat 

(J/g-K) 

Melting 

Temperature (K) 

Latent Heat of 

Fusion (J/g) 

Aluminum 

1100–0 

2.71264 1.00416 916.4833 393.094 

Stainless 

Steel 430 

7.7504 0.46024 1699.8167 452 

(MATWEB.com 

n.d.)7 

Titanium 

99% 

4.51184 0.54392 1933.15 434.962 

Wood 

(Oak) 

0.74736 1.2 

(Massachusetts 

Institute of 

Technology 

2009)8 

755.3722 

(HandyFacts.com 

n.d.)9 

115.2 (Electronics 

Cooling 2008) 

Fiberglass 0.026 

(National 

Institute of 

Standards & 

Technology 

n.d.)10 

0.844 

(Massachusetts 

Institute of 

Technology 

2009) 

1394.15 (BFG 

Industries, Inc. 

2004) 

38 (Lux 2000)11 

 

Prior to integration in the GINA model, the selected mathematical equations were 

validated using sample data that was assumed before the complete GINA model threat 

list had been finalized and actual GINA model threat data collected. The threat data used 

for validation (Table 11) was generated based on the project team’s experience to 

represent some different, generic threats that might be representative of actual threats. 

                                                 
6 Unless otherwise notated in the table 

7 Approximated using ASTM A514 Steel, grade P 

8 Approximated as hard wood 

9 Ignition temperature 

10 R-15 blown fiberglass 

11 Approximated using Sulfur 
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The purpose of validating the model was to provide a range of generalized threat data to 

get an estimate of DEW performance, test the model assumptions, equations, and 

software, and draw some inferences about the DEWs selected for analysis. 

Table 11. Validation Threat Data 

Threat Threat Material Material Thickness 

(cm) 

Threat Speed 

(m/s) 

Low Slow Flyer 

(LSF) 

Aluminum 0.5  77.17 (150 kts) 

Fast Attack Craft/Fast 

Inshore Attack Craft 

(FAC/FIAC) 

Aluminum 2.0 23.15 (45 kts) 

Anti-ship Cruise 

Missile (ASCM) 

Titanium 0.1 600 (Mach 1.8) 

Hostile Person Human Skin N/A 4.5 (10 MPH) 

 

2. Directed Energy Weapon (DEW) Model Validation 

As part of the GINA model equation validation process, an analysis of the 

relevant atmospheric windows was conducted. An early concern was that ADS would be 

rendered completely ineffective by attenuation in the marine environment caused by 

scattering from aerosols such as sea spray and evaporation. Following an analysis of the 

atmospheric attenuation and by substituting realistic attenuation values into the GINA 

model equations for validation, it was determined that the attenuation effects on 

microwave radiation out to the maximum effective range of the ADS (about 700 yards as 

reported by the Air Force) did not result in a significant degradation in performance in 

the maritime environment as discussed below in the next section and shown in Figure 24. 
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Figure 23. Microwave and LASER Attenuation (after Harney, Combat Systems 

Volume 1 2004) 

Figure 23 above shows the effects of weather on wave propagation in the 

electromagnetic regions from microwaves to visible light, based on MODTRAN data. On 

the graph, the ADS and the approximate LASER frequencies/wavelengths are shown. 

When compared to RADAR systems which typically operate below 10 GHz, the 95 GHz 

ADS incurs significantly more attenuation, which only increases as humidity and other 

particulate matter is introduced. Comparing the ADS to a surface search RADAR, which 

can experience significant clutter in the maritime environment, lead to the early 

assumption by the project team that the ADS would not be an effective naval weapon. 

3. Microwave Model Validation 

In order to make an initial assessment of ADS’s relevance in the marine 

environment prior to full GINA model implementation, we chose to evaluate the ADS 

under 3 atmospheric attenuation conditions: Clear (2 dB/km), Light Rain (3 dB/km), and 

ADS 

LASER 
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Heavy Rain (10 dB/km). The threat selected was a human approaching at 10 mph, 

presumably in a boat moving toward a pierside ship. The threat would begin approaching 

at 1,000 meters and close to 0 meters from the ADS on a completely horizontal path. The 

three weather conditions were evaluated to determine the relationship between the time to 

achieve a Type II Engagement and the type of weather. Surprisingly, the ADS performed 

much better than expected as seen in Figure 24. Even in heavy rain, the ADS performed 

well out to 350 meters. 

 

 

Figure 24. Active Denial System (ADS) Performance in Weather 

The red line at 1 second in the ADS weather performance graph shows where the 

weapon is most effective. Any longer than 1 second to achieve a Type II Engagement 

means that the threat is not being heated quickly enough to cause the type of near-

instantaneous pain necessary to force the threat to stop. Under heavy rain that range is 

about 250 meters and under light rain and clear conditions that range is about 450 meters. 

Light rain can be thought of as simulating sea spray during a small boat threat attack. 
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Therefore, based on this limited analysis, the offers added benefits to offer the Navy. 

During testing, most subjects were able to tolerate the microwave radiation for a few 

seconds at 700 yards (640 meters) (Ackerman 2012). If you look at the clear weather line, 

at 650 meters, it shows time to pain as about 2 seconds. Also, at 700 yards it has been 

reported that the ADS transmits 12 J/cm
2
 (Ackerman 2012). The predicted intensity for a 

threat at 600 meters (656 yards) is approximately 16 J/cm
2
, which is very close to the 

expected value based on Ackerman’s data. Therefore, this analysis supports the use of the 

microwave mathematical model within the GINA model for predicting the real-world 

effects of high power microwave weapons. 

 

 

Figure 25. Active Denial System (ADS) Pain vs. Lethal Time Thresholds 

In Figure 25, a slightly different interpretation of the same data used to evaluate 

weather effects can be compared to the threshold for lethality. Upon first inspection of 

this graph it may seem as though, unlike the actual field tests of the ADS, we are 

predicting a high probability of lethal effects. However, to interpret this data properly, the 
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lethality definition must be fully understood. As previously discussed, the time thresholds 

predicted by the mathematical model will calculate the time in seconds to at least a 1% 

chance of death (actual percentages vary based on intensity and time between 1% and 

50% based on the empirical data used to derive the mathematical model. The probability 

of death corresponds to the level of burn that can be expected, with the lethal threshold 

set at about a 2
nd

 degree burn (which occurs at a radiation dose of unitless 1200) (Hymes, 

Boydell and Prescott, Thermal Radiation: Physiological and Pathological Effects 1996, 

2). In actual tests, at least 2 subjects were hospitalized due to excessive exposure caused 

by a safety setting being bypassed in the ADS allowing a longer than intended burst of 

radiation to be emitted from the ADS (Tressler 2010). Since then, the ADS has been 

outfitted with a LASER range finder and radiation time controls (Weinberger, Pain Ray 

Test Subjects Exposed to ‘Unconscionable Risks’ 2008). Therefore, considering that the 

mathematical model assumes a continuous exposure at full power without a safety 

limitation (as in the actual system), then the results for lethal effects limits are valid. 

Further, should other systems, such as shipboard RADARs like the SPY-1D(V), with its 

dual beam capability, be modified to be used as an ADS type system then these lethality 

predictions are crucial to the evaluation of tactics for employing such a weapon if range 

safety controls are limited due hardware or software upgrade limitations stemming from 

the fact that a RADAR was not initially designed to be a DEW used to engage humans. 

4. Microwave Model Sensitivity 

In order to determine the effect of assumptions on the model results and to 

determine what differences in performance could be realized with changes to weapon 

technical parameters, a sensitivity analysis of the microwave model was conducted. The 

baseline case for this analysis was a 100kW microwave, operating at 95GHz, with a 4 m
2
 

antenna (4/π constant), engaging a person running towards it at 4 m/s starting from a 

range of 700 m. Each parameter was varied from a lower limit to an upper limit given in 

Table 12. 
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Table 12. Microwave Sensitivity Factor Values 

Parameter Lower Limit Upper Limit 

Antenna Area (m
2
) 1 10 

Antenna Efficiency (%) 0.1 0.95 

Antenna Proportionality Constant (unitless) 0.5 2.0 

Power (W) 10,000 1,000,000 

  

For each parameter, the values were varied from low to high while all other 

parameters were held constant. Minitab was then used to analyze the data (the full data 

set is available in Appendix I).  Figure 26 shows how varying each parameter affects the 

microwave’s ability to inflict pain on the threat. From a rough order analysis, after about 

70 kW, diminishing returns decreases the improvement in time for pain per kW increase. 

Also, as long as a system’s antenna is at least 50% efficient, the system will have 

tactically relevant performance. Both of these break points in performance are important 

to note when considering future investments into HPM technology or possible 

improvements to the ADS. 
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Figure 26. Main Effects Plot for Seconds to Pain (Microwave Model Sensitivity) 

 Figure 27 shows the same parameter variance effects, but with respect to 

the time required to have lethal effects. Since the ADS was not developed to have lethal 

effects, the performance is not very impressive, but if the goal was lethal effects, at the 

system should output at least 150 kW. Also, antenna efficiency must be higher in order to 

have lethal effects with reasonable power levels. As in the non-lethal analysis, after 4 m
2
 

increasing the area of the antenna has diminishing returns. 
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Figure 27. Main Effects Plot for Seconds to Lethality (Microwave Model Sensitivity) 

In performing this sensitivity analysis, we also wanted to determine what design 

features would have the best return in terms of tactical performance.  Figure 28 depicts 

the power level requirements to result in successful Type I and Type II engagements at 

desired times against a target moving 4 m/s at a distance of 700 yards and atmospheric 

attenuation is 0.5 dB/km.   
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Figure 28. High Power Microwave (HPM) Type Effects  

In order to obtain a Type II engagement where the target experiences near-

instantaneous pain that leads to disengagement, we have assumed that target heating time 

has to be no more than 1 second. At 150kW, the effect is produced after an average time 

of 1.05 seconds which is on the cusp of the allotted timeframe. Therefore, power levels 

greater than 150kW will meet the 1 second timeframe. For Type I engagements, we have 

assumed that the heating time that produces a lethal effect has to be no more than 5 

seconds. At 500kW and above, a lethal effect occurs prior to 5 seconds.   

The ADS can operate at power levels up to 100kW.  Figure 29 shows the times 

for the type effects of a target moving at 4 m/s at 700 yards when the power level is 

100kW and atmospheric attenuation is 0.5 dB/km. At 100kW, the Type I and Type II 

effects are produced in 39s and 1.8s respectively. Although the Type I time is well over 

the 5 second time to lethality benchmark, it’s not alarming considering the underlying 

purpose of ADS is to perform non-lethal engagements. However, 1.8s is over the desired 

time to pain benchmark (less than 1 second). The extra 0.8s comes when the power is 

30% less (100kW vice 150 kW) than the power requirement to reach the desired time to 

pain benchmark.  
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Figure 29. 100kW Type Effects 

5. LASER Model Validation 

A side-by-side analysis of the LASER weapons was also conducted. Additionally, 

since the value for the Gaussian Beam Matching Factor was assumed to be 6.5 for all 

LASER weapon systems, a sensitivity analysis was conducted to see what effect the 

Gaussian Beam Matching Factor has on results predicted by the mathematical model. The 

analysis of the LASERs was conducted assuming a clear day in a marine environment, 

with an equal attenuation for all systems of 0.8 dB/km, and reflectance of 89% from the 

target. Even though the TLS wavelength is different from the other LASER systems, the 

atmospheric attenuation analysis of the LASER region concluded that the difference was 

not significant enough to warrant a separate calculation of attenuation for the 

mathematical model validation. In all three validation analysis runs, the threats were 

assumed to be detected at 10km and were tracked inbound to 0km. Because of the 

logarithmic increase in intensity that is experience by the target as it closes the few 

hundred meters to the LASER weapon, this analysis evaluated the associated 

performance ranges, Maximum Effective Range, Range of First Type I Engagement, and 

Range of First Type II Engagement. The analysis did not account for the number of 

engagements possible and therefore assumed only one attacker. 
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Figure 30. LASER Weapons vs. Aluminum Boat, Clear Day 

The results of analyzing the aluminum boat test (Figure 30), indicated that the 

TLS outperformed the 33kW variant of the LaWS, and the 105kW MLD. This result was 

surprising due to the low power of the TLS at only 10kW. The reason for this notable 

performance lies with the wavelength of the TLS, which allows more power to be 

transmitted to the target than the other weapons. This fact is substantiated by a U.S. 

Government report, which indicated that the TLS, despite being low power, is on par 

with all of the other weapons being evaluated (O'Rourke, Navy Shipboard LASERs for 

Surface, Air, and Missile Defense: Background and Issues for Congress 2013). A 

conservative view of a LASER system defending itself (and the ship on which the 

LASER is installed) pits the LASER fluence against a pure aluminum boat hull (2cm). 

While the thickness maybe overestimated, the fluence required to “kill” a boat requires 

more than simply penetrating the hull. The technical realism in this view point posits a 

“hard” target against the LASER weapon as a more realistic engagement. Unlike the 

ADS that targets a fast moving inbound threat, LASER system test data is not available in 

an unclassified format; however, one article indicates that the MLD is effective in terms 

0

200

400

600

800

1000

1200

Maximum Effective
Range

Range of First Type I
Engagement

Range of First Type II
Engagement

R
an

ge
 (

m
e

te
rs

) 

2cm Thick Alum. Boat (45kts) 

TLS

LaWS

LaWS+

MLD



 

 

 

 

102 

of miles not yards against a static threat (Brisbane Times 2011). Therefore, this single test 

cannot by itself be used to validate the model. 

 

 

Figure 31. LASERs vs. Aluminum Low Slow Flyer (LSF), Clear Day 

The next test against a representative low slow flyer (LSF) shows the effect of 

material thickness on weapon effectiveness, especially since this threat was moving at 

nearly 3 times the speed of the boat in the previous example (Figure 30). In this case the 

MLD performs effectively out to a nautical mile. Again, the TLS is on par with the 

LaWS. The MLD range modeled in this scenario is closer to the article’s assertions of the 

weapon’s effectiveness and points toward the model’s validity, assuming that the article 

accurately reflects the results of the test.   
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Figure 32. LASER Weapons vs. Titanium Anti-Ship Cruise Missile (ASCM), Clear 

Day 

The anti-ship cruise missile (ASCM) preliminary analysis (Figure 32), like the 

ADS lethality analysis must be taken in context. At first glance, the graph appears to 

show that LASERs which have not been able to destroy missiles can in fact kill an 

inbound missile. However, the LaWS+ 150kW variant achieves a Type I Engagement at 

about 1,000 meters. This range and fluence is very close to the defending platform noting 

that the missile in this example is moving at Mach 1.8. Increasing the current 33kW 

LaWS to the 150kW LaWS+ may result in a system that can be used against missiles, a 

realistic target engagement. With regards to the Type II Engagement predictions, is the 

caveat suggests that a theoretical value determined by this analysis, assumes some 

amount of a titanium sheet will fail under dynamic stress (which certainly pertains to the 

ASCM scenario). However, this scenario does not include the structural components 

behind the skin or that the missile may be made of multiple materials. Actual field testing 

would seem appropriate to quantify that interaction. Although not substantiated in this 

report, the possible combining of a “lower” powered LASER may weaken an inbound 

missile so that systems like RAM and CIWS can conserve ammunition and missiles when 
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used in conjunction. Finally, looking at the predicted maximum effective range for MLD 

in this scenario (nearly 3500 meters), the amount of intensity is  indeed effective at the 

“miles” criterion as touted by the Brisbane Times article. Therefore, in lieu of classified 

test data and considering all 3 preliminary results in context, it is reasonable to assume 

that the LASER model is valid. Additionally, a review of the data by Dr. Gary Langford 

concluded that the model was producing realistic values based on his previous LASER 

weapon test experience. 

6. LASER Model Sensitivity 

LASER model sensitivity analysis examined the following factors: wavelength, 

lens/aperture diameter, output power, Gaussian beam matching factor (m), and target 

material reflectivity. Therefore, it was necessary to see what effect varying each 

parameter between high and low values (Figure 33) had. The upper and lower limits of 

the values used in the sensitivity analysis for each factor can be found below in Table 13  

As a baseline, the 33kW variant of the LaWS was used against a titanium ASCM 

(Harney, Combat Systems Volume 3 2004) traveling toward the DEW at 100 m/s from a 

starting range of 10km. The unreasonably slow speed was chosen to provide ample time 

for energy accumulation on the target even at low performance settings in order to collect 

data for the analysis. This threat profile may realistically resemble a hardened military 

UAV. 

Table 13.  LASER Sensitivity Analysis Parameter Ranges 

Parameter Low Value High Value 

Wavelength 1.064 um 1.6 um 

Lens Diameter 0.1 m 1.0 m 

Gaussian Beam Matching 

Factor 

5.0 8.0 

Power 10 kW 500 kW 

Target Reflectance 80% 99% 
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Figure 33. LASER Model Sensitivity Analysis 

The results are summarized in Figure 33, which shows the main effect of each 

parameter on the calculated maximum effective range, measured in meters. Wavelength 

was shown to have a negligible effect on the maximum effective range as illustrated in 

the first graph from the left in the top row. One of the most significant factors of the 

mathematical model was the assumed aperture diameter size, which indicated the optimal 

size is about 0.2 meters. Power has the largest effect on performance from 10 to about 40 

kW, after which there are diminishing returns. The Gaussian Beam Matching Factor 

affects the performance by about +/- 10% of the maximum effective range from the 

assumed value of 6.5. Target material reflectance from about 80% to 90% has an 

indistinguishable effect on performance; however, target reflectance values between 95% 

and 99% result in a sharp falloff in performance. Figure 34 shows the full range of 
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variability based on the high and low settings for parameter in the sensitivity analysis. 

The full data set for this analysis is available in Appendix J. 
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Figure 34. LASER Model Maximum Effective Range Variability 

 Additionally, an analysis of the variance of each parameter looked at in the 

sensitivity analysis was done. The results in Table 14 show that the most significant 

factor is output power, followed by aperture diameter, and then target reflectance. In 

order to more fully explore the interaction of each parameter on the weapon’s 

effectiveness, a full factorial 2
k
 experimental design was developed to vary each factor 

between a low and a high value, which represents the range of parameters between the 

TLS on the low end and the LaWS+ on the high end. The full data set is available in 

Appendix K. 
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Table 14. LASER Component Variance Analysis 

Variance Components 

 

                                     % of 

Source                  Var Comp.   Total   StDev 

Wavelength (um)           -33.416*   0.00   0.000 

Lens Diameter (m)          31.050   25.82   5.572 

Gaussian Factor M         -35.815*   0.00   0.000 

Power (kW)                 86.903   72.28   9.322 

Target Reflectance (%)      2.282    1.90   1.511 

Total                     120.235          10.965 

 

* Value is negative, and is estimated by zero. 

 

  

From the interaction plot (Figure 35), the most significant factor in determining 

the range of the first Type I Engagement are the material properties of the threat 

(represented by the reflectance). Of the controllable parameters, the combination of 

wavelength, Gaussian Beam Matching Factor, and aperture diameter are the most 

significant in terms of interactions, while the overall output power is the most significant 

across all factor combinations. However, the interaction of power and reflectance plays a 

large role as well. Even with maximum power on the target, if the target is highly 

reflective, the weapon will be ineffective. This is a major downfall of all LASER 

weapons. 
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Figure 35. LASER Sensitivity 2
k
 Interaction Plot for Range of First Type I 

Engagement 

When the effect of each factor is averaged (Figure 36), the two factors which 

impact the range of the range of the first Type I Engagement the most are aperture 

diameter and power. A small diameter aperture with a least 100 kW power will yield the 

most return on investment. 
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Figure 36. LASER Sensitivity Main Effects on Range of First Type I Engagement 

For TYPE II Engagement, the results are different. There is a much larger effect 

on both range and power at which the LASER can be effective. From Figure 37, we can 

see that even at the lowest power levels, LASERs can effectively produce Type II 

Engagement effects.  
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Figure 37. LASER Sensitivity Effects on Range of First Type II Engagement 

As power increases, there is an increase in effectiveness. However, we see that for 

Type II Engagements, that effectiveness seems to be a diminishing return for power 

levels over about 70 or 80 kW. Therefore, if you consider the damage effects for power, 

the MLD seems to be in a sweet spot of just enough power for a Type I and more than 

enough power for a Type II engagement. Tactically, these two graphs show that for a 

Type I engagement, LASERs will, at best, be on par with the current CIWS guns and 

RAM missiles. LASERs do have the ability to produce augmenting damage (possibly 

conserving rounds or resulting in target destruction without burn-through) at ranges well 

beyond the limits of our current terminal defense weapons (from about 6,000 to 10,000 

meters depending on the configuration). 
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E. GLOBAL INFORMATION NETWORK ARCHITECTURE (GINA) 

ANALYSIS 

1. Model Experimental Design 

 The full GINA model, based on the project team’s assessment of the 

applicability of DEWs to current Naval missions, a representative sample of realistic 

threats, and current conventional weapons used in the selected missions, the model was 

capable of analyzing 1008 separate engagements. While it may be worthwhile to run all 

of these engagements to paint a complete picture of exactly how DEWs can be used in 

the future, limiting the scope of mission areas would give a better fit for the current fleet 

structure. Therefore, it was necessary to consider design of experiment principles, the 

UNTL hierarchy, and preliminary analysis to reduce the number of experimental factors. 

The following UNTL requirements had the most priority in terms of relative importance 

and a perceived mission capability gap or weakness: 

 NTA 3.2.1.1 Attack Surface Targets 

 NTA 3.2.2 Attack Enemy Aircraft and Missiles 

 NTA 3.2.9 Conduct Non-Lethal Engagement 

 NTA 6.3.3 Combat Terrorism 

By narrowing our modeling effort down to these NTAs, we were able to select 

fewer overall missions, and consolidate several sub-missions based on similarity and 

relevance based on guidance from Mr. Bill Glenny, Deputy Director of the CNO’s 

Strategic Study Group. That left the missions shown in Table 15 as ones that were worth 

conducting a full analysis on. 
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Table 15. Experimental Design Mission Breakdown 

Mission Mission 

Threats 

SUW 

1.10 

3 

AW 1.2 3 

ATFP 12 1 

NCO 19.6 2 

ATFP 15 1 

ATFP 9 2 

 

By only considering these missions and their associated threats, we were able to 

cut down the number of engagement combinations from 1008 to 212. An engagement 

was then created for each mission, using each mission threat, each mission weapon, and 

each model environment. For each mission threat, the detection altitude and ground range 

was assumed based on project team experience since little to no unclassified data was 

available for flight profiles or RADAR detection ranges. The vital area radius was 

specified for each mission (Table 16) and was the “engage by” range that determined 

whether or not a mission was successfully engaged or not. During the data entry process, 

the project team found that there was extra time available for additional engagements to 

be entered. Therefore, the remaining engagements were randomized and as many 

engagements were entered as possible. In total, 337 unique engagements were created 

and analyzed by the model.   Each engagement is specified in Appendix L.   
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Table 16. Global Information Network Architecture (GINA) Model Mission Vital 

Area Assumptions 

Mission 

ID 

Mission Description Vital Area Radius 

(m) 

ATFP 12 Pier Demonstration/Passive Protest Exercise 50 

ATFP 15 Nighttime Small Boat Attack at Anchor 100 

ATFP 4 Entry Control Point (ECP)Threat 200 

ATFP 8 Pier side Small Boat Attack Exercise 100 

ATFP 9 Terrorist A/C Attack Exercise 500 

AW 1.1 Provide area defense for a strike group 5000 

AW 1.12 Provide air defense for non-combatant 

evacuations operations 

500 

AW 1.13 Provide air defense for naval/joint/ combined 

TF operations 

5000 

AW 1.2 Conduct air self-defense using AW Weapons 500 

AW 1.4 Provide area defense for a convoy or 

underway replenishment group 

1000 

AW 1.5 Provide area defense for amphibious forces in 

transit and in the amphibious objective area 

3000 

AW 1.6 Provide area defense for a surface action 

group 

3000 

AW 9.1 Engage medium/high altitude, high-speed 

airborne threats with AW weapons 

1000 

AW 9.3 Engage low altitude threats with AW weapons 500 

AW 9.4 Engage low/medium altitude airborne threats 

with AW weapons 

1000 

NCO 

19.6 

Conduct seizure of noncombatant vessels 200 

NCO 

19.9 

Conduct drug traffic suppression and 

interdiction operations 

200 

SUW 

1.10 

Conduct close–in surface self-defense using 

crew operated SUW Weapons 

100 

SUW 2.3 Engage surface targets with assigned anti-

surface sector 

1000 

2. Model Results and Analysis 

The results of all the engagements were then queried from GINA and exported 

into a master spreadsheet. The spreadsheet was then imported into Minitab to perform 
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statistical analysis on the results. The first thing that we wanted to know what how well 

each weapon covered the different warfare areas and how well they covered all warfare 

areas.  Figure 38 shows a radar plot of the percentage of missions within each warfare 

area in which there was either a successful Type I or Type II engagement.  

 

 

Figure 38. Weapon-Warfare Area Mission Success Rates 

ADS was 100% successful in all weather conditions in all warfare areas. This 

success of ADS is due to the fact that most ADS engagements take place at short ranges, 

where attenuation is unlikely to have a significant effect. As can be seen, not all weapons 

were modeled against missions in all warfare areas. This is due to the abbreviated set of 

missions that we chose to analyze due to time constraints and should be further pursued 

in follow-on research. Overall, for LASER weapons, the MLD was successful in the most 

engagements, followed by LaWS+. However, it should be noted that if close-in AT/FP 

applications are the intended sub-set of threats, then the current LaWS may be sufficient. 
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3. Type I Engagement Analysis 

Next the range of the first Type I Engagement was analyzed. The range of the first 

Type I Engagement was averaged for successful missions. Therefore, this average will 

provide the decision maker with an average level of performance predicated on the 

assumption that the weapon is being employed in a mission/threat context that is 

appropriate for that particular weapon. These ranges, shown in Figure 39, are shown side-

by-side with the conventional weapons that were also evaluated. In addition, the 

maximum range for a Type I Engagement of all missions is shown. 

 

 

Figure 39. Average and Maximum Ranges of First Type I Engagement (Given 

Mission Success) 

With respect to the DEWs, the ranked order based on greatest to least average 

range is TLS, MLD, LaWS+, ADS, and LaWS. The TLS has a high average based on one 

outlier from an engagement associated with AW 9.4 against a Cessna threat. Although 

this use of TLS may seem far-fetched, we showed through our model validation and 

sensitivity analysis that the TLS benefits from a different wavelength, a smaller aperture 
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diameter, and better beam quality to produce the same effects with less power as the other 

LASERs produce with higher power (findings that are substantiated by a 2012 

Congressional Research Service report on Navy HEL programs (O'Rourke, Navy 

Shipboard LASERs for Surface, Air, and Missile Defense: Background and Issues for 

Congress 2012)). This TLS performance shows the potential of a lower power LASER  in 

a niche application for AT/FP threats that tend to be more lightly armored since they are 

typically not military-grade weapons, but rather suicide variants of commercial vehicles. 

Therefore, even though TLS only accomplishes 20% of the AT/FP mission, that 20% 

represents a majority of the specific threats that need to be addressed. This success of 

TLS is captured well in Figure 40, which shows the average maximum effective range (of 

all missions, not only successful ones) by threat.  

 

 

Figure 40. Interaction Plot of Weapon Maximum Effective Range by Threat 
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In the case of the TLS, it performs well against Cessnas, FAC, and FIAC. In the 

use case of a Cessna 150, TLS and the MLD both outperform the MK15 CIWS and the 

MK38 Bushmaster. In the use case of FAC threat, TLS and the LaWS+ are either on par 

or outperforming the CIWS. These results suggest a LASER has potential for close-in 

defense augmenting (or potentially replacing) crew-served weapons and allowing the 

CIWS to conserve ammunition for ASCM threats. However, the maximum effective 

range, as defined in this model as being 1% of the total fluence required for a Type I 

Engagement does not translate into a kill range, rather this is the range damage effects 

start to occur.  

Considering the number of Type I Engagements that are possible by threat, we 

can get a better idea of how each weapon can be employed.  Figure 41 shows the mean 

range of Type I Engagements (for all missions, not just successful), and we can see that 

overall when it comes to a Type I Engagement, the clear winners are the current 

conventional weapons for an all-weather, multi-threat solution. The best performing 

DEW is the ADS, which is not designed to produce these types of damage effects, but 

could if the current non-lethal safety controls were removed. The disparity between ADS 

and the HEL systems is a representation of the relative ease of heating a human with a 

microwave device, vice trying to burn through or structurally weaken a hardened vehicle. 

The reason by the number of Type I Engagements for HELs is so low is that the first 

Type I Engagement happens at such a close range, that follow-on engagements are not 

possible (assuming a swarm of threats in which they all start from the same range and 

move inbound being engaged one at a time and then moving on to the next closest threat). 
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Figure 41. Interaction Plot for Mean Number of Type I Engagements by Threat Type 

Figure 42 shows the ranges of Type I Engagements for all missions.  Figure 42 

shows that LASER weapons are not very effective in their current or near-term (as in the 

LaWS+) state in producing Type I Engagements. Nearly all of these engagements occur 

at ranges less than 1,000 meters, with a very few outliers against lightly armored threats. 

However, it is reasonable to assume that the tracking and aiming systems associated with 

these weapons are far more accurate than what could be expected from a crew-served 

weapon such as an M2 .50 caliber machine gun or a MK38 mod 1 crew-served 

Bushmaster. Considering that, there is a niche for DEWs to provide Type I Engagement 

effects that would be comparable to current conventional weapons, but that niche would 

not include replacing the CIWS or the MK 54 5” gun on a ship. 
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Figure 42. Dot Plot of Range of First Type I Engagement by Weapon 

4. Type II Engagement Analysis 

Type I Engagements are not the only type of damage that DEWs can provide. 

DEWs can also provide Type II Engagements which in the case of a LASER is the 

ultimate structural failure of a threat vehicle by heating the material with one-sixth of the 

fluence needed for a complete burn-through of the material (Type I Engagement). In the 

case of a HPM, a Type II Engagement means heating a human to the point of intolerable 

pain without causing permanent damage to the human body. The ability to produce a 

Type II Engagement gives added value to the Navy because it is a type of damage effect 

that is not inherent to conventional weapons. A Type II Engagement is similar to a 

conventional “mission kill” in which the weapon produces enough damage to degrade or 

inhibit a threat’s ability to attack friendly forces, without actually completely destroying 

the threat. For example, using an SM-2 missile against an enemy combatant ship would 
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be unlikely to sink the ship because the SM-2’s small warhead is designed to fragment 

and destroy missiles, but it could potentially destroy a fire control radar or kill crew 

members thereby reducing or eliminating the combatant’s war making ability. The 

difference is that in the conventional case these mission kills are due to the fact that 

conventional weapon is not sufficient to actually destroy the threat or a because a gunner 

gets a lucky shot and with DEWs a Type II Engagement can be just as effective as a Type 

I Engagement when threats are under dynamic stress (for LASERs) or when a non-lethal 

application is desire (for HPMs) and is an intended end result of the weapon, not the 

unintentional result of using a conventional weapon against a threat for which it was not 

designed to engage or is not capable of fully destroying. Therefore, with lower powered 

DEWs, Type II Engagements is a unique niche for naval applications. 

 Figure 43 shows the average range of the first Type II Engagement for 

each DEW for missions that were successful as well as the maximum range of the first 

Type II Engagement. With respect to Type II Engagements, the ranked order based on 

greatest average range to least range is MLD, LaWS+, TLS, ADS, and LaWS. The 

similarity in performance both at the average and maximum ranges for TLS, MLD, and 

LaWS+ should be noted as this illustrates an opportunity to make cost and space trades 

without significantly impacting performance. We also see that the ADS is successfully 

engaging threats at about 700m on average, which mirrors the advertised maximum 

effective range of about 700 yards from the Air Force (Center for Army Lessons Learned 

2008). However, even though ADS is operating in a maritime environment, it is possible 

to effectively engage threats with the ADS out to about 1200 meters, which has 

significant implications for a wide range of AT/FP, NCO, and SUW threats that could 

potentially overwhelm conventional weapons by attacking in swarms or cause 

commanders to pause due to collateral damage concerns. 
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Figure 43. Average and Maximum Ranges of Directed Energy Weapon (DEW) First 

Type II Engagement (Given Mission Success) 

When broken down by mission, all of the DEWs evaluated bring some added 

value to the Navy in terms of their ability to produce Type II Engagements on a wide 

variety of threats, in various weather conditions, and at various detection ranges. From 

the mean range of Type  II Engagements by mission shown in Figure 44, the most 

consistent performer is the MLD, which is no surprise based the fact that it had the 

greatest average range of first Type II Engagement. On the low power end of the 

spectrum, TLS is effective against, AT/FP and AW threats. Therefore, if UAVs, LSFs, 

and small boats are the primary concern, then TLS would be the best choice as it can 

engage comparable threats at comparable ranges to the MLD and the LaWS+. We also 

see that for Type II Engagements, the LaWS is also capable of successfully engaging a 

variety of threats. However, the best performer in our analysis of the data is the ADS. It is 

the only weapon that is able to successfully produce Type II Engagements prior to threats 

reaching the vital area 100% of the time. 
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Figure 44. Interaction Plot for Range of First Type II Engagement by Mission 

We also evaluated the number of Type II Engagements by threat type, show in 

Figure 45. This graph also shows how much more efficiently the ADS is at heating 

human skin as compared to LASERs heating metals and other threat materials. 

Additionally, threats mapped to the ADS also move relatively slower, allowing more time 

for follow-on engagements. This chart shows the value that ADS brings to the fight for 

the Navy, engaging a broad spectrum of threats effectively using non-lethal effects. With 

respect to the LASER performances, it is clear that even if you did achieve a Type II 

Engagement against a threat, the ability to re-engage is limited to single digits at best. 

Therefore, the accuracy of a LASER would have to be weighed against the accuracy of a 

conventional weapon which could put more rounds out of the barrel, but may not be as 

accurate (crew-served weapons being a prime example of high rate of fire, low accuracy 

weapons). 
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Figure 45. Interaction Plot for Number of Type II Engagements by Threat Type 

Finally, we looked at a dot plot of the raw data for the range of the first Type II 

Engagement for all missions and environments, shown in Figure 46. The chart shows 

again that the ADS is the only weapon that was able to achieve a Type II Engagement in 

100% of the mission/threat/environment combinations that we modeled it against. The 

chart also shows that the MLD, LaWS+, and TLS do provide some Type II Engagement 

ranges, but unlike the ADS, they do not work well against all threats and are confined to 

lightly armored, AT/FP-type threats. 

Pe
rs
onPC

M
iG
-2

9

Ir
an

ia
n 
UA

V
FI
ACFA

C
F-
14

Dh
ow

Ce
ss

na

C-
80

2

AS
-1
1

1200

1000

800

600

400

200

0

Threat Designator

M
e

a
n

ADS

LaWS

LaWS+

MK 15

MK 38 Mod 2

MK 54

MLD

TLS

Designator

Weapon

Interaction Plot for Number T2E
Data Means



 

 

 

 

124 

 

Figure 46. Dot Plot of Range of First Type II Engagement (All Missions, All 

Environments) 

5. Conclusions 

With the exception of the LaWS, all of the DEWs evaluated were able to provide 

some level of value across the board. The most consistently best performer was the ADS, 

which has the added unique ability to provide a non-lethal Type II Engagement, very 

rapidly, at tactically relevant ranges out to about 1,000 meters against threats that are 

either difficult to engage with conventional crew served weapons or might be difficult to 

determine hostile intent, decreasing the commander’s desire to use a lethal engagement 

option. With respect to LASERS, the MLD was the best overall performer due to the 

combination of its relatively high power and small aperture. The LaWS, with its larger 

aperture required the 150kW output power of the LaWS+ variant to be effective and even 

still was not as effective as the MLD.    
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 Future research should be done to complete the full analysis of all the 

possible engagements based on the threats and environments that were selected by the 

project team. Additionally, adding the actual data to the GINA model, if it were migrated 

to SIPR, would provide a more accurate analysis. Finally, the conventional weapon 

comparison was made simplistic in order to distil the engagement equation outputs to 

values that had cross-domain relative comparability, but an actual validated combat 

model should be used to evaluate the conventional weapon performance, using the actual 

weapon parameters in order to account for sources of weapon failure such was weather 

effects which were impossible to capture in a deterministic model at the unclassified 

level. 

F. SIMULATION 

One of the requirements in our tasking statement was to develop a preliminary 

concept of operations (CONOPS) for the selected DEWs. The modeling effort provided a 

deterministic approach that plays a role in CONOPS development, but simulation was 

necessary to fill the gap of how these weapons would perform in a stochastic 

environment with multiple threat types and a maneuvering weapon platform. Therefore, 

two simulation efforts were developed to emphasize different simulation strengths: an 

agent-based simulation in Map Aware Non-Uniform Automata (MANA) and a Monte 

Carlo simulation in Excel. Since the majority of the systems being evaluated were 

LASERs, the simulation effort focused entirely on LASER weapon analysis. 

1. Map Aware Non-Uniform Automata (MANA) 

MANA is a cellular automaton model that was developed by New Zealand’s 

Defence Technology Agency (DTA) (McIntosh, MANA (Map Aware Non-Uniform 

Automata) Version 4 User Manual 2007). MANA allows the assignment of 

characteristics and behavior rules to multiple individual autonomous agents (or 

automata), which then can be analyzed as a system.  
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The main advantage of using MANA is the ability to learn about complex 

behaviors that can emerge from the interactions of individuals. MANA allows the 

researcher to control many options, such as the terrain, the personality of the agents, the 

weapon and sensor characteristics (such as probability of kill and probability of detection, 

which can both depend on distance), the ability to communicate with other units, etc. 

However, the current MANA version (version 5) does not include a LASER model 

(McIntosh, MANA-V (Map Aware Non-Uniform Automata - Vector) Supplementary 

Manual 2009). 

a. Modeling LASERs with Map Aware Non-Uniform Automata 

(MANA) 

The two weapon models included with MANA are for kinetic energy 

weapons and explosives. The project team chose to adapt the kinetic energy weapons 

model for LASER analysis. In the kinetic energy weapons model, a hit is a binary 

function – that is, the shot can either kill the target or not (with a certain probability Pk, 

which may depend on distance to the target, among other parameters). By contrast, the 

physics of LASERs is such that a specific cumulative amount of energy, whether 

transferred over a short or long period of time, is required to kill a target. 

As in the kinetic energy model, one of the parameters affecting the amount 

of energy that can be delivered from the LASER is distance. Figure 47 depicts the 

amount of time required for a Type I Engagement as a function of the distance to the 

target for a sample LASER. 
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Figure 47. Average penetration time 

The LASER model assumes knowledge of the time required for kill per 

distance, tk(r). In order to model a LASER using the tools given in MANA, the following 

values were assigned: 

 Every target was assigned N “life points” in the “number of hits 

required for kill” field. (This assignment can also be interpreted as 

the thickness of the armor that should be penetrated). 

 The LASER weapon was set to a kinetic weapon that is able to 

shoot s shots per second. 

 The probability of a Type I Engagement using a LASER was set to 

depend on the distance r.  

  ( )  
 

    ( )
 

Equation 20. Probability of Type I Engagement 

The time required for a Type I Engagement for a given distance is 

assumed to have a geometric distribution of Geo(Pk(t)). The time required for a Type I 

Engagement was based on the preliminary GINA model development analysis which 

suggested a geometric relationship between Type I and II Engagements and time. The 

average number of shots for a Type I Engagement is shown in Equation 21, which leads 

to an average time of tk(r) seconds as required. 
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  ( )
 
    ( )

 
 

Equation 21. Average Time for Type I Engagement 

As the distance of the target changes, the average Type I Engagement time 

changes, causing the probability of achieving a Type I Engagement to change. For the 

entire model to produce realistic performance results, s and N must be chosen such that 

the Type I Engagement probability is less than one (the larger the value for N and s, the 

more realistic the simulation). 

  ( )  
 

    ( )
   

Equation 22. LASER Probability of Type I Engagement Limitation 

In the MANA simulation developed, N and s were on the order of 

magnitude of 100. It should be noted that this magnitude (or threshold calculation) is a 

completely unique way of using MANA that, as far as the project team and MANA 

subject matter experts at the NPS SEED Center are aware. This project is the first attempt 

at using a completely unique methodology to using MANA to simulate DEWs. The 

methodology for adapting MANA to DEW simulations represents a possible solution to 

the current problems with binary Navy weapons models as highlighted in the 2012 report 

Laser Weapon System (LAWS) Adjunct to the Close-In Weapon System (CIWS) published 

by NSWC Dahlgren. 

b. Assumptions 

The main assumption is that the criterion for deciding whether a target is 

killed is the cumulated energy received. This assumption means that according to the 

LASER model, even after long interruptions the target will “remember” that it already 

received a given amount of energy and will require less additional energy in order to be 

killed. One drawback to this method is that, unlike the GINA model, the different 

wavelength and beam quality of TLS is not taken into account, which puts the TLS at a 
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disadvantage for this type of analysis. Further research in this area is needed to identify a 

correction factor to account for beam quality and wavelength.  

c. Found Software Bug in Map Aware Non-Uniform Automata 

(MANA) 

While working with MANA, a critical bug was encountered for LASER 

modeling: The “number of shots per second” field in the weapons tab may not be read 

correctly by MANA. This fault did not adversely affect the results of our analysis, but 

was reported to the NPS SEED Center to be fixed in the latest revision of MANA-V. In 

order to ensure that this bug did not influence our results, a workaround was crafted by 

the project team. Instead of adjusting shots per second, the time step was adjusted, which 

had the same effect, allowing the simulated DEW to “fire” at the correct number of shots 

per second. The version of MANA used by the project team, which will require this 

workaround is MANA-V, version 5.01.04. 

d. Map Aware Non-Uniform Automata (MANA) Simulation 

Vignettes and Scenarios 

In order to compare the performance of each type of LASER weapon, four 

scenarios designed to simulate how well each of LASER weapons perform under realistic 

conditions and how many threats each LASER weapon can engage were developed. 

These four scenarios are FAC/FIAC swarm attack, counter UAV, counter ASCM, and an 

integrated scenario comprised of all three previous scenarios. For each scenario, a 

vignette was written by the U.S. Navy project team members to guide simulation 

development and goals. 

e. Fast Attack Craft (FAC)/Fast Inshore Attack Craft (FIAC) 

One of the greatest threats facing the United States Navy is the 

asymmetric threat posed by small, fast surface craft in the Anti-Surface Warfare (SUW) 

mission area. A swarm attack in the littorals or during choke point transits against a 

single U.S. Warship could have devastating effects.  
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The current Fast Attack Craft (FAC)/Fast Inshore Attack Craft (FIAC) 

threats are fast, highly maneuverable craft armed with short range missiles, rockets, and 

heavy machine guns. While FAC/FIAC threats may not have sufficient firepower to 

actually sink a surface combatant, a “swarm” of maneuvering FIACs could nevertheless 

obstruct ship operations, harass consorts, deny maneuver space, distract form the primary 

mission objective and inflict damage to ship sensors and communications (even jet-skis 

could be used to launch a rocket propelled grenade) (Scott 2011). The FAC/FIAC threat 

has the advantage of operating at high speeds, and with lower drafts and can operate in 

shallow water where larger Warships are most vulnerable. The small size of a FAC/FIAC 

threat also makes them difficult to detect both visually and on RADAR reducing the 

Warship’s reaction time. These small boats often operate in groups of 2 to 5 in order to 

maximize their firepower while providing mutual protection and take advantage of the 

battlespace. 

The typical CONOPS for a U.S. Navy Warship is to increase to max speed 

and set a course away from the swarm threat (usually toward deeper water). In doing this 

maneuver, ships are able to increase the distance from the threat while creating a large 

wake that could potentially swamp or deter the incoming boats. This defense CONOPS 

continues until all threats have been neutralized, or enough distance has been placed 

between the threats that they can no longer engage the Warship.    

f. Fast Attack Craft (FAC)/Fast Inshore Attack Craft (FIAC) 

Simulation Parameters 

Table 17 outlines the squad physical properties used in the MANA 

simulation tool.    The Blue force represents a single DDG with one LASER weapon 

installed on the ship capable of 360 degree coverage. In all scenarios, weapon placement 

was not considered, and therefore weapon coverage zones were not studied in this 

simulation. The Red force is comprised of seven small boats attacking the DDG. These 

boats move simultaneously toward the DDG, starting from 10km where they are detected 
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by the DDG. After detecting the threat, the DDG navigates away from the boats at 16 

m/s.  Figure 48 shows a screen shot of the MANA simulation being executed. 

 

Table 17. Fast Attack Craft (FAC)/Fast Inshore Attack Craft (FIAC) Simulation 

Parameters 

 Name Number Speed 

(m/s) 

Detection 

Range (km) 

Weather 

Condition 

Blue Force DDG  1 16 N/A Good 

(attenuation 

=0.8 

dB/km) 

Red Force Small Boat 7 25 10 

 

 

Figure 48. Fast Attack Craft (FAC)/Fast Inshore Attack Craft (FIAC) Map Aware 

Non-Uniform Automata (MANA) Screen Shot of DDG Engaging Fast Attack Craft 

(FAC)/Fast Inshore Attack Craft (FIAC) Threats with a LASER 

The results of the LASER interactions with the attackers from this 

scenario are listed in Table 18. The enhanced version of the LaWS was able to engage all 

seven small boat threats. The current LaWS and the MLD were about on par with each 

other, destroying between two and three small boats each. The TLS did not engage any of 
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the small boats effectively. This simulation confirms there is a role for LASER weapons 

in a FAC/FIAC engagement. These results also highlight this simulation methods 

inherent reliance on output power as the key driving force in determining burn through 

rates, which biases the results against systems like the TLS. 

 

Table 18. Fast Attack Craft (FAC)/Fast Inshore Attack Craft (FIAC) Simulation 

Type I Engagement Results 

  LaWS LaWS+ TLS MLD 

Average 2.567  7.000  0.000  3.033  

Standard Error 0.092  0.000  0.000  0.033  

Confidence Level (95.0%) 0.188  0.000  0.000  0.068  

 

g. Low Slow Flyer (LSF) / Unmanned Aerial Vehicle (UAV) 

Low Slow Flyers (LSFs) are aircraft that fly at low altitudes with speeds 

less than 300kts. They typically have low infrared signatures and little distinctive 

electronic emissions. These aircraft can fly in patterns and altitudes similar to civilian air 

routes allowing them to incorporate easily with normal air traffic. In addition, they are 

sometimes difficult to detect by RADAR until in close proximity due to their low speeds 

and altitudes. If they are detected, it can be problematic to classify them as friend or foe 

due to their flight profiles. For these reasons, LSFs are viable threats to ships. In 

preparing against LSFs, ships typically use scenarios where the LSFs are in close 

proximity. Since LSFs are not expected to be detected and classified until they are within 

a close proximity to the defender, they require the use of close-quarter weapon systems 

employed by the ships’ Small Craft Action Teams (SCAT) such as the M2 .50 caliber and 

MK38 25mm machine guns.    

Unmanned Aerial Vehicles (UAVs) are aerial vehicles that do not have a 

human pilot onboard the craft. They are advantageous in situations where the dangers of 

risking a human life are too high. UAVs can be flown from remote ground stations or by 
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auto-pilot programming. They can be used for reconnaissance, electronic attack, strike 

missions, and suppression of enemy air defense (SEAD). Due to these various 

capabilities, UAVs pose a significant threat, especially in maritime environments.  

h. Low Slow Flyer (LSF) / Unmanned Aerial Vehicle (UAV) 

Simulation Parameters 

The Low Slow Flyer/Unmanned Arial Vehicle simulation parameters are 

outlined in Table 19. Like the FAC/FIAC scenario, the Blue force represents a DDG with 

a single LASER weapon. The Red force is comprised of seven attacking LSF/UAVs 

which fly toward the DDG simultaneously; starting from a detection range of 10km and 

moving inbound at 40 m/s. After detecting the LSF/UAVs, the DDG navigates away 

from the LSF/UAVs at 16 m/s (see Figure 49) 

 

Table 19. Low Slow Flyer (LSF) / Unmanned Aerial Vehicle (UAV) Simulation 

Parameters 

 Name Number Speed 

(m/s) 

Detection 

Range (km) 

Weather 

Condition 

Blue Force DDG  1 16 N/A Good 

(attenuation 

=0.8 

dB/km) 

Red Force LSF/UAV 7 40 10 
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Figure 49. Low Slow Flyer (LSF) / Unmanned Aerial Vehicle (UAV) Map Aware 

Non-Uniform Automata (MANA) Simulation Screen Shot 

In this scenario, all of the LASER systems are somewhat effective in 

engaging LSF/UAV threats (Table 20). Again, LaWS and the MLD are on par with each 

other and the TLS lags behind, with the LaWS+ as the clear front runner. 

Table 20. Low Slow Flyer (LSF) / Unmanned Aerial Vehicle (UAV) Scenario 

Results 

  LaWS LaWS+ TLS MLD 

Average 3.567  7.000  0.433  4.900  

Standard Error 0.092  0.000  0.092  0.056  

Confidence Level (95.0%) 0.188  0.000  0.188  0.114  

 

 

I. Anti-Ship Cruise Missile (ASCM) 

Another significant threat to the Navy is ASCMs that are designed to fire 

against large boats and warships. ASCMs can be launched by warships, submarines, and 

various kinds of aircraft, making the probability of having to defend against an ASCM 
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attack during wartime very high. Avoiding detection, destroying the missile launch 

platform before it fires its missile and shooting down or decoying the incoming missile 

are three main strategies to counter the ASCM. The scenario parameters are listed in 

Table 21. 

Table 21. Anti-Ship Cruise Missile (ASCM) Scenario Parameters 

 Name Number Speed 

(m/s) 

Detection 

Range (km) 

Weather 

Condition 

Blue Force DDG  1 16 N/A Good 

(attenuation 

=0.8 

dB/km) 

Red Force Subsonic 

ASCM 

5 300 10 

Red Force Supersonic 

ASCM 

5 1000 10 

 

Two ASCM scenarios were considered: a subsonic ASCM attack and a 

supersonic ASCM attack. The Red force is comprised of five ASCMs fired 

simultaneously at the DDG. After detecting the ASCMs, the DDG navigates away the 

ASCM at 16 m/s. 

 

 

Figure 50. Anti-Ship Cruise Missile (ASCM) Simulation Screenshot 
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The subsonic ASCM scenario results are in Table 22 and the supersonic 

ASCM results are in Table 23. The results of this simulation are somewhat optimistic, 

showing that the LaWS+ would be able to effectively engage a subsonic ASCM 100% of 

the time; however, it does show that even with the low powered LaWS there is a potential 

to have some positive effect on the outcome of an ASCM engagement. This result 

suggests that the current plan to install a hybrid LASER weapon in conjunction with 

CIWS could be an added value to the Navy by potentially conserving ammunition. 

Table 22. Subsonic Anti-Ship Cruise Missile (ASCM) Scenario Results 

  LaWS LaWS+ TLS MLD 

Average 1.233  5.000  0.000  2.000  

Standard Error 0.079  0.000  0.000  0.000  

Confidence Level (95.0%) 0.161  0.000  0.000  0.000  

 

Not surprisingly, none of the weapons fared well against the supersonic 

ASCM threat, even in this somewhat optimistic simulation. The LaWS+ was able to 

engage nearly two ASCMs successfully on average, suggesting that if missile defense is a 

primary concern, then this weapon, paired with the CIWS would most likely show 

tactically significant gains over the standard CIWS configuration.  

Table 23. Supersonic Anti-Ship Cruise Missile (ASCM) Scenario Results 

  LaWS LaWS+ TLS MLD 

Average 0.000  1.900  0.000  0.000  

Standard Error 0.000  0.056  0.000  0.000  

Confidence Level (95.0%) 0.000  0.114  0.000  0.000  

 

j. Coordinated Attack 

The final scenario simulated in MANA is a combination of all of the 

above threat types in a coordinated attack shown in Figure 51. The scenario parameters 

are listed in Table 24. 
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Figure 51. Coordinated Attack Simulation Screen Shot 

Table 24. Coordinated Attack Parameters 

 Name Number Speed 

(m/s) 

Detection 

Range (km) 

Weather 

Condition 

Blue Force DDG  1 16 10 Good 

(attenuation 

=0.8 

dB/km) 

Red Force Small Boat 5 25 10 

Red Force UAV 3 40 10 

Red Force Subsonic 

ASCM 

1 300 10 

 

The results of the coordinated attack scenario, listed in Table 25, show 

some surprising conclusions. Whereas in a single threat type environment, it is easy to 

distinguish between the systems performance based on power alone, in the coordinated 

attack scenario, the LaWS, LaWS+, and MLD all performed about the same, with the 

LaWS+ able to kill a few more small boats than the other two. Again, TLS was not 

effective in this scenario. While the accuracy of these numbers of successful 

engagements can be debated, there is a clear indication that even a single LASER weapon 
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system of relatively low power has a clear role in the layered defense of a ship under 

attack from multiple threat types simultaneously. 

Table 25. Coordinated Attack Scenario Results 

LaWS 

  Subsonic ASCW UAV Small Boat 

Average 1.000  3.000  1.100  

Standard Error 0.000  0.000  0.403  

Confidence Level (95.0%) 0.000  0.000  0.150  

LaWS+ 

  Subsonic ASCW UAV Small Boat 

Average 1.000  3.000  5.000  

Standard Error 0.000  0.000  0.000  

Confidence Level (95.0%) 0.000  0.000  0.000  

MLD 

  Subsonic ASCW UAV Small Boat 

Average 1.000  3.000  2.433  

Standard Error 0.000  0.000  0.679  

Confidence Level (95.0%) 0.000  0.000  0.254  

TLS 

  Subsonic ASCW UAV Small Boat 

Average 0.000  0.000  0.000  

Standard Error 0.000  0.000  0.000  

Confidence Level (95.0%) 0.000  0.000  0.000  

 

For every scenario, there were thirty simulations conducted for each type 

of DEW. The 30 simulations were then averaged to represent the performance of the 

DEWs. These results are shown in Appendix M. 

2. LASER Monte Carlo Simulation 

The purpose of performing a Monte Carlo simulation was to evaluate four 

different LASER systems quantitatively according to their operational performance. ADS 

was not considered because it was the only microwave weapon and the team wanted to 
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further discriminate between the different LASER weapons evaluated by the project. The 

LASER systems evaluated were: 

 LaWS 

 LaWS+ 

 MLD 

 TLS 

We considered scenarios in which a single vessel, nominally a DDG-51 class 

destroyer, is attacked by swarms of missiles and small boats. The vessel would try to 

defend itself by shooting the attackers down using its current weapons (guns and anti-

missile missiles) and the LASER systems. Our prime goal was to gain insights into the 

effect of different weapon systems on ship survivability. In addition, we considered 

situations in which the LASERs replace some of the ship’s existing weapons to see what 

combinations of weapons yielded the best outcomes. 

a. Simulation Methodology 

The simulation developed was a stochastic Excel based simulation. It 

modeled the defense capability of a vessel against a swarm of threats. The model allowed 

the vessel to “shoot down” the threats using the available weapons, which could include 

anti-missile missiles, guns, LASERs, or a combination of these weapon types. Each type 

of weapon is modeled to have a certain probability of intercepting the incoming attacker, 

resulting in the stochastic nature of the engagement outcome. Attackers which are not 

shot down by any of the weapons would be considered leakers. Therefore, any electronic 

warfare methods or any evasive maneuvering that might normally be employed to combat 

these threats was ignored in order to isolate the effects of only the weapons. 

 

The vessel would be considered to have survived a swarm attack when 

there were zero leakers in an engagement/simulation run. Running each scenario 

numerous times, the survival chance of a vessel for the certain scenario was computed as 
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the percentage of simulation runs in which there are no leakers. The complete model 

takes into consideration the attributes as listed in Table 26. 

Table 26. List of Modeling Attributes 

Defense Capability Characteristics 
Target/Attacker 

Characteristics 

Environmental 

Characteristic Missile Gun LASER Sensor 

Probability 

of Intercept 

Probability 

of Intercept 

Probability 

of Intercept 

Detection 

Range 

(km) 

Target Material 

Specific Heat 

Capacity  

Atmospheric 

Attenuation 

Maximum 

Effective 

Range 

Maximum 

Effective 

Range 

Power 
 

Operating 

Temperature  

Minimum 

Engagement 

Range 

Minimum 

Engagement 

Range 

Aperture 

Diameter  

Target Material 

Melting Point   

Average 

Speed 
Rate of Fire Wavelength 

 

Target Material 

Thickness  

Launch 

Interval 

Engagement 

Duration 

Beam 

Quality  

Thermal 

Coupling 

Coefficient 
 

Number of 

Missile 

Launchers 

Number of 

Guns 

Number of 

LASER 

Weapons 
 

Target Material 

Density  

Number of 

Missiles on 

Vessel 
   

Thermal 

Diffusivity of 

Target Material 
 

    
Average Speed 

 

    

Number of 

Attackers  

    
Heat of Fusion 

 

    
Thermal 

Conductivity 
 

    

These attributes account for the impact of the defense capabilities, threats 

and environment on the survival of the vessel. 

(1) Simulation LASER Modeling Methodology. The 

simulation team developed a similar, but independent model for LASER performance 

from the GINA modeling team to provide more depth to the overall performance analysis 

by not constraining the mathematical model to one set of assumptions. The following 
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performance terms and metrics were used to adjudicate weapon performance in the 

simulation by way of mathematical performance models. 

 

Time to Effect. The time required for a target to be destroyed from the point the 

trigger is pushed, to the point when the threat has been eliminated.   

 

Maximum Effective Engagement Range. The maximum range at which the 

LASER can destroy a stationary target in 100 seconds.    

 

Number of Engagements within Kill Window. The number of targets that can 

be destroyed by a weapon system within its kill window. 

 

LASER Equations. The MOPs are dependent on various factors that are bounded 

by the laws of physics and related by various mathematical equations. These 

equations are used to model the LASER system and determine the MOPs. Several 

of the equations have been modified from the earlier model. The equations of 

interests are highlighted below. 

 

Time to Effect For a stationary target. The time taken for LASER to penetrate 

a stationary target is calculated by dividing the fluence required to penetrate/kill 

the target by the intensity of the LASER at the target, as shown in Equation 23 

below. 

 

                                           
    
  

 

Equation 23. Time to Effect for Stationary Target 

Emin is the fluence required to penetrate the target, as given in 

Combat Systems Volume 3, equation 17.8 (Harney, Combat Systems Volume 3 2004) 

and is as shown in Equation 24. It is the LASER intensity at the target calculated by 

multiplying the output intensity and the transmittance (as defined by Beer’s Law).   

                                   [
     

   
]       

 (  )[    (     )]

     
  

Equation 24. Fluence Required for Type II Engagement 
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Equation 25. LASER Intensity at Stationary Target 
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(2) Time to Effect for Approaching Targets. Total fluence that 

can be transmitted over an engagement window (J/cm
2
) is calculated by integrating the 

LASER intensity on target over the duration of engagement as shown in Equation 26. 

       ∫   

 

 

      ∫  
             

 

 

   

Equation 26. Calculation for Total Fluence that can be transmitted over an Engagement 

Window 
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Atmospheric attenuation is often expressed in dB/km, Aatm, and 

can be converted to      using the following relation obtained from Combat Systems 

Volume 1( (Harney, Combat Systems Volume 1 2004) as shown below. 

       
    
     

 

Equation 27. Conversion of atmospheric attenuation from dB scale to normal scale 

Time to effect is calculated by equating               as follows: 

 

                ∫        (                 )
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Equation 28. Time to effect for approaching target 

(3) Maximum Effective Engagement Range. Defining 

maximum effective range, Rmax, as the range at which a LASER can destroy a stationary 

target in 100s, we calculate the Rmax as follows:  

 
    

         
      

     
  
         

  

  
=100s 

      
  

    
    [

     
    

] 

Equation 29. Maximum Effective Engagement Range of LASER 
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(4) Number of Engagements within Kill Window. The number 

of engagements that can be made within a kill window is calculated with the following 

equation: 

             
      
    

 

Equation 30. Number of Engagements within Kill Window for LASER 

(5) Assumptions. The following are the assumptions made for 

the model that was created: 

 A target will be destroyed/eliminated when a sixth of the fluence 

required to melt through the target’s external material, has been 

applied to the target. This assumption is made on the basis that the 

pressure generated as the material melts is sufficient to cause 

physical failure of the material even before the LASER melts 

through the whole thickness of the material. This is an estimate for 

all LASER wavelengths based on empirical data from an interview 

with Dr. Gary Langford. 

 Target material that has been melted will be removed from the 

surface of the target by forces of gravity and air flowing across the 

surface of the target. 

 Rate of heat loss from the target to its surrounding is negligible 

compared to rate at which energy is transferred from the LASER 

beam to the target. 

 Range at which target is detected is always more than the 

maximum effective range of LASER. 

 All LASER weapons can operate continuously for the whole 

duration of an engagement. This assumption is made due to the 

lack of information and would result in overly optimistic results for 

LASER. This assumption should be taken into consideration when 

comparing LASER with other weapon systems. This assumption 

would not have an impact on the relative performance of different 

LASER systems, but would skew the difference in performance, in 

the favor of higher power LASERs. 

 Uniform beam profile for all LASERs.   

 The beam quality values specified in the official reports were 

measured using M
2
 criteria. 
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 Beam waist is determined using Equation 31 

               
 
     

   
 

Equation 31. Diffraction limited multimode Beam Waist (from Ophir-Spiricon 2010) 

                        
               (                                ) 

                              

                        
 Model assumes a thermal coupling factor,    of 0.01 for all 

material. 

 Variations in atmospheric attenuation due to different LASER 

wavelengths are ignored. 

(6) Simulation Engagement Adjudication Process. The 

simulation developed is a stochastic Excel based simulation. It models the defense 

capability of a vessel against a swarm of attackers. The model allows the vessel to shoot 

down the attackers using the available weapons, which may include anti-missile missiles, 

guns, LASERs or any combination of them. Each type of weapon is modeled to have a 

certain probability of intercepting the incoming attacker, resulting in the stochastic nature 

of the engagement outcome. Attackers which are not shot down by any of the weapons 

would be considered leakers.   

The vessel would be considered to have survived a swarm attack 

when there are zero leakers in an engagement/simulation run. Running each scenario 

numerous times, the survival chance of a vessel for the certain scenario is taken to be the 

percentage of simulation runs in which there are no leakers. The simulation model 

follows the engagement process as shown in Figure 52. 

 

 

Figure 52. Engagement Process for Simulation Model 

Missile 
Engagement
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Engagement

Gun 
Engagement

Total Number of 
Inbound Threats/

Attackers
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Leakers

Number of 
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intercepted by 

Missiles and Laser
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were not 
intercepted by 
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The model assumes that all inbound threats would always be 

engaged first with missiles, followed by LASER and lastly by guns. Threats that survive 

the earlier engagement will be passed on and be engaged by the next weapon type. This 

process is subjected to the availability of the weapon. For example, if missiles are not 

available or cannot be used in a certain scenario, a LASER would be used first followed 

by a gun. This engagement process is a reasonable model of reality, since missiles have a 

much further engagement range than the other two weapons and LASERs have the 

potential to engage beyond the maximum effective range of guns based on the GINA 

model validation analysis.   

b. Engagement Modeling 

(1) Missile Engagement Model. For the simulation, the 

probability of a missile intercepting its target is set to be 0.7. With this probability of 

intercept, when more than one missile is fired, the expected number of hits/intercepts is 

simply the number of missiles fired, n, multiplied by the 0.7. However, given the 

probabilistic nature of engagement, this number (of hits) can vary about the mean. For the 

missile engagement simulation, this variation is modeled as a binomial distribution. The 

number of hits (by the missiles) is generated randomly from a binomial distribution in 

Excel using Equation 32. 

   (         (               ())    ) 

Equation 32. Random Generator for Number of Hits achieved by Missile 

The cell references in the equation are defined as follows: 

 $B$16 – Number of missiles fired within the engagement window. 

This is the maximum number of missiles that can be launched 

within the available time ((Engagement Window)/ (Time Interval 

between Launch)), or the number of missiles in the inventory, 

based on whichever is less. The Engagement Window is calculated 

with Equation 33. 

[(                                        ) (               )
 (                        ) (                )] 
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Equation 33. Engagement Window 

 $B$4-Probability of Intercept  

 B23-Number of inbound threats 

 

The CRITBINOM function generates a random number (of hits) 

from a binomial distribution based on the number of engagements possible within the kill 

window, and the probability of success. The MIN function is included to ensure that the 

number of hits does not exceed the number of threats. 

(2) LASER Engagement Model. The stochastic nature of 

LASER engagement outcome is modeled by randomly varying the fluence required to 

destroy each target in each engagement. This model is adopted as it reflects the reality in 

which it is a matter of time before a LASER weapon will destroy its target and the time 

taken to destroy a target can vary significantly depending on several factors (different 

aim point, jitter, moving target, etc.). With the varying fluence required to destroy a 

target, the number of hits/kills (by LASER) would vary, given the finite amount of 

energy that can be transmitted from the LASER within the kill window. This model is 

implemented in Excel using Equation 34 and Equation 35. 

   (      (       (        (     (    ()))     (    ()
     ())  ))       ) 

Equation 34. Random Generator for Number of Engagements that can be made by 

LASER within the kill window  

   (         (             ())        ) 

Equation 35. Random Generator for Number of Type II Engagements achieved by 

LASER 

Equation 34 is used to generate (randomly) the number of 

engagements that can be made by the available LASER weapon systems and Equation 35 
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is used to generate the number of Type II Engagements achieved from the LASER 

engagements. The cell references and terms in the equations are defined as follows: 

 $N$39 – Total fluence that can be transmitted from the Laser 

within the engagement window 

 $C$12-Number of Laser weapon system on vessel  

 D23-Number of engagements that can be made by the laser 

weapon within the engagement window  

 $C$4-Probability of intercept, which is defined as the probability 

that a target that has been engaged (penetrated) by the Laser will 

not hit the vessel   

 (B23-C23)-represents the number of threats remaining after the 

missile engagement 

 

The MAX function is used in the equation to ensure that the 

fluence required to destroy the target is at least equal to FSK (fluence required for a Type 

II Engagement). The INT function is used to ensure that only complete engagements are 

considered.   

The probability of intercept is included to account for the chance in 

which a target that has been penetrated/”killed” by LASER, can still strike the vessel and 

cause damage. As with the missile engagement model, the CRITBINOM function would 

generate a random number (of hits) from a binomial distribution based on the number of 

engagements possible within the kill window, and the probability of success. The MIN 

function is included to ensure that the number of hits does not exceed the number of 

threats. 

 

(3) Gun Engagement Model. As with the missile engagement 

model, the stochastic nature of the gun engagement outcome is modeled using the 

CRITBINOM function as shown in Equation 36. The probability of intercept for gun is 

calculated using Equation 37 and Equation 38.   
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   (         (               ())            ) 

Equation 36. Random Generator for Number of kills achieved by guns 

  (  (       )    (       )) ((     )      ) 

Equation 37. Mean probability of kill against missile targets, for each round fired by the 

gun within a 2000m range 

   (                ) 

Equation 38. Mean probability of kill for a specified duration of engagement using the 

gun within a 2000m range 

Cell references in the equations are defined as follows:   

 $D$16 – Total number of 5 sec engagements that can be made 

within the engagement window 

 $D$4 - Probability of Intercept for a 5 sec continuous gun 

engagement 

 (B23-C23-E23) - Number of threats remaining after Missile and 

Laser engagements 

 D6 & D7-The maximum effective and minimum engagement 

range of gun respectively  

 N50-The probability of kill for one round fired from the gun  

 N51- The number of rounds fired within a second of engagement  

 D9- The duration of each engagement, which is assumed to be 5 

seconds for the model      

As before, the CRITBINOM function would generate a random 

number (of hits) from a binomial distribution based on the number of engagements 

possible within the kill window, and the probability of intercept. The MIN function is 

included to ensure that the number of hits does not exceed the number of threats. 

Equation 37 returns the expected probability of kill/intercept for a 

missile target, by each round that is fired from the gun within a 2000m range. The 

probability of kill by each round at a distance r, measured in meters, is taken to 2/r as 
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derived from the LDP-17 Design Exercises (Tibbitts 1998).  Equation 37 is essentially a 

finite integral of that function from 100m to 2000m and dividing by the range in 

consideration. For a boat target, the probability of kill by each round fired from the gun 

within a 2000m range is taken to be a constant of 0.005, as stated in the LDP-17 Design 

Exercises (Tibbitts 1998).     

Equation 38 returns the probability of kill/intercept by the gun, 

given a specified rate of fire and the duration of engagement, which is taken to be 

3000rds/min and 5s respectively for the model. This probability is capped at 0.999 (using 

the MIN function) as firing an excessive amount of rounds on a target can never achieve 

a probability of kill of more than 1.   

(4) Determining Survival Rate. With the engagement models 

for the various weapon systems, the number of leakers is calculated easily by subtracting 

the number of threats that are intercepted by the various weapon systems from the 

number of inbound threats. Survival rate is determined by repeating each scenario (and 

the associated set of engagements) 50 times (or runs) and calculating the percentage of 

runs that have zero leakers. 

 

(5) Missile Characteristics. The missile defense capability that 

is modeled is based on generic subsonic anti-missile missile systems and has the 

attributes as listed in Table 27. The probability that a missile that is launched towards the 

threat will hit the threat is assumed to be 0.7 (Tibbitts 1998). The time between launch is 

the time required to prepare a missile system for the next launch and set to be 3 seconds 

for the model. The number of missiles on board a vessel is set to be 60 and it represents 

that maximum number of missiles that can be launched. To determine the contribution of 

missile system to the defense of the vessel, the number of launchers on board the vessel 

was varied during the simulation. 
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The minimum engagement range of the missile weapon system is 

set to be 2km. This may be considered to be the arming distance of the missile or a safety 

distance that is established to prevent collateral damage on friendly forces. 

  

Table 27. Modeled Missile Characteristics  

Missile Characteristics 

Probability 

of Intercept 

Maximum 

Effective 

Range 

Minimum 

Engageme

nt Range 

Average 

Speed 

Time 

between 

Launch 

Number of 

Missile 

Launchers 

Number of 

Missiles on 

Vessel 

0.7 100 km 2 km 1000 

km/hr 

3 sec Variable 

(0,1, or 2) 

60 

 

(6) Gun Characteristics. The guns are modeled to resemble the 

20mm Phalanx CIWS, which represents a typical terminal defense capability of naval 

vessels. The characteristics of the guns are as listed in Table 28. The probability of 

intercept represents the probability of killing the target with 5 seconds of engagement at 

the specified rate of fire. This probability varies with the type of threat (Missile and Boat) 

as shown in Table 28. To explore the contribution of the terminal defense capability to 

the overall defense of the vessel, the number of guns on the vessel is varied in the 

simulation. 

The gun characteristics are extracted from the LPD-17 Design 

Exercises (Tibbitts 1998) and shown in Table 28, with 2 added assumptions. First, the 

guns can only engage in bursts of 5 seconds (or 250 rounds). The assumption that a gun 

can only fire 250 round bursts would imply that guns in the model are not able to switch 

between threats within the 5 seconds of engagement even if a target is destroyed in less 

than 5 seconds. Second, while the ship would usually hold a large number of rounds, the 

time taken to reload a gun is assumed to be too long, therefore limiting the ammunition 

available to a gun to 3000 (assumed to be the maximum that can be preloaded) for each 

scenario. 
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Table 28. Modeled Gun Characteristics  

Guns Characteristics 

Probability 

of Intercept 

(Missile 

Targets) 

Probability 

of Intercept 

(Boat 

Targets) 

Maximum 

Effective 

Range 

Minimum 

Engagement 

Range 

Rate of 

Fire 

Duration of 

each 

Engagement 

Number 

of Guns 

0.788 0.999 2 km 

(Tibbitts 

1998) 

0.1 km 

(Tibbitts 

1998) 

3000 

rds/min 

(Tibbitt

s 1998) 

5 sec Variable  

(0,1, or 

2) 

 

(7) LASER Characteristics. The probability of intercept is 

considered to be the probability that a destroyed target will not reach the vessel. It 

accounts for the chance that the target may still reach and destroy the vessel despite being 

penetrated by the LASER. This probability is larger for missile threats, compared to boat 

threats as it is assumed that it is more difficult for missile threats to maintain their course 

of movement after being penetrated by LASERs. It should be noted that this definition 

probability of intercept is unique to LASER engagements. The values selected for these 

probabilities were strongly managed assumptions based on the Directed Energy Weapons 

chapter of Dr. Robert Harney’s Combat Systems text and the idea that simply penetrating 

the hull of a boat will likely cause much less damage (requiring multiple “shots”) than 

penetrating the casing of a missile under dynamic stress. These probabilities are shown in 

Table 29. 
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Table 29. Modeled LASER Characteristics 

LASER 

Characteristics 

Type of LASER (Variable) 

No 

LASER 

LaWS LaWS+ MLD TLS 

Probability of 

Intercept 

(Boat) 

0.8 0.8 0.8 0.8 0.8 

Probability of 

Intercept 

(Missile) 

0.99 0.99 0.99 0.99 0.99 

Power - 33 kW 

(O'Rourke, 

Navy 

Shipboard 

LASERs 

for Surface, 

Air, and 

Missile 

Defense: 

Background 

and Issues 

for 

Congress 

2013) 

150 kW 

(Chernesky 

2012) 

105 kW 

(O'Rourke, 

Navy 

Shipboard 

LASERs 

for Surface, 

Air, and 

Missile 

Defense: 

Background 

and Issues 

for 

Congress 

2013) 

10 kW 

(Keller 

2009) 

Aperture 

Diameter 

- 0.66 m 

(Tressler 

2010) 

0.66 m 

(Tressler 

2010) 

0.49 m 

(O'Rourke, 

Navy 

Shipboard 

LASERs 

for Surface, 

Air, and 

Missile 

Defense: 

Background 

and Issues 

for 

Congress 

2013) 

0.3 m 

(Department 

of Defense 

2010) 

Wavelength - 1.06 μm 

(O'Rourke, 

1.06 μm 

(O'Rourke, 

1.06 μm 

(O'Rourke, 

1.6 μm 

(Keller 
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Navy 

Shipboard 

LASERs 

for Surface, 

Air, and 

Missile 

Defense: 

Background 

and Issues 

for 

Congress 

2013) 

Navy 

Shipboard 

LASERs 

for Surface, 

Air, and 

Missile 

Defense: 

Background 

and Issues 

for 

Congress 

2013) 

Navy 

Shipboard 

LASERs 

for Surface, 

Air, and 

Missile 

Defense: 

Background 

and Issues 

for 

Congress 

2013) 

2009) 

BQ (M
2
) - 17 

(O'Rourke, 

Navy 

Shipboard 

LASERs 

for Surface, 

Air, and 

Missile 

Defense: 

Background 

and Issues 

for 

Congress 

2013) 

17 

(O'Rourke, 

Navy 

Shipboard 

LASERs 

for Surface, 

Air, and 

Missile 

Defense: 

Background 

and Issues 

for 

Congress 

2013) 

3.83 

(O'Rourke, 

Navy 

Shipboard 

LASERs 

for Surface, 

Air, and 

Missile 

Defense: 

Background 

and Issues 

for 

Congress 

2013) 

1.5 

(O'Rourke, 

Navy 

Shipboard 

LASERs for 

Surface, 

Air, and 

Missile 

Defense: 

Background 

and Issues 

for 

Congress 

2013) 

Number of 

LASER 

System 

0 1 1 1 1 

 

(8) Sensor Characteristics . The detection ranges for missile 

and boat targets differ. For the simulation, the detection range for missile targets is set to 

be 50km and that for small boats varies between 0.5 km and 4 km. The variation in 

detection range for small boat targets is to allow assessment of the performance of the 

vessel defense under varying visibility.   

(9) Target Characteristics. Two types of targets are considered 

for the simulation: Small Boats and Surface Skimming Missiles. The characteristics of 

the targets are as listed in Table 30. The type of target is defined by the scenario and the 
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number of targets is varied in each scenario to allow differentiation in performance for 

various weapon combinations.   

Table 30. Modeled Target Characteristics 

  
Type of Target Boat Missile 

Target/Attacker 

Characteristics 

Number of Targets Variable (100–300) Variable (10–50) 

Operating Temperature 300 K 300 K 

Average  Speed  50 km/hr 2000 km/hr 

Target Material Aluminum 
Stainless Steel 

(604) 

Target Material 

Thickness 
2 cm 0.5cm 

Thermal Coupling 

Coefficient 
0.01 0.01 

Density 

2.7 g/cm
3
 

(MakeItFrom.com 

n.d.) 

7.8 g/cm
3
 

(MakeItFrom.com 

n.d.) 

Melting Point 

933.5 K 

(MakeItFrom.com 

n.d.) 

1700 K 

(MakeItFrom.com 

n.d.) 

Specific Heat Capacity 

0.897 J/gK 

(MakeItFrom.com 

n.d.) 

0.5 J/gK 

(MakeItFrom.com 

n.d.) 

Heat of Fusion 

396.9 J/g 

(MakeItFrom.com 

n.d.) 

250 J/g 

(MakeItFrom.com 

n.d.) 

 

(10) Environment Characteristics. The impact of atmospheric 

attenuation on LASER performance has been analyzed in earlier LASER Performance 

Analysis and is not explored in the simulation. For the simulation, atmospheric 

attenuation is set to be 0.8dB/km. This atmospheric attenuation would resemble 

operations in good weather conditions. 
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c. Scenarios 

(1) Scenario 1: Missile Swarm Attack. The following 

parameters were changed: 

 Number of incoming missiles (10, 20, 30, 40 , 50) 

 Type of LASER (No LASER, LaWS, LaWS+, MLD, TLS) 

 Number of Missile Launchers (0, 1, 2) 

 Number of Guns (0 or 2) 

 

The following factors were constant: 

 Target Characteristics: 

o Material: Stainless Steel 

o Speed: 2000km/hr 

o Material Thickness: 0.5cm 

 Weapon Characteristics 

o Missile Max range > detection range 

o Detection Range : 50km 

o Speed: 2000km/hr 

o Launch Interval: 3s 

o P(intercept): 0.7 

o Missile Inventory: 60 per ship 

o Attenuation (0.8 dB/km) 

 

(2) Scenario 1.1: Missile Swarm Attack – without Anti-Missile 

Missiles. The following parameters were changed:  

 Type of LASER (No LASER, LaWS, LaWS+, MLD, TLS) 

 Number of Targets (2, 4, 6, 8, 10) 

 Number of Guns (0 or 2) 

The following factors were constant: 

 Target Characteristics: 

o Detection Range:20km 

o Material: Stainless Steel 

o Speed: 2000km/hr 

o Material Thickness: 0.5cm 

 Weapon Characteristics 

o Number of launchers: 0 

o Attenuation: 0.8dB/km 

o Missile Max range > detection range 
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o Speed: 2000km/hr 

o Launch Interval: 3s 

o P(intercept): 0.7 

o Missile Inventory: 60 per ship 

 

(3) Scenario 1.2: Missile swarm attack – with 2 anti-missile 

systems. The following parameters were changed:  

 Type of LASER (No LASER, LaWS, LaWS+, MLD, TLS) 

 Number of Targets (10, 20, 30, 40, 50) 

 Number of Guns (0, 2) 

The following factors were constant: 

 Target Characteristics: 

o Detection Range:40km 

o Material: Stainless Steel 

o Speed: 2000km/hr 

o Material Thickness: 0.5cm 

 Weapon Characteristics 

o Number of launchers: 2 

o Attenuation: 0.8dB/km 

o Missile Max range > detection range 

o Speed: 2000km/hr 

o Launch Interval: 3s 

o P(intercept): 0.7 

o Missile Inventory: 60 per ship 

 

(4) Scenario 2: Boat Swarm Attack. The following parameters 

were changed:  

 Detection Range (0.5, 1, 2, 4km) 

 Type of LASER (No LASER, LaWS, LaWS+, MLD, TLS) 

 Number of Guns (0, 1, or 2) 

 Number of threats (10, 20, 30, 40, 50) 

The following factors were constant: 

 Target Characteristics: 

o Material: Aluminum 

o Speed: 50km/hr 

o Material Thickness: 2 cm 

 Weapon Characteristics 
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o Number of Missile Launcher = 0 (Missiles N/A for 

scenario) 

o LASER Engagement Range = 0 - 10km 

o Gun Engagement Range = 0 - 2km  

o Attenuation = 0.8dB/km 

d. Analysis 

The experiment design implemented for our analysis is full factorial 

design with 50 runs for each data point. This design is very robust and does not require 

assumptions on the different parameters and the interactions between them. For every 

scenario, the following analysis was conducted using Minitab: 

 Main effects analysis 

 Interaction analysis 

 One-way t-test 

e. Results 

(1) Scenario 1: Missile Swarm Attack. In this scenario, which 

includes a missile swarm attack, we have varied the number of missile launchers, number 

of guns, number of incoming targets and the LASER type.  Figure 53 depicts the main 

effects analysis. In main effects analysis, each graph shows the effect of a single 

parameter while averaging the rest of the parameters. 
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Figure 53. Missile Swarm Attack Scenario Main Effects Analysis 

The main two parameters influencing the result are the number of 

missile launchers and number of incoming targets.  Figure 54 depicts the interaction plot. 

Similarly to main effects analysis, in interaction analysis each graph shows the 

interaction effect of two parameters while averaging on the rest of the parameters. 
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Figure 54. Missile Swarm Attack Scenario Interaction Plot 

From the graphs in the top row, without missile launchers the 

probability of survival is close to 0. From the top-right graph, a single missile launcher 

can handle approximately 10 targets (up to 20 with low survival probability), while two 

launchers can handle about 30 incoming missiles. From the LASER type-number of 

targets interaction plots, the MLD is slightly better than the other LASERs in situations in 

which the missiles ensure some, but not full, survival rate. The rest of the LASERs do not 

have significantly different results in comparison with using only conventional weapons. 

Figure 55 depicts an interaction plot again with a t-test for a 95% 

confidence interval around the mean. Although MLD appears somewhat better than the 

other LASERs, the overlap of the confidence intervals indicates the difference is not 

statistically significant (at least to the 95% confidence level). Given this limited testing, 

the MLD appears to be the best candidate for follow-on test and evaluation. 
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Figure 55. LASER type/Number of Guns Interaction 

Figure 56 shows that MLD is significantly better than other 

LASERs when there are 20 targets. The reason is that in those cases, one or two missile 

launchers (in that order) will have some effect, but not a full one, and the MLD helps to 

improve the outcome. When the missile launchers are either 100% or 0% effective, a 

LASER does not change the outcome. 
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Figure 56. LASER type/Number of Targets Interaction 

 

(2) Scenario 1.1: Missile Swarm Attack – without Anti-Missile 

Missiles. In order to learn more about the performance of the different LASERs in a 

missile swarm scenario, we simulated conditions in which there were no anti-missile 

missiles. This kind of a situation can occur if there is a malfunction in the anti-missile 

system or if a missile was launched inside of the minimum engagement range/arming 

range for the anti-missile system. The number of targets that can be handled is much 

lower in this scenario. 

Figure 57 and Figure 58 depict the main affect and interaction 

plots for this scenario. MLD is the only effective LASER weapon for this scenario. This 

effectiveness is significant for less than five of incoming targets, as can be seen in Figure 

59. 
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Figure 57. Missile Swarm Attack Scenario without Anti-Missile Missiles Main 

Effects Analysis 

  

 



 

 

 

 

164 

 

Figure 58. Missile Swarm Attack Scenario without Anti-Missile Missiles Interaction 

Plot 
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Figure 59. LASER Type/Number of Targets Interaction 

To compare the effectiveness of LASERs and guns we will focus 

on the situation where there are one or two incoming targets (Figure 60 and Figure 61). 

MLD, even with no guns at all, is significantly better than two guns with no LASERs. 
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Figure 60. LASER Type/Number of Guns Interaction (One target) 
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Figure 61. LASER Type/Number of Guns Interaction (Two targets) 

 

(3) Scenario 1.2: Missile Swarm Attack – with Two Anti-

Missile Systems. To complete this scenario analysis, we also take a look at the situation 

where two anti-missile missile systems exist and function. In this case the main effects 

are shown in Figure 62. 
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Figure 62. Missile Swarm Attack Scenario with Two Anti-Missile Systems Main 

Effects Analysis 

From the main effects plot, guns have only a slight effect on the 

survivability of the ship and that the MLD also has a slight positive effect on 

survivability without anti-missile missiles. Also, in this type of scenario, the maximum 

number of threats that can be engaged is about 30 before survivability is significantly 

impacted. 
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Figure 63. LASER Type/Number of Guns Interaction (Two Anti-Missile Systems) 

The only LASER that has a significant contribution to the survival 

rate is the MLD. The two anti-missile systems can handle up to 20 incoming targets. 

With 30 targets, the survival rate is smaller when most of the LASERs are incorporated. 

However, MLD improves the survival rate. With 40 targets, the MLD can improve the 

survival rate significantly, from about 5% to 40%, but even 40% is not an acceptable 

survival rate. 

 

(4) Scenario 2: Boat Swarm Attack. In this scenario, we 

analyze the performance of the different LASERs against swarms of suicide boats. We 

assumed that missiles are irrelevant in this scenario since they would not be used against 

this type of target. In our analysis we varied the detection range, the number of attacking 

boats, the number of guns and the number of attacking targets.  Figure 64 and Figure 65 

depict the main effects and the interactions analysis. 
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Figure 64. Boat Swarm Attack Scenario Main Effects Analysis 
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Figure 65. Missile Swarm Attack Scenario Interaction Plot 

From the interaction between number of guns and number of 

targets (middle right plot), one gun can handle about 10 targets, and two guns can handle 

about 20 targets. From the middle interaction plot,  the only LASER that has any effect is 

the MLD. This effect occurs when combined with one or two guns (shown in detail in 

Figure 66). 
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Figure 66. LASER Type/Number of Guns Interaction (Boat Swarm Scenario) 

The detection range has no effect on the outcome in the scenario 

examined.  Figure 67 shows the interaction between the number of targets and the 

LASER type. MLD has a substantial (and significant) effect even when there are up to 50 

targets while the other LASERs lose any appreciable effect with more than 30 targets. 
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Figure 67. LASER Type/Number of Targets Interaction (Boat Swarm Scenario) 

f. Findings 

Based on our simulation analysis, none of the LASERs tested can replace 

the ship’s missiles systems or guns despite the optimistic assumptions. The MLD was 

found to be the most effective of the LASERs, and significantly better than the other 

LASERs tested. The rest of the LASERs tested were indistinguishable from not using 

LASERs in almost all the scenarios and situations tested. The additional value of using 

LASERs is rather small. None of the LASERs can replace the current systems. However, 

the MLD can offer some complementary abilities where the existing weapons are not 

sufficient due to large number of targets. 
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V. INTEGRATION 

A. SHIPBOARD INTEGRATION 

In order to move DEW prototypes (or any weapon system for that matter) from 

test demonstrations to actual deployment and integration onto naval surface ships, the 

impact of doing so must be considered. If a new weapon system meets all performance 

requirements but cannot be integrated onto the appropriate platform, then the weapon is 

useless. Considerations to Size, Weight, and Power (SWaP) constraints, cooling 

requirements, combat systems integration, and weapon coverage are critical for the 

installation of any weapon system. While there are various Navy ship classes that may 

potentially support the integration of a DEW, “the DDG [destroyer] provided the best 

opportunity to match new capabilities with emerging needs with higher-energy LASER 

weapons capabilities and the class (O'Rourke, Navy Shipboard LASERs for Surface, Air, 

and Missile Defense: Background and Issues for Congress 2013).”  As outlined in the 

project scope, only the DDG-51 will be addressed in this project. The purpose of the 

shipboard integration section is to determine the feasibility of fully integrating the four 

possible prototypes, LaWS, MLD, TLS, and ADS on an Arleigh Burke Class Destroyer. 

1. LASER Weapons System (LaWS) Shipboard Considerations 

On April 8, 2013, the Navy announced that it would install a prototype solid state 

LASER called the LASER Weapon System (LaWS) on a ship stationed in the Persian 

Gulf in early 2014 to conduct continued evaluation of shipboard LASERs in an 

operational setting (O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile 

Defense: Background and Issues for Congress 2013). The proposed LASER was a 100 

KW variant of the 33 kW prototype that was temporarily installed on the USS Dewey 

(DDG-105) (Marks 2013). It should be noted that LaWS will not be fully integrated into 

the combat systems suite or be permanently mounted for the maiden deployment but 

serve as an operational test for LASERs (specifically LaWS) at sea. 
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The LaWS prototype is at TRL 6 and incoherently combines light beams from six 

fiber SSLs—commercial, off-the-shelf (COTS) welding LASERs. The light from the six 

LASERs is incoherently combined because the individual beams are not merged into a 

true single beam; and although the beams are quite close to one another, they remain 

separate and out of phase with each other, and are steered and focused by the beam 

director so that they converge into a single spot when they reach the intended target 

(O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile Defense: Background 

and Issues for Congress 2013). This reduces the complexity of the system and hence the 

associated costs. 

a. Size, Weight, and Power (SWaP) Constraints 

The selected platform to initially deploy with the LaWS prototype is the 

USS PONCE. The USS PONCE is a LPD-4 hull that has been converted to an Afloat 

Forward Staging Base, Interim (AFSB-I). However, LaWS on PONCE is considered a 

temporary installation of a 100 kW self-contained LASER system that provides power 

and cooling independent of associated shipboard systems. The Navy believes that the 

LASER power levels likely to be available in the near term, within reasonable size and 

cost, are in the neighborhood of 100 kW of radiated power (O'Rourke, Navy Shipboard 

LASERs for Surface, Air, and Missile Defense: Background and Issues for Congress 

2013). For this reason we decided to look at the feasibility of a permanent installation of 

a 100 kW version of the LaWS on a DDG-51 ship. It goes without saying that if the 100 

kW systems are determined to be feasible with respect to size, weight and power, then 

any lower power level variants including the current 33 kW system will also be feasible. 

(1) Size and Weight. The main components of the LaWS are 

the LASER head, the LASER generation, and power source. The following section 

assumes that a 100kW LASER is the target power level for the system.  Figure 68 shows 

that the current LaWS prototype requires enough space to fill an entire DDG-51 FLT IIA 

class flight deck. However, by integrating the system into the ship and utilizing the 

available power and cooling, the overall size can be greatly reduced with only the 
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LASER remaining on deck. The LaWS uses COTS welding LASERs from IPG 

Photonics (O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile Defense: 

Background and Issues for Congress 2013). The largest LASER unit YLS-10000 is a 10 

kW self-contained LASER unit each with dimensions of 4.6’x2.8’x2.65’ (Photonics 

2012). A total of 10 of these LASER units will be required for a 100 kW system resulting 

in a total volume of 341.32 cubic feet of shipboard space. 

 

 

Figure 68. LASER Weapon System (LaWS) prototype onboard USS DEWEY 

(DDG-105) (from news.com.au 2013) 

The current plan is to integrate the LASER optics with a CIWS 

mount. Utilizing an existing CIWS mount would alleviate the need for additional deck 

space by joining the DEW with an existing conventional weapons mount. The fire control 

interface module will most likely be installed in the ship’s Combat Information Center 

(CIC).  

The weight of the LaWS system excluding the power supply and 

cooling subsystems is approximately 10,000 pounds (Sprangle 2012). This weight can be 

further reduced by assimilating the LaWS optics with the CIWS mount currently 
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employed on DDG-51 class ships. The estimated weight of the LASER head is 1100 lbs. 

with the remaining weight belonging to the 10 LASER units and associated equipment. 

As a result, an estimated 10,000 lbs. will be added to the ship. By utilizing a Microsoft 

Excel spreadsheet provided by NPS Professor Fotis Papoulias, we were able to calculate 

the impact of adding this weight with respect to draft and stability. We assumed that the 

metacentric height at a draft of 20’ was 5’, while the assumed center of gravity was at 

25’. Based on an estimate that all the weight would be placed on the ship’s centerline at 

59’ above the keel, the additional weight of the LaWS will result in an increase in draft 

of .103 inches and a decrease in the ship’s metacentric height of .0037, or .37%. Given 

the relatively small increase in total shipboard weight by the addition of the LaWS, it is 

unlikely that the ship’s stability will be significantly affected by the placement of the 

system. 

(2) Power. The current LaWS rely upon its own generator for 

power. A major factor in reducing the overall size of the LaWS is by eliminating this 

generator by supplying the ship’s electrical power to the system. LaWS is about 25% 

efficient, meaning that about 400 kW of ship’s power would be needed to operate a future 

version of LaWS producing 100 kW of LASER light. The remaining 300 kW of electrical 

energy would be converted into waste thermal energy (heat) that needs to be removed 

from the system using the ship’s cooling capacity (O'Rourke, Navy Shipboard LASERs 

for Surface, Air, and Missile Defense: Background and Issues for Congress 2013).  

The current DDG-51 electrical plant consists of three Gas Turbine 

Generator Sets (GTGs) rated at 2500 kW each and supplies 450 VAC, three-phase, 60 Hz 

power throughout the ship. While the DDG-51 class peace time ship electrical load is 

typically less than the generator rating (currently 2500kW), the practice is to have a 

minimum of two GTGs on line at all times to ensure continuity of service should there be 

a system fault, or casualty to one of the GTGs (Mahoney, et al. 2010). This operation of 

at least two generators at all times essentially represents 2500 kW of unused power that 

could be utilized by additional systems. The LaWS system would represent a load 
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increase of 8% to the current shipboard electrical power plant produced during dual 

generator operations. The current DDG-51 Flight IIA configuration can easily support 

this requirement for a single LaWS system during normal electrical plant lineup, but 

would most likely come to full power in the event the system was to be employed. 

b. Cooling 

The DDG-51 class combatant ship has four 200-ton A/C plants on board 

and is designed to supply 44°F chilled water throughout the chilled water system (Fang, 

et al. 2011). The DDG-51 FLT IIA’s are being outfitted with five of these plants and 

plans are in place to upgrade the five plants from 200-tons to 300-tons on the FLT III’s. 

Two of these plants are online and operating at any given time during normal operations 

to provide cooling to critical shipboard systems. Because the LaWS operates at 

approximately 25% efficiency, 300 kW of waste heat will need to be removed (so as not 

to interfere with the beam propagation). This translates to approximately 86 tons of 

cooling required for single system operation. The current cooling load requirement for a 

DDG-51 in FY13 is approximately 155 tons (Vandroff 2013). Based on the 86 tons of 

cooling required and an existing cooling system capable of handling 400 tons, the current 

DDG-51 is able to support at least one 100 kW LaWS. 

c. System Placement 

Due to the scarcity of topside real estate on modern ships, a major 

advantage of the LaWS is its ability to be integrated into the current CIWS mount. 

Through the combined use of this low-cost mount technology, warfighters can gain an 

increase in capability without having to sacrifice current capabilities. Therefore, when 

considering adding a single LaWS to the ship, decision makers have two choices; forward 

or aft. The two CIWS mount locations are shown in Figure 69.  
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Figure 69. Proposed LASER Head Placement Locations (after Vandroff 2013) 

While the LASER head will be co-located on a CIWS mount, the 

remaining equipment must be installed below deck. The shipboard experience of many of 

the project team members assisted in determining possible locations for equipment. In the 

case of the aft CIWS mount, the LASER units will likely be stored directly below the 

CIWS in the aft CIWS equipment room. Additional space is available in the #2 and #3 

director equipment rooms located directly below the two aft fire control directors. 

Similarly in the case of a forward CIWS installation, the forward CIWS equipment room 

will house the LASER equipment. 

d. Combat Systems Considerations 

As previously mentioned, the current integration plan for the LaWS on the 

DDG-51 is for it to be integrated with the CIWS. This integration will allow the LaWS to 

be controlled via the same methods that currently control the CIWS. Figure 70 depicts an 

artist rendition of the combined systems.  

 

Aft CIWS 

Forward CIWS 
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Figure 70. Rendering of LASER Weapon System (LaWS) Integrated on Close-In 

Weapon System (CIWS) Mount (from O'Rourke, Navy Shipboard LASERs for Surface, 

Air, and Missile Defense: Background and Issues for Congress 2013) 

LaWS is designed to be a “plug and play” system that integrates into a 

ship’s existing targeting technologies and power grids (Martinez 2013). LaWS can be 

directed onto targets from the radar track obtained from a MK 15 CIWS or other 

targeting source (Lundquist 2013). These functions are accomplished using the 

search/track radar system and the Phalanx Thermal Imager (PTI). 
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The LaWS will be remote operated by a console operator located in the 

ship’s CIC. The optics that would be added for the LASER to detect and track targets in 

support of a LASER engagement would immediately contribute additional capabilities to 

the entire ship combat system even without operating the LASER (Staton and Pawlak 

2012). The additional sensitivity and angle resolution provided by the LaWS optics 

would allow the identification, precision tracking, and “monitoring” (at high resolution) 

of potential threats or vehicles of interest at substantially greater ranges than could be 

achieved by the PTI alone (Staton and Pawlak 2012). The CIWS radar, or another source, 

would have to provide an initial, accurate cue to facilitate initial acquisition, but once 

acquired, the target could be examined and monitored with high resolution at range 

(Staton and Pawlak 2012). 

e. Weapon Coverage 

The actual weapon coverage of the LaWS system is assumed to be very 

similar to that of the CIWS since they share the same mount and therefore the same block 

zones.  Figure 71 shows the approximate weapons cut-out of the forward and aft CIWS 

mounts. 
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Figure 71. Close-In Weapon System (CIWS)/LASER Weapon System (LaWS) 

Weapons Coverage 

Table 31 contains the CIWS mount traverse and elevation limitations as 

well as the mechanical speed in which the mount moves to engage a target.  

 

Table 31. Close-In Weapon System (CIWS) Mount Cut-outs (from Navweaps.com 

2010) 

Elevation -25 to +85 degrees 

Speed in Elevation 115 degrees per second 

Traverse -150 to +150 degrees 

Speed in Traverse 115 degrees per second 

 

As in any shipboard weapon system, the weapons coverage limitations can 

be overcome by a vessel at sea through maneuver, and consideration must be given while 

at anchor or in port if the LaWS will be considered for ship defense in an Anti-

Terrorism/Force Protection (AT/FP) role. 
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2. Maritime LASER Demonstration (MLD) Shipboard Considerations 

The Maritime LASER Demonstration (MLD) coherently combines beams from 

multiple slab Solid State LASERs (SSLs) to create a 100kW high-power beam with good 

Beam Quality (BQ). The system comprises a tracking subsystem, a LASER subsystem to 

generate the LASER beam, a beam director with stabilizer through which the LASER is 

fired, and a fire control computer interface. The schematic of the MLD is shown in 

Figure 72. 

 

 

Figure 72. Schematic of Maritime LASER Demonstration (MLD) (from O'Rourke, 

Navy Shipboard LASERs for Surface, Air, and Missile Defense: Background and Issues 

for Congress 2013) 

A brief summary of the technical specifications for MLD is given in Table 32. 

Table 32. Summary of Maritime LASER Demonstration (MLD) Technical 

Specifications (from O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile 

Defense: Background and Issues for Congress 2013) 

Wavelength 1.064 microns 
Beam Quality (BQ) < 3 

Dimensions A 15kW slab SSL ~ 1 ft. x 2 ft. x 3.5 ft. 
Weight ~20 tons 

Power Requirements 400–500 kW 
Efficiency 20% - 25% 
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Tests in a maritime environment were performed in April 2011 by the Office of 

Naval Research (ONR), together with the main contractor Northrop Grumman. The 

system was installed on the Navy’s Self Defense Test Ship, the ex-USS Paul F. Foster, 

and integrated with the ship’s radar and navigation system. The high-energy LASER 

demonstration successfully tracked and defeated multiple moving small boat targets at 

operationally significant ranges, proving the potential for solid-state LASER weapons to 

defend Navy ships from small boat threats. MLD was also proven to withstand the 

challenging maritime environment of rain and fog, with waves up to eight feet and winds 

up to 25 knots (Northrop Grumman 2012). 

a. Size, Weight, and Power (SWaP) Constraints 

MLD is physically the largest of the four systems being considered for 

shipboard installation. The current MLD system is comprised of a tracking subsystem, a 

LASER subsystem to generate the LASER beam, a beam director with stabilizer through 

which the LASER is fired, and a fire control computer interface. MLD also includes a 

containerized unit that houses power and HVAC requirements for the system. In its 

current configuration, the entire MLD system is capable of being operated and 

transported by truck and trailer. The MLD requires more space, adds more weight, and 

requires slightly more power than the other three systems that were considered for 

addition to the DDG-51 platform. 

(1) Size and Weight. The size and space of the MLD 

standalone prototype can be reduced through shipboard integration. Reduced 

requirements can be achieved by eliminating the need for the containerized power 

generator and HVAC cooling system. The required ‘hotel services’ can be provided by 

the DDG-51 platform. Similar to the LaWS, the MLD concept is to combine smaller 

LASERs to achieve the desired output power. This “stacking” is done in 15 kW 

increments. Each 15 kW slab SSL is housed in a Line Replaceable Unit (LRU) measuring 

about 1 foot by 2 feet by 3.5 feet. It is estimated that a below-deck space measuring 
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roughly 4.5 feet by 8 feet by 12 feet might be required for a SSL with a total power of 

300 kW (O’Rourke, Navy DDG-51 and DDG-1000 Destroyer Programs: Background 

and Issues for Congress 2013). The fire control interface module will most likely be 

installed in CIC.  

The combined weight of the MLD system is estimated at 20 tons. 

Since the actual weight could not be obtained through open source references, the weight 

of the MLD was estimated based on the maximum cargo weight of international 

intermodal containers for transport on the U.S. highway system. This assumption was 

based on the fact that the MLD in its self-sufficient containerized configuration is capable 

of transport by a single truck and trailer and is most likely a high estimation 

(www.ocema.org 2013). It is assumed that this weight can be reduced by half by 

eliminating the Power/HVAC module and by utilizing the ship’s generators and AC 

plants to provide the power and cooling requirements for the MLD. As a result, an 

estimated 20,000 pounds will be added to the ship by the LASER mount and associated 

equipment. Again by utilizing the DDG-51 hydro spreadsheet, with the same assumptions 

as described earlier, and based on an estimate that all the weight would be placed on the 

ship’s centerline at 32’ above the keel, the additional weight of the MLD will result in an 

increase in draft of .1996 inches and a decrease in the ship’s metacentric height of .0018, 

or .18%. Given this relatively small increase in total shipboard weight by the addition of 

the MLD, the impact to the stability of the ship will be essentially zero. 

(2) Power. The selection of a large platform such as DDG-51 

provides the advantage of sufficient power to support the high power requirements of the 

MLD. The power efficiency of the MLD is currently between 20–25%, but may increase 

to 30% in future (O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile 

Defense: Background and Issues for Congress 2013). If we assume the worst case of 20% 

efficiency, at least 520kW of power would be required to produce a 105 kW output beam.  

Similarly to the LaWS power requirements already discussed, 

there is essentially 2500 kW of unused power on a DDG-51 during normal operations 
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that could be utilized by additional systems. The MLD system would represent a load 

increase of 10.5% to the current shipboard electrical power plant and would be able to 

easily support this requirement for a single MLD. Like with LaWS, current load shed 

procedures may need to be revised to account for the increase in shipboard power 

requirements in the event of a generator casualty. 

b. Cooling 

An important consideration for the MLD is the utilization of the ship’s 

cooling capacity through shipboard integration in order to minimize equipment damage 

caused by overheating. The MLD must dissipate any excess heat that is generated by the 

LASER. Based on the worst case with 20% efficiency, the total power needed to operate 

a 105 kW system is 525 kW and the resulting waste thermal energy generated would be 

approximately 420 kW. 

A FLT IIA Arleigh Burke class destroyer currently has five 200T Air 

Conditioning and Refrigeration (AC&R) units located in various engineering main 

spaces. Two of these units are online at any given time to provide the ship with cooling 

for equipment and personnel. The current shipboard load requirement for the Flight IIA 

DDG-51 is approximately 170 tons (Vandroff 2013). Approximately 120 tons of cooling 

would be required to remove the 420 kW of excess heat generated. Therefore, sufficient 

cooling for a 105 kW MLD system can easily be supported by the current DDG-51 

platform. 

c. System Placement 

There are several potential options when considering the installation of the 

MLD system. One installation option would be to remove either the forward or aft CIWS 

mount in order to facilitate the placement of the MLD and associated equipment. Another 

would be to keep both CIWS systems in place and add the LASER as a new addition to 

the ship. There are definitely some trade-offs to consider with either approach, but for the 

purpose of this project, consideration will be given to installing the MLD on its own 
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mount rather than replacing an existing CIWS mount with the intention of potentially 

increasing the overall capability of the ship.  

Figure 73 depicts the notional shipboard installation of the MLD beam 

director and stabilizer located on the ship’s centerline, aft of the current aft CIWS mount 

and Vertical Launch System (VLS). The elevated mount would provide additional 

storage space for the LASER subsystems as well as the cooling and power piping and 

wiring necessary for system installation. The fire control computer interface is likely to 

be co-located with other fire control system interfaces in CIC. 

 

 

Figure 73. Notional Shipboard Installation of Maritime LASER Demonstration 

(MLD) (from Northrop Grumman 2012) 

d. Combat Systems Considerations 

In addition to the ship’s power and cooling systems, the MLD will require 

several inputs from the ship’s Combat Systems suite to perform the target detection, 

identification, and tracking functions. Initial tracking of high speed, remotely operated 

and maneuverable small boat surface targets would be provided by the ship’s 

complement of existing radars, and then passively and actively tracked by the beam 

director cameras through varying environmental conditions up to sea state three 

(O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile Defense: Background 
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and Issues for Congress 2013). The MLD would have to be integrated with the ship’s 

radar and navigation system to take in inputs from the system. 

Active engagement of the target would be controlled by fire controllers 

located in CIC. A fire control network would be required to enable the engagement. 

Additionally, high resolution images provided by the stabilized, optical pointing and 

tracking system yield an extremely effective, multi-mission capability for situational 

awareness and intelligence, surveillance and reconnaissance missions at long ranges 

(Northrop Grumman 2012). 

e. Weapon Coverage 

With the installation of the MLD directly above the ship’s helicopter 

hangars, the weapon system will have similar weapons coverage to that of the aft CIWS 

mount. Assuming that the beam director is fully rotatable around its base, the weapon 

coverage on each side would be at least 180°, providing weapon coverage for the aft 

portion of the ship (Figure 74). Weapon cut-outs based on the ship’s structure would need 

to be established to determine the minimum engagement range of the small boat threat.  
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Figure 74. Potential Weapon Coverage of Maritime LASER Demonstration (MLD) 

3. Tactical LASER System (TLS) Shipboard Considerations 

BAE Systems and Boeing have partnered to develop a system known as 

the MK 38 Tactical LASER System (TLS) based around a 10kW industrial fiber LASER. 

This tactical LASER weapon is integrated as a side-car add-on to the MK 38 MOD 2 

Machine Gun System (MGS), retaining the full capability of the machine gun system and 

the single operator philosophy of the MK 38 weapon (Sohm, et al. 2012). The system 

shown in Figure 75 combines both kinetic and directed energy weapons on a single 

mount to offer the war fighter with additional options with minimal impact to the current 

shipboard configuration. The addition of the LASER weapon module will provide high-

precision accuracy against surface and air targets such as small boats and UAVs (Reed 

2011). To date, 182 MK 38 Mod 2s have been delivered to the USN and have been 

deployed on twelve different ship classes (Sohm, et al. 2012). The primary advantage of 
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the TLS is that it only requires minor alterations to the current ship configuration to 

complete the upgrade and that when deployed in pairs on U.S. Navy vessels will provide 

nearly 360 degrees of coverage against smaller asymmetric threats. This section will 

consider the additional requirements in adding a Tactical LASER System to the current 

DDG-51 configuration only. 

 

 

Figure 75. Artist impression of Tactical LASER System (TLS) (from Naval Open 

Source Intelligence: BAE Systems Completes Successful Test of Mk 38 Tactical LASER 

System Concept 2011) 

a. Size, Weight, and Power (SWaP) Constraints 

Another advantage of TLS over many other types of directed energy 

weapons is that it does not require much more additional space, weight, or power over the 

current conventional weapon being employed. As an upgrade to an existing weapon 

system, the TLS provides an improved capability without the typical trade-offs associated 

with adding or replacing a shipboard weapon.  
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(1) Size and Weight . While big in capability, TLS is compact 

in size. The TLS adds a Beam Director (BD) on the side opposite of the MK38 Electro 

Optical System (EOS) and houses the 10kW fiber LASER, thermal, and power 

management systems, which in one packaging concept, is underneath the gun mount in 

an environmental enclosure. The system still maintains the same deck space as the 

original MK38 MOD 2 (Sohm, et al. 2012). The BD is shown on the right side of the 

25mm barrel in Figure 76. Also shown is the mount packaging concept in which all of the 

necessary equipment to operate the LASER is co-located directly under the weapon 

mount. The remote operating station for each system (port and starboard) will most likely 

be installed in the ship’s bridge.  

 

 

Figure 76. MK38 Tactical LASER System (TLS) under Mount Packaging Concept 

(from Sohm, et al. 2012) 
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While the actual weight increase of the TLS upgrade to the MK 38 

MOD 2 system was unavailable through open source research, the system weight can be 

estimated based on its dimensions and components. By estimating the dimensions of the 

equipment package shown in Figure 76 to be approximately 2m x 2m x .5m, the total 

dimension is 2m
3
. If the assumption that 1m

3
 of equipment weighs approximately 100kg 

is acceptable, then the total weight of the TLS equipment is estimated to be 200 kg or 441 

lbs. (Ang 2012). The TOPLITE electro-optical fire control system that is part of the MK 

38 Mod 2 system weighs 59kg (130 lbs.) (www.rafael.co.il 2013). We estimate that the 

TLS optics based on its apparent size will weigh at least twice that of the MK 38 optics 

adding an addition 260 lbs. to the system. The actual weight of the current MK 38 Mod 2 

system is 2300 lbs. (BAE Systems 2011). The addition of the TLS will add an additional 

700 lbs. to the MK 38 Mod 2 resulting in an overall system weight of 3000 lbs. 

Therefore, it is a safe assumption that this increase in weight to an Arleigh Burke Class 

Destroyer will be inconsequential to the overall stability of the ship. 

(2) Power. The power requirement from the DDG-51 will 

consist of the combined power requirement for the MK 38 MOD 2 system and the TLS. 

Due to the unavailability of open source power requirement data for the MK 38 MOD 2 

MGS, the power required was estimated by using an analogous system. The system that 

most closely resembled the MK 38 was the MK 96 (an automated gun system on the PC-

1 CYCLONE class) which resulted in an estimate of approximately 0.81 kW per system 

in addition to the TLS requirements (IHS Jane's 2012).   

The TLS is about 30% efficient, meaning 34 kW of power is 

needed to operate the 10 kW LASER and the remaining 24 kW are converted into 

thermal energy that must be removed from the system (O'Rourke, Navy Shipboard 

LASERs for Surface, Air, and Missile Defense: Background and Issues for Congress 

2013). Additionally, the TLS provides power distribution and cooling systems in the self-

contained environmental enclosure. The total power requirement from the ship would be 
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approximately 75 kW to operate the LASER, power management, and currently 

installed/designed thermal management systems (O'Rourke, Navy Shipboard LASERs for 

Surface, Air, and Missile Defense: Background and Issues for Congress 2013).  

Based on the estimates, the combined power required from the ship 

for one system is 75.81 kW (0.81 kW from MK 38 MOD 2 and 75kW from TLS). The 

total power required for two systems (port and starboard) would be 151.62kW. 

Comparing the required power against the ship’s generated power; both systems 

combined will only require 3% of the total power produced during normal operations. 

Therefore, sufficient power is available to support the integration of the TLS system on a 

DDG-51 platform. 

b. Cooling 

TLS currently utilizes its own cooling system and operates independent of 

any shipboard cooling systems. The Thermal Management System (TMS) provides the 

environmental conditioning to the power electronics and LASER components including 

the beam director and is completely packaged in the environmental enclosure (Sohm, et 

al. 2012). It is an advantage with respect to efficiency of the fiber LASER technology 

used in the TLS over other solid-state LASER technologies that allow for the reductions 

in thermal management system weight, volume, and power. Another benefit of this 

LASER source is that due to the construction of the LASER, the system can be directly 

cooled with a propylene glycol water mixture, thus special liquids such as de-ionized 

water and specific cold weather start up procedures are not required (Sohm, et al. 2012). 

Since the MK38 TLS is designed for minimal ship impact, the TMS requires only 

electrical power. Additional engineering would be required to configure the TLS to 

utilize the ships cooling systems, though this modification would result in an unnecessary 

increase in cost to modify the ship. 



 

 

 

 

195 

c. System Placement 

The installation location of the TLS will be the same as the MK 38 MOD 

1 and MOD 2 installs. The arrow in Figure 77 shows the physical location of the 

starboard system on the O-3 level amidships. The second system is located in the same 

area on the port side of the ship. As discussed above, all the associated equipment will be 

installed in the environmental enclosure as part of the weapon system foundation 

resulting in a similar shipboard footprint as the current MK 38 MOD 2 system. Other 

packaging configurations are being investigated such as an environmental enclosure that 

is next to the MK38 MOD 2 mount and the possibility of installing the LASER 

components below deck (Sohm, et al. 2012).  

 

 

Figure 77. Location of Tactical LASER System (TLS) Installation (after Vandroff 

2013) 

d. Combat Systems Considerations 

The integration approach to the ship is to keep the MK38 TLS interface 

similar to that of the MK38 MOD 2, which currently requires a mechanical interface 

(weapon station foundation), and electrical power and communication/data lines (Sohm, 



 

 

 

 

196 

et al. 2012). The TLS will rely on its installed equipment and operator to complete the 

Detect-to-Engage sequence and will not be part of the AEGIS Combat System. Initial 

detection may originate from the ship’s information networks, radars, or visually through 

the shipboard Optical Sight System (OSS) or MGS Electro-Optical System (EOS), and 

relayed to the TLS operators. After initial detection, the MK 38 TLS operator will 

perform the sensing and pointing with the MGS Electro-Optical System to track and 

engage the target. This dedicated sensor package includes a day-use electro-optical 

magnified camera, forward-looking infrared camera and eye safe LASER rangefinder. 

These sights help to ensure nearly 360-degree coverage for surface contact identification, 

night vision and periscope detection. 

The TLS will be remote operated and the consoles will be located on the 

ship’s bridge. Each system will have its own console operator that fires the MGS, and 

controls and fires the LASER with the ability to shift between systems as the tactical 

situation dictates. Independent drives allow the TLS to make azimuth corrections faster 

and point beyond the elevation limits of the MGS (O'Rourke, Navy Shipboard LASERs 

for Surface, Air, and Missile Defense: Background and Issues for Congress 2013). The 

current intent is to let the MGS Electro-Optical Sight (EOS) hand over track to the TLS. 

Recent field testing demonstrated a capability to identify and classify hostile targets and 

provide rapid hand-off to Mobile Active Targeting Resource for Integrated Experiment 

(MATRIX) system for interdiction (Selinger 2011).  

The MK38 TLS is a fully integrated system that provides substantial 

capability enhancements to the current MK38 MOD 2 MGS. It has the capability to 

independently search, detect and track targets, assign targets to the TLS and the 25-mm 

gun, conduct live fire LASER weapon and gun engagements, and monitor weapon 

effectiveness against both air and surface targets (Sohm, et al. 2012). The BD module 

provides all of the optical, electro-optical, mechanical, and electrical components 

required to perform precision beam control for the complete High Energy LASER target 

engagement. The BD includes independent elevation and azimuth drives that articulate 
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the BD with respect to the MK38 traversing mass. The independent drives are required to 

inertially stabilize the BD to levels not achievable by the MK38. The BD includes Near 

Infrared (NIR) and Midwave Infrared (MWIR) tracking capabilities. (Sohm, et al. 2012) 

e. Weapon Coverage 

The TLS weapon coverage will be nearly the same as the existing MK 38 

MOD 2 system. Figure 78 depicts the approximate cut-outs for each system.  

 

Figure 78. Tactical LASER System (TLS) Weapon Coverage 

The placement of the TLS system provides coverage primarily to the ships 

beam and can train between +/- 15° to +/- 165° with an elevation range of -20° to +40° 

(www.seaforces.org 2013). However, each system can be unmasked to engage threats 

outside the engagement zones by maneuvering the ship. 
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4. Active Denial System (ADS) Shipboard Considerations 

In order to maximize the coverage of the system when installed, the 

addition of two systems will be considered. One system will be installed on the port side 

of the ship while the other will be installed on the starboard. Both systems will be placed 

amidships. While alternative design concepts are currently being explored for the ADS 

with respect to improved cooling methods and transition to solid state, these concepts will 

not be addressed here as we are only concerned with the current system configuration for 

the purpose of the project. These improvements will only further facilitate the installation 

and integration of the system for a maritime application in the future. 

a. Size, Weight, and Power (SWaP) Constraints 

There are currently three system design configurations of the ADS, each 

varying in size, weight, and power. The first ADS configuration consisted of a conex 

shipping container housing the necessary components, with the antenna mounted on the 

roof. This system, known simply as System 0, allowed for proof of concept testing that 

led to the ADS Advanced Concept Technology Demonstration (ACTD)  (LeVine 2009). 

For demonstration and warfighter assessment purposes, the ADS ACTD first integrated 

the millimeter wave beam into a hybrid-electric version of the Highly Mobile Multi-

Wheeled Vehicle (HMMWV), popularly known as a “Humvee”  (LeVine 2009). This 

specific ADS variant is known as System 1. System 2 is armored, environmentally 

sealed, and designed to operate between 0 and 125 degrees Fahrenheit. System 2 is a 

containerized design composed of two boxes that can be transported by, or operated 

from, a variety of tactical trucks. It is a modified version of this system that will be 

considered for shipboard integration due to it increased power and range. 

(1) Size and Weight. The ADS System 2 in its current 

configuration consists of two sealed conex boxes per system as shown in Figure 79. The 

four main system components are the power generation/storage/conditioning, thermal 

management, beam source and antenna and are contained within the two boxes 
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(Hambling, Pain Beam to Get Tougher, Smaller, More Powerful 2009). One box contains 

the components necessary to produce the directed energy beam. The second box is a self-

contained power generator unit and operator station  (LeVine 2009). Shipboard space 

must be identified for the remaining equipment and system components to facilitate 

system installation. This space requirement will be addressed in the system placement 

section.  

 

 

Figure 79. Active Denial System (ADS) System 2 (from Miller, NATO NAVAL 

ARMAMENTS GROUP 2009) 

Each system will require separate components such as the 

transmitter and antenna. The transmitter produces the millimeter wave energy which 

when directed to an antenna will project the energy beam. The approximate size of the 

component conex box is 9’ x 4’ x 4’ which when dispersed and installed onboard the 

destroyer will require a minimum volume of 144 cubic feet of available space. The 

generator and operator box is approximately 8’ x 4’ x 4’ in dimension requiring 

approximately 128 cubic feet of available space. However, due to the availability of 



 

 

 

 

200 

ship’s power and the likely placement of the operator station in CIC, the 

generator/operator box may be eliminated.  

Each antenna (Figure 80) is 86 inches when measured diagonally 

and is made up of 25 separate subreflectors. The antenna receives the output from the 

gyrotron through a beam conditioner that is focused on the small subreflector plate 

located in front of the main antenna. The subreflector then broadens the beam to evenly 

illuminate the main antenna reflector array, which then sends the millimeter wave beam 

down range  (LeVine 2009).   

 

 

Figure 80. Active Denail System (ADS) Antenna (from Miller, NATO NAVAL 

ARMAMENTS GROUP 2009) 

When installing any new equipment or system onboard a naval 

vessel, considerations must be given to the amount of weight that is added and the effects 

of that weight on ship stability. The approximate weight of the self-contained ADS 
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system 2 is 20,000 lbs. (Robinson 2012). As discussed earlier, this weight can be reduced 

by nearly half and distributed by utilizing the ships generators to provide power and by 

moving the operator stations to CIC. It can also be assumed that the system weight can be 

reduced by using the current ships armor in place of the protective armor provided by the 

self-contained system package.  

Since we are considering the installation of two separate systems, 

the result is an increase in weight to the ship of approximately 20,000 lbs. to the aft 

superstructure on the ships centerline. Based on an estimate that all the weight would be 

placed on the ship’s centerline at 68’ above the keel, the additional weight of both ADSs 

will result in an increase in draft of .205 inches and a decrease in the ship’s metacentric 

height of .0113, or 1.13%. Due to the increased height of the ADS system, this results in 

the largest delta in the metacentric height. However, at a slightly greater than 1 percent 

increase, the impact of adding the ADS to a DDG-51 is minimal. 

(2) Power. The current ADS have a power output of 100 kW 

(Hambling, Pain Beam to Get Tougher, Smaller, More Powerful 2009). One of the major 

advantages of selecting the DDG-51 as a potential platform for the ADS is the ship’s 

ability to provide sufficient power to the system. As discussed previously, this aids in 

reducing the size and weight of the system while providing a reliable source of input 

power. The DDG-51 electrical plant consists of three Gas Turbine Generator Sets (GTGs) 

rated at 2500 kW each. While the DDG 51 Class peace time ship electrical load is 

typically less than the generator rating (currently 2500kW), the practice is to have a 

minimum of two GTGs on line at all times to ensure continuity of service should there be 

a system fault, or casualty to one of the GTGs (Mahoney, et al. 2010). The output power 

of the ADS is 100 kW and has an efficiency of approximately 50%. Therefore, each 

system requires 200 kW to operate which equates to approximately 8% of the total 

available power provided by the ship. Both ADS arrays will be capable of being 

energized and operated simultaneously under normal steaming conditions with little to no 

impact to the ship’s electrical system. 
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In addition to the alternating current provided by the ships 

electrical plant, the Active Denial System requires a separate high voltage direct current 

power supply. The system will utilize a lithium ion battery bank to supply dynamic direct 

current (DC) power to the energy transmitter. This uninterrupted power supply is 

required to energize the superconducting magnet in turn generating the 95 GHz radiation.  

Lithium-ion batteries with high energy densities provide 

significant benefits in weight, volume, and extended mission durations as well as provide 

excellent cycle and calendar life with a lower self-discharge rate (Banner and Winchester 

2011). There are however several legitimate hazards and concerns with the use and 

approval of lithium ion batteries for shipboard use. Among these are the release of 

thionyl chloride, bromine, chlorine dioxide, hydrochloric acid, sulfur dioxide and sulfuryl 

chloride gasses (Banner and Winchester 2011). Also, the electrolyte contained in lithium 

cells can cause severe irritation to the respiratory tract, eyes, and skin. Perhaps the 

greatest concern with lithium ion batteries is its propensity to start or further complicate a 

shipboard fire. This hazard is primarily caused by the batteries releasing internal pressure 

through venting, and through this process, flammable gasses are produced and could 

potentially ignite (Banner and Winchester 2011). Lithium will burn in a normal 

atmosphere and reacts explosively with water to form hydrogen. The presence of minute 

amounts of water may ignite the material and the hydrogen gas. Use of lithium cells will 

require specialized training and equipment for shipboard firefighters. These hazards can 

be mitigated to a manageable level of risk through the proper storage and care of the 

batteries in a dry, well-ventilated area onboard the ship.  

To assure that the risks associated with all lithium batteries fielded 

in Navy applications have been characterized and accepted appropriately, the Navy 

employs a structured and tailored lithium battery safety program (Banner and Winchester 

2011). This safety program requires the system to meet the concurrence requirements for 

specific platform carriage and use prior to shipboard integration which states: For any 

program whose system contains a lithium battery system to be deployed, transported, or 
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recharged on a surface ship, aircraft, or submarine; specific concurrence from the 

technical authority for the platform in question must be secured prior to the issuance of a 

lithium battery approval by the Naval Ordinance Safety and Security Activity (NOSSA) 

(Banner and Winchester 2011). In this case, the approval authority currently resides with 

Code N84 of the NOSSA, under the auspices of the Explosive Safety Office for Naval 

Systems (Banner and Winchester 2011).  

b. Cooling 

One of the major technical challenges of the Active Denial System is in 

the reduction of the considerable amount of heat that is generated by the system 

components. The source developed for ADS achieved record breaking levels of power 

conversion efficiency for this type of device, in excess of 50 percent, and at output power 

levels of approximately 100 kilowatts  (LeVine 2009). To reach this level of efficiency 

the system utilized a gyrotron which requires very high magnetic fields that are achieved 

by a superconducting magnet operating at approximately 4 degrees Kelvin  (LeVine 

2009). The process required to cool the superconducting magnet to 4 degrees Kelvin 

takes about 16 hours in its current configuration  (Fortin 2012). From an operational 

standpoint, the system will need to be energized to its standby state well in advance of 

any weapon employment requirement.  

In its self-contained form, the ADS requirement for supercooling is 

accomplished with a liquid helium cryocompressor. Liquid helium was chosen due to its 

lower boiling point of 4 Kelvin (-268.93 Celsius) when compared to liquid nitrogen 

which boils at 77.36 Kelvin (-195.8 Celsius) (Warner 2004). Due to this need for 

supercooling, the shipboard chill water and sea water cooling systems will most likely not 

be employed with the current configuration of the system to perform the thermal 

management function. In addition to the extensive use of liquid cooling loops, radiators 

and fans will be required to dissipate the excess heat.  
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Since the boiling point of helium is so low, special care must be taken to 

prevent injury when handling it in its liquid form. Because helium is a nonflammable gas, 

its inert characteristics allow it to be stored with flammable or oxidizing gases. However, 

since these nonflammable gases will not support respiration (a sufficient concentration in 

a closed space will cause asphyxiation), they must be stowed on the weather deck or in 

other well-ventilated spaces (Integrated Publishing 2013). 

c. System Placement 

In order to integrate the ADS onto a DDG-51 ship, it is first necessary to 

identify the potential location of its associated equipment.  Figure 81 below depicts the 

probable location of each ADS antenna on the aft superstructure. The port antenna is 

shown in the figure, and the starboard antenna would be located in the same position on 

the opposite side.   

 

 

Figure 81. Active Denial System (ADS) Antenna Placement (from Miller, NATO 

NAVAL ARMAMENTS GROUP 2009) 
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For the most part, the 20,000 lbs. of equipment described earlier will be 

located in the vicinity of the antennas in the ships director equipment rooms just aft of the 

antennas. The red boxes in Figure 82 highlight the #2 and #3 director equipment rooms. 

These areas will also house the liquid helium cooling systems associated with each 

system. A plan prior to installation to cross-connect the two systems will provide some 

redundancy and flexibility and improve the overall system performance. Also included 

with the ADS equipment in one equipment room will be the lithium ion battery bank 

which will require the installation of proper ventilation.   

 

 

Figure 82. DDG-51 Director Equipment Rooms (from Miller, NATO NAVAL 

ARMAMENTS GROUP 2009) 

Finally, the operator systems for each ADS will be located in CIC. Two 

separate consoles will be required to provide the shipboard operators with the ability to 

simultaneously control both systems. 
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d. Combat Systems Considerations 

An important consideration for the installation of the ADS is how it will 

integrate with the current shipboard Combat Systems. The system will rely on the current 

shipboard methods of detection although the ADS will not be directly integrated into the 

shipboard combat systems. Targets will be detected via the ships information networks, 

radars, or visually through its optical sight system (OSS) and relayed to the ADS 

operators. The operators who will be located in the ships CIC can then take manual 

control of each antenna system to conduct the tracking and engagement. Each ADS 

system will require its own operating console (Figure 83) which provides the operator 

with a joystick to control the antenna movement and employment of the weapon, as well 

as a video display to view the antenna camera to track and engage the potential threat. A 

LASER range finder has also been installed in the antenna to provide operators with the 

target range in order determine the required amount of power.  

 

 

Figure 83. Active Denial System (ADS) Operator Console (from Defense Update 

2007) 

A trained operator will interface with the system from the console by 

utilizing the optics system that is installed in the center of each antenna. The optics 

consists of a video camera for day operations and an infrared camera for night operations. 
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This optical system allows the system operator to aim and fire the system using the 

joystick while seeing exactly where the energy is directed as well as observing the 

reaction of the target on a display panel.  Figure 84 shows the operator display/control 

panel. The display/control panel is a touch screen that enables the operator to select the 

system’s output power and firing time based on the distance to the target. The ADS 

LASER rangefinder will assist the operator in the determination of these settings prior to 

engagement to prevent the accidental overexposure of this non-lethal system. The control 

pane allows the operator to select four power levels, from 25 to 100 percent, and six 

different time settings (Penn State 2008). 

 

Figure 84. Active Denial System (ADS) System 1 Operator Display (from Reilly 

2012) 

It is essential to have a stable beam directed at the target. Given the nature 

of the sea environment, the ADS would be subjected to the ship’s motion, which would 

affect the ability of the HPM to sustain the energy on a single spot. A stabilization 

subsystem, similar to that of existing shipboard radar stabilization systems, should be 
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installed to mitigate the effect of the ship’s motion, and to prevent the need for operators 

to make gross corrections while maintaining target tracking and engagements. 

e. Weapon Coverage 

The addition of two Active Denial Systems to the ship provides a 

significant standoff capability bridging the gap between shout and shoot while providing 

nearly 360 degrees of coverage. The ADS weapon coverage area is shown below in 

Figure 85. The areas at the ship’s bow and stern are masked by the ship’s superstructure. 

Like other systems onboard the ship this can be overcome by a vessel at sea through 

maneuver. Consideration must also be given to a ship at anchor or in port to effectively 

employ the weapon while understanding the potential limitations of weapons coverage. 

 

 

Figure 85. Active Denial System (ADS) Weapon Coverage 
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5. Summary 

As the Navy proceeds with the procurement and installation of LASER weapons 

and high powered microwaves, the Navy will be faced with many integration challenges 

to its existing platforms. Competition among DEW and future combat systems additions 

with respect to topside real estate, weight, power, and cooling will have a major effect on 

which systems decision makers choose to further pursue. Table 33 below contains a 

summary of the shipboard integration section. Due to the likelihood that the TLS and 

ADS will be installed as pairs, the combined values are shown in the table for a dual 

system installation.  

Table 33. Shipboard Integration Summary 

   (2)TLS LaWS MLD (2) ADS 

Weight 2000 lbs.  

10,000 

lbs. 

20,000 

lbs. 

20,000 

lbs. 

Input Power 151.62 kW 400 kW 520 kW 400 kW 

Cooling 

Self-

Contained 86 Tons 

120 

Tons 

Self-

Contained 

Coverage Nearly 360° 180° 180° 

Nearly 

360° 

Combat Systems No Yes No Yes 

 

The MLD is by far the largest of the four systems with respect to weight and size. 

At an estimated 20,000 lbs., it is nearly as heavy as the two unit active denial system. 

While the LaWS will add an additional 10,000 lbs. to the ship, the addition of the TLS as 

an upgrade to each MK 38 GWS will have essentially zero impact on the overall stability 

of the ship. Both the LaWS and the TLS are installations to existing shipboard weapon 

systems and therefore require limited additional deck space. Conversely, the MLD and 

the ADS will be standalone systems that can take up potentially significant deck space.  

The MLD, LaWS, and ADS each require approximately 400 kW to 500 kW of 

electrical power provided by the ship, while both TLS systems operated simultaneously 
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will only require approximately 150 kW. The cooling requirements for the ADS and the 

TLS are part of their self-contained systems and are operated by the ships electrical 

system. The MLD and LaWS will require 120T and 86T of cooling respectively that is 

provided by the ship’s chill water system.  

The TLS and ADS by nature of their dual installations will provide the ship with 

nearly 360 degrees of coverage while the single MLD and LaWS systems installed either 

forward or aft will provide approximately 180 degrees of coverage. Both the MLD and 

LaWS will require inputs from the ship’s combat systems, thus increasing the complexity 

of the installation, while the ADS and TLS will be installed as standalone systems.  

The current DDG-51 platform can support each of the four systems with respect 

to SWaP constraints, cooling requirements, and combat systems integration. However, 

from a purely shipboard integration perspective, the TLS appears to be the best option as 

it minimizes the total impact to the ship. Additionally, although the current AEGIS 

destroyer can support a 100 kW LASER, a quick analysis of the current capability 

showed that as the power levels of these LASERs are increased in the future, the DDG-51 

platform must also be upgraded to account for the additional power and cooling 

requirements. 

B. SUSTAINMENT 

Sustainment is “the supportability of fielded systems and their subsequent life 

cycle product support - from initial procurement to supply chain management (including 

maintenance) to reutilization and disposal” (Defense Acquisition University 2003). That 

is, sustainment is supporting an operational system throughout the time it is being used 

until its ultimate disposal. Sustainment involves the materials (parts and units of the 

system), the management of these materials to include procurement and distribution, 

sustaining engineering, operational unit support, and removal from the fleet. 
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1. Overview 

The sustainment graph (Figure 86) was taken from an interview with Dr. Gary 

Langford, a professor and recognized subject matter expert of directed energy 

technologies (Langford, Sustainment 2013). It depicts the time to have useable output 

energy as it relates to the integration of the DEW systems. As time progresses, the 

systems may take considerably less and less time to produce the desired output beam. At 

the initial stage, the systems will take some considerable amount of time prior to being 

ready to fire. Experts are on site overseeing the startup. At the integrated stage, the 

system is activated and formulating acceptable beams faster than at the initial stage as it 

begins to be incorporated on the ship. The optimized stage represents when the systems 

are going through the final stages of integration and are performing at a level conducive 

to operational requirements in a military environment (able to come “online” within 

seconds of activation).  

 

 

Figure 86. Sustainment Overview (from Langford, Sustainment 2013) 



 

 

 

 

212 

Curves of the initial phase indicate that throughout this period there may be some 

moments of significant progress in decreasing beam availability time along with some 

setbacks. Near the end of the initial phase the integration portion will commence. 

Throughout the integration phase a steady decline in beam availability time may occur as 

a result of the systems becoming more and more incorporated onto the platform. 

Moreover, there may be some overlap between the integrated phase and optimized phase. 

The optimized phase indicate that at some point there will be consistency in the amount 

of time to get the beam on; however, this steady rate may drop as the technology matures. 

2. Methodology and Approach 

The basis and intent of sustainment is to do what it takes to keep systems 

operational throughout their life cycles (Defense Acquisition University 2003). The 

scheduling of routine preventative maintenance activities to keep systems available for 

use, assessing systems to ensure proper operation, reviewing operational logs for 

indications of system wide issues, and satisfying supportability requirements of the 

system from its inception to ultimate disposal all are life cycle issues (Defense 

Acquisition University 2003).   These steps are based on an approach to sustainment that 

is centered on addressing issues relevant to maintaining the continuous operation of 

systems. 

Our approach to sustainment involves addressing the decision making 

considerations for materials, safety, supply chain management, operational unit support, 

and disposal of the systems. Materials involve developing supply requirements, storing 

components needed for repair and replacement, and providing personnel for warehouse 

functions. Safety concerns are those considerations that ensure equipment is operated 

properly while avoiding harm to personnel. Supply chain management includes the 

procurement and distribution of materials and services (Defense Acquisition University 

2012). Operational unit support is providing a Point of Contact (POC) for supply support 

concerns and feedback. Sustaining engineering relates to performing technical tasks to 
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ensure continued operation of a system (depot level support). Disposal involves the 

decision calculus of when, where, and how to get rid of or convert the system (Defense 

Acquisition University 2012). 

3. Materials 

Due to the lack of required specific open source data on LaWS, TLS, and MLD, 

addressing specific concerns of each DEW system and more importantly, differentiating 

between the systems is impossible. Therefore, all three will be grouped for the 

sustainment analysis. 

a. Solid State LASER (SSL) 

The number of SSL systems acquired will be based on the number of 

DDGs available in addition to the budget. In the case of the TLS, the number of MK 38 

Mod 2 mounts that will be upgraded will be dependent on the number of DDG platforms 

identified to receive the system. In addition, installation will occur during each ship’s 

preplanned availability period. Major components of SSL systems include the medium, 

optical equipment, flash pumps or diodes, and amplifiers. Considerations of components 

operating in a marine environment have to be made. For example, in order to function 

properly, optical equipment has to be extremely clean. Contaminants on optical 

equipment could absorb LASER energy, resulting in damage to the optical coating or the 

optical material. Maintaining clean optical equipment could pose a challenge at sea where 

the system may be exposed to saltwater, particulate laden aerosols (smoke), and high 

humidity. This requirement for the operational equipment requires those handling the 

optical equipment to wear gloves and clean the lens with a dedicated set of rags (e.g., 

microfiber), brushes (e.g., camel hair), and solutions. This requirement also includes 

having equipment available to handle extremely large optics. It should be noted that this 

reliance on large optics is not the case for the fiber SSLs since they use fiber optics. 

Although the MLD is more complex (MLD is a slab LASER as opposed to LaWS which 

is a fiber LASER), it could be more easily maintained since it uses sealed line replaceable 



 

 

 

 

214 

units (LRUs) (O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile 

Defense: Background and Issues for Congress 2013). These LRUs can be stored onboard 

ship as ready spares, allowing personnel to replace faulty equipment instead of requiring 

depot level maintenance. Furthermore, coverings will have to be provided to protect the 

system from exposure to the elements when not in use. Coverings can be in the form of 

an enclosed shell that shields the system or thick drapes to protect hardware and exposed 

wiring. Stabilizers must be in place to keep the system steady in the dynamic maritime 

environment which causes the ship to be in continuous motion. Mechanical components 

of the systems must be periodically lubricated. For this reason, the specific oil or grease 

must be stocked and available for routine and corrective maintenance. 

b. Active Denial System (ADS) 

The number of ADS units to be procured for future installation will be 

determined by the number of available platforms and naturally budgetary constraints. 

Installation will occur during a ship’s preplanned maintenance period. In addition to 

installed units, there will also have to be parts support. The ADS is composed of a variety 

of electrical and mechanical components which require considerations to be made when 

placing them on naval vessels. Naval vessels tend to have higher maneuver capabilities 

and differing operational profiles than typical commercial vessels (Kuseian 2013). For 

this reason, structures will have to be in place to provide stabilization for the system 

while the ship is the dynamic environment of the sea. Furthermore, lubricants and seals 

will have to be used in order to guard against the ill effects of metal being in humid 

surroundings.   Moreover, the system having as many line replaceable units as possible 

may assist in repair due to the modularity; however, there are some key components 

which may require off ship storage. These components are mainly used for power 

generation and wave production. Key components for power generation include a hybrid 

electric plant composed of batteries and a diesel generator  (LeVine 2009).   Upon 

shipboard integration, ADS will operate using the ship’s power grid. Gyrotons, a vacuum 

tube device, and a superconductor magnet operating at 4 degrees Kelvin are used for 
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wave production and must have on-hand replacements depending on the failure rate  

(LeVine 2009).   

The operational success of a DEW depends on availability. Having test 

equipment to determine which part failed (or is failing) and parts onboard for repair and 

replacement is vital. However, some components require high levels of expertise, are 

extremely sensitive, or large in size discouraging storage onboard a ship.   Examples of 

these types of components include a liquid helium cryocompressor used for cooling the 

superconducting magnet and the antenna which focuses the beam  (LeVine 2009). Parts 

such as these will have to be housed at depot level facilities. Minor components such as 

the batteries will require onboard storage. Extra materials may be needed such as 

coverings for the system which will be stored onboard the ship. These coverings are 

necessary to protect the system from the harsh maritime environment considering the 

ADS was developed in conjunction with the Army. 

4. Safety 

Markings and signs around the location of the system will be required to alert 

personnel of the possible dangers inherent to DEWs. Visual and audible alarms will be 

required to indicate when the systems have been activated (as is common with current 

weapon and electronic systems). These signs and alarms are necessary to inform 

personnel of possible exposure to harmful beams and the necessary protective measures 

required in the area. Personal protective gear will be provided to protect operators of the 

system from exposure to eyes and skin. Eyewear will be appropriate for wavelength and 

optical density for the system in use. Moreover, warning labels on systems will be 

necessary to alert personnel of potential dangers. For example, connected optical fiber 

systems are enclosed; however, if they are disconnected then there’s a possibility of 

harmful exposure (University of Maryland 2012). Kill switches will be in place to 

disengage the system in an emergency situation. Flat and polished surfaces can act as 

hazardous secondary reflectors (University of Iowa 2013). Therefore, removal of these 
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materials around the system will prevent unwanted exposures to the beams. Safety 

training and training manuals must be provided to system operators. The training and 

manuals will outline procedures conducive to proper operation and avoidance of injury to 

personnel. Supplies for signs, warning labels, and protective gear will be based upon 

number of units and manning requirements. 

5. Supply Chain Management 

Supply chain management involves the “cross-functional approach to procuring, 

producing, and delivering products and services to customers” (Defense Acquisition 

University 2012). Navy Supply Systems Command Weapon Systems Support (NAVSUP 

WSS) is responsible for providing weapons support to Naval Forces (Naval Supply 

Services Command 2011). Procuring parts necessary for repair or replacement will be 

handled through current ship requisition computer programs. Moreover, a ship’s need for 

extensive repairs will be made known through casualty reporting (CASREP) procedures 

that indicate the type of damage and any technical information needed to conduct repairs. 

Personnel performing preventative and corrective maintenance requirements must have 

specialized training of the system. Logistical considerations for parts, software upgrades, 

and technical support will have to involve a mixture of forecast and agility. This forecast 

will ensure that there are economic quantities of resources (e.g., parts and fuel) available 

based upon anticipation of customer needs (e.g., scheduled underway replenishments and 

maintenance periods) along with rapid responses to operational crises (e.g., emergency 

repairs) and available upgrades to software. 

6. Operational Unit Support 

Operational unit support involves providing shipboard personnel with a point of 

contact to resolve any type of supportability issues. Operational requirements may 

prevent ships from travelling to a depot level facility whenever a problem arises. For this 

reason, there has to be a mechanism in place to address issues without jeopardizing the 

ship’s mission. To facilitate this support, ships will have call centers they can contact in 
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order to troubleshooting and repair these DEW systems. Call centers will be composed of 

technical experts with an in-depth knowledge of the repair, maintenance, and operation of 

the systems. There may be situations that phone consultations cannot rectify. At this 

point, technicians may be required to travel directly to the ship for further investigation. 

This travel can be accomplished through scheduled underway replenishments or private 

means funded by the company as outlined in the contract. 

7. Sustaining Engineering 

Sustaining engineering is “those technical tasks (engineering and 

logistics investigations and analyses) to ensure continued operation and maintenance of a 

system with managed (i.e., known) risk” (Defense Acquisition University 2012). Due to 

the high technical aspect of the equipment in the system along with storage restrictions 

onboard ships, major repairs will be conducted at depot facilities. Depot level support 

involves the repairing, testing, analyzing, and upgrading (to include software) of 

equipment at highly sophisticated shop facilities. Depot support entails providing 

personnel of high technical expertise for not only repairs but also for consultation in 

regards to maintenance (Defense Acquisition University 2011).   

Part of ensuring that a system continues to operate involves having performance 

standards and analysis for continued use in place. These standards will be used to indicate 

whether or not there are fleet wide system faults causing discontinued use of the units. 

This situation is similar to how fighter jets are grounded when there are problems like 

cracks in engine components.   These performance standards will be evaluated not only at 

depot facilities but also during routine ship inspections from outside personnel like the 

Board of Inspection and Survey (INSURV), a group of recognized experts under the 

direction of the Secretary of the Navy (SECNAV) and Chief of Naval Operations (CNO) 

to periodically examine vessels to determine fitness for further service (Board of 

Inspection and Survey 2011). Part of the examination process would be periodic firings 

of systems. During these firings, mechanisms must be in place to determine whether or 
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not the output beams are hitting the desired targets. For example, possible mechanisms 

include positioning a sensor on the target to detect the firings of the testing LASER. In 

addition, built in test equipment (BITE) can assist in determining the proper firing and 

operation of the system. 

8. Disposal 

Disposal involves removing the system from operational service at the end of its 

lifespan. Getting rid of the system may involve transferring, redistributing, selling, or 

complete destruction of system materials (Defense Acquisition University 2012). 

Considerations have to be made involving the impact to the environment, storage or 

destruction of materials, and redistribution of any salvageable items. Options for disposal 

include donating systems to other organizations such as educational institutes (e.g., NPS), 

reselling materials back to the manufacturer, disabling the systems electrically, 

preventing reactivation, or completely destroying the systems through alterations of 

design (University of Iowa 2013). In all cases, legal and regulatory requirements must be 

adhered to as outlined by the DoD. Plans will have to include salvaging of exotic metals 

and removal of hazardous materials. Timing of disposal is a major consideration and will 

have to be done in a manner conducive to the operational requirements of the ship. 

Disposal schedules will inform operators of when and where to get rid of systems and 

what may have to be done prior in preparation for disposal. Disposal will involve close 

interaction with naval shipyards which traditionally handle disposal (Naval Sea Systems 

Command 2009). In addition, plans will include measures that have to be taken in cases 

where there is a replacement system that will be installed. 

C. TRAINING AND MANNING 

In a dynamic global environment where threats to national interests fall along the 

full spectrum of warfare, military forces must be properly organized, equipped, and 

trained to employ the most technologically advanced equipment, tactics, and procedures 

at an instant notice. Doctrine and National policy must provide the necessary framework 
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to ensure that troops are properly organized, trained and equipped, and that available 

systems provide the required capabilities and effects on the battlefield (Lincoln 2004). To 

ensure readiness and efficiency in threat engagements, operators must be well versed in 

the deployed systems, tactics and procedures to facilitate time and cost effectiveness 

during operation. Readiness and efficiency can be achieved through proper manning and 

training of personnel operating the system. 

1. Manning 

The establishment of adequate manning for a system is of critical importance, but 

there is also a need to consider the tradeoffs. Vice Admiral William Burke, Deputy Chief 

of Naval Operations for Warfare Systems said that the Navy is looking for ways to 

reduce crew size by using labor-saving technology, but he said that it is necessary to look 

at the trade-offs. In his statement, he mentioned “I’m not for taking existing ships and 

looking to take people off” (Burgess 2013), commenting on “optimal manning” 

initiatives over the last decade to reduce crew size on some ships, something he said the 

fleet sardonically called “suboptimal manning” (Burgess 2013). The point to note here is 

to maximize the throughput with lean manning, but yet maintain the performance 

required for the mission. Alternative approaches like looking at automation of process 

and capitalizing on proficiency of individual skills may compensate for the decrease in 

labor size. 

With respect to crew manning requirements and operations, smart systems to 

control and monitor energy consumption, as well as the health of critical systems, can 

support both manning and resource conservation. Effective training and reliable man-to-

machine interfaces will allow for more effective use of platform resources and potentially 

reduced operational cost or an expanded operational capability (Office of Naval Research 

2009). 
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2. Training 

Readiness and efficiency are directly impacted by the established training plan. 

The importance of an effective training program brings about personnel development as 

well as operator’s proficiency in systems which are vital in time critical mission (Expert 

2010). The impacts of an effective training program can be seen as follows. 

Training helps in optimizing the utilization of human resources that further help to 

align individuals in achieving the organizational goals as well as their individual goals 

and provides an opportunity and broad structure for the development of human resources 

technical and behavioral skills in an organization. Technical competence is vital during 

operations when the operator’s proficiency in systems play an important role in time 

critical missions, increased system knowledge will also determine the level of safety and 

maintenance during operation.  

Training helps in improving upon the quality of work and improves the safety of 

the organization thus preventing a standstill in organization strength at a low level of 

proficiency.  An effective training program demonstrates a commitment to keeping 

individuals on the cutting edge of knowledge and practice. (Hub 2012). 

Notwithstanding the common importance of training described above, it should be 

noted that relevance in training pertaining to application is equally important to ensure 

that whatever the operators are trained in, it is logical and applicable. For example, 

personnel need to be educated specifically concerning the weapon system they support 

and generally about DE technical concepts such as generation, attenuation, and 

propagation. Understanding how the atmosphere affects DEW platforms is necessary for 

those who support DEW systems and operators to maximize employment (Narcisse 

2007). Concepts such as temperature, pressure, and other considerations such as optical 

turbulence affecting range employed are areas where operators should be trained to 

ensure that they are proficient when using such a high end system. Having discussed the 

importance of training, there is an imminent need to be mindful that training does affect 
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the life cycle costs of a system. Consideration should be taken early in the capabilities 

development process beginning with the analyses that support development of the Initial 

Capabilities Document (ICD). The ICD can facilitate and ensure that projected training 

requirements and associated costs are appropriately addressed across the program life 

cycle. 

3. Life cycle Costs of Training and Manning for a System 

To ensure naval forces continue to maintain global dominance, future platforms 

and combat systems must be affordable to acquire, operate and maintain over their entire 

life cycle. This affordability can be achieved with the reduction in Total Ownership Cost 

(TOC) by developing and aiding the insertion of technology to reduce platform 

acquisition cost, reduce life cycle and sustainment costs, and achieve crew manning 

requirements. Total Ownership Cost includes all costs associated with the research, 

development, procurement, operation, training and disposal of platforms. 

Training is one of the elements that have a very high return on investment
 (Defense 

Acquisition University 2011)
. Training is often considered a cost to the program and requires the 

trainees to be absent from their daily duties for a period of time. This investment in skills 

improvement is a long term investment - often short term needs preclude the training 

(Defense Acquisition University 2011).
 

Specific examples of the return on investment by integrating training include:  

 

 Many maintenance failures are due to operational error, a good operator 

training program will reduce equipment failure, reduce accidents, and 

allow for higher system availability at reduced cost (cost avoidance in this 

case) (Defense Acquisition University 2011). 

 The skill level of the maintainer is critical to a quick and effective repair 

process (Defense Acquisition University 2011). 

 Item managers and procurement specialists need to be trained on the 

automated supply systems (often part of an enterprise resource program) 

in order to correctly enter information, understand reports, and be able to 

diagnose supply deficiencies. Even minor errors or misunderstanding of 
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the system can result in significant spare part shortages, incorrect items 

ordered, or mismanagement of the supply base (Defense Acquisition 

University 2011). 

 Design engineers should be trained on product support approaches and 

how system design influences (both positively and negatively) the 

availability, reliability and ownership cost of the weapon system (Defense 

Acquisition University 2011). 

Training costs impact the O&S cost in the overall TOC. If training is not 

realistically planned and accounted for in the early phase, it may incur an increase cost 

for the program and not achieve its objectives. 

4. Projected Training and Manning Requirements for a Directed Energy 

Weapon (DEW) System 

In the following sections, the project training and manning requirements for the 

respective DEW systems will be discussed. Notwithstanding, there is limited information 

on the requirements for some of the DEW systems. 

a. LASER Weapon System (LaWS) 

 The LASER is designed to integrate with the Navy’s existing 

shipboard Combat Systems, where a single operator can control the system. The operator 

will require specialized training, similar to the instruction that Navy crews receive for the 

MK 15 Phalanx Close-in Weapon System or the MK 45 lightweight gun. With this 

training, the Sailors will be able to maintain the LASER at an organizational level (Jean 

2010).
 

b. Maritime LASER Demonstration (MLD) 

The MLD is a solid state, directed energy system previously installed and 

tested on a decommissioned Spruance class destroyer. MLD is also the first LASER 

system to be integrated with a ship’s radar and navigation system. Given the maturity of 

LASER systems, it will not be long for the LASER to operate synergistically with kinetic 

energy weapons for ship defense optimization (Northrop Grumman 2011). Hence, the 
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number of operators required to man the system could just be the same as those already 

operating the current kinetic energy weapon systems. 

c. Tactical LASER System (TLS) 

TLS is paired with the MK 38 Mod 2 Machine Gun System (MGS), 

sharing the initial sensing and pointing systems operator control console. As such, the 

same operator that remotely controls and fires the MGS, also controls and fires the 

LASER with the ability to shift between systems as the tactical situation dictates (Merida 

2012). 

Due to this operational concept, similar to the LaWS and MLD, the 

operator manning the gun system (installed with the LASER system) will only be 

required to complete the specialized weapon training as part of their Navy training term 

during the Gun System Operation Training (applicable to LaWS, MLD, and TLS). 

d. Active Denial System (ADS) 

Based on the land based deployment of ADS, the estimated number of 

crews required is between 3–4 personnel  (LeVine 2009). The required crew for a land 

system can be used as an estimation for crew personnel operating the ADS mounted on 

the naval vessel. Currently, two units of ADS will be mounted onboard the Navy vessels 

(DDG-51 Destroyers) and could possibly require around two operators (Miller, NATO 

NAVAL ARMAMENTS GROUP 2009). 

5. Conclusion 

To date, the training and manning requirements for the DEW systems researched 

suggest that they do not require the commitment of significant additional manpower 

resources. The development of DEW systems thus far showed that the DEW are intended 

to integrate with main gun system installation onboard the existing Navy ships. As such, 

the manning of the DEW systems is concurrent with the existing weapon systems.  Table 

34 summarizes the training and manning requirements for each potential DEW system.  
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Table 34. Training and Manning Requirements Summary 

 
Training Manning 

Types 
Projected 

Requirements 
Comments 

Projected 

Requirements 
Comments 

LaWS 

LaWS+ 

Similar to MK 15 

Phalanx 

Similar to the MK 15 Phalanx 

close-in weapon system or  

MK 45 lightweight gun 

1–2 operators 

The laser is designed to tie 

into the Navy’s existing 

shipboard combat system 

TLS 
Based on LaWS training requirement, it is assumed 

that the same format of training will take place for 

TLS, MLD and ADS. 

1–2 operators 
The laser system is paired 

with the MK 38 Mod II gun 

system 

MLD 
2–3 operators 

Operates in tandem with 

kinetic energy weapons 

ADS 3–4 operators Shipboard ADS 

 

With the LASER system installed as part of the main gun system/vehicular 

platforms, there is no requirement for the operator to go through LASER system training. 

Depending on the deployment of the LASER system, the training for the system and 

personnel may vary. 

D. COST ESTIMATION 

The bottom line truth with respect to cost estimation of future DE projects is that 

there are a lot of unknowns, perhaps more so than any other acquisition project in 

existence today. Despite that directed energy projects have been around for decades, the 

associated technologies are still in their infancy in terms of practical application, as well 

as acceptance by military leadership. As a result, it is not known with any degree of 

certainty which systems the Navy will ultimately attempt to acquire, what quantity will 

be purchased, or even what specific surface ship platforms the systems will be integrated 

with. 

Although the Navy is developing LASER technologies and prototypes of 

potential shipboard LASERs, and has a generalized vision for shipboard 

LASERs, the Navy currently does not have a program of record for 

procuring a production version of a shipboard LASER, or a roadmap that 

calls for installing LASERs on specific surface ships by specific dates. 
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(O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile 

Defense: Background and Issues for Congress 2013) 

This type of situation makes the job of a cost estimator extremely difficult due to 

the abnormally high degree of uncertainty associated with any potential calculation 

attempt. The best alternative option is to begin by creating a set of assumptions about 

prospective systems based on current U.S. Navy trends. It is necessary to recognize that 

all assumptions must not only be consistent with, but more importantly physically 

possible given the stringent constraints imposed by the SEA-19B Capstone Project 

guidance. Several of the perceived trends are outlined below: 

The Navy and DoD have conducted development work on three principal 

types of LASERs for potential use on Navy surface ships—fiber solid 

state LASERs (SSLs), slab SSLs, and free electron LASERs (FELs). One 

fiber SSL prototype demonstrator developed by the Navy was the LASER 

Weapon System (LaWS); another Navy fiber SSL effort is called the 

Tactical LASER System (TLS). Among DoD’s multiple efforts to develop 

slab SSLs for military use was the Maritime LASER Demonstration 

(MLD), a prototype LASER weapon developed as a rapid demonstration 

project. (O'Rourke, Navy Shipboard LASERs for Surface, Air, and Missile 

Defense: Background and Issues for Congress 2013) 

This guidance was utilized as the basis for the project’s directed energy 

technology cost estimating methodology. All estimates are calculated by analogy. 

1. External Source Data 

 Electronics Standard Factors Handbook (Schmit and Hicks 1999). 

This document consist of the statistical analysis on the historical data of 

Government support costs obtained from previous Navy budgets, which 

will aid us in the determination of the Work Breakdown Structure (WBS) 

in deriving the cost estimation. 

 Joint Inflation Calculator (Naval Center for Cost Analysis 2013). This 

document generates inflation rates and indices for Navy and Marine Corps 

appropriations and cost elements which can be used to prepare for future 

fiscal-year budgets. 
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2. Methodology 

The first, and arguably most difficult, task was to determine the details of the cost 

estimate. What “exactly” were we tasked with costing?  The group’s initial hunch was to 

attempt to derive a total life cycle cost; however, due to the high degree of uncertainty 

associated with this type of technology the idea was dismissed. An estimated total life 

cycle cost would offer little value to the Navy given the large number of assumptions it 

would inevitably have to be based upon. Instead, the objective became to determine and 

estimate the integration, as well as implementation, cost of select directed energy 

technologies deemed relevant by the Navy, and suitable for shipboard use by our project 

group. The selected objective is based on several assumptions outlined in a subsequent 

section of the report.  

Although directed energy technologies share many similarities, they are also quite 

different in terms of the specific components required to make them function. Since 

component, research and development (R&D), test and evaluation (T&E), and shipboard 

integration cost can vary significantly from project to project (even in projects that appear 

similar in premise), it was determined that individual custom tailored cost estimates for 

each of the selected technologies would be preferential to a single gross DEW estimate. 

A cost estimate was done for each of the four systems considered for shipboard 

integration, MLD, LaWS, TLS, and ADS. Cost estimate scenarios (vignettes) were 

written for each of the selected systems and are shown in Table 35. 
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Table 35. Cost Estimate Scenarios 

System  Integration 

Design Reqd. 

Additional 

R&D Reqd. 

Cost Objective 

Active Denial 

System (ADS) 

Yes Minimal To derive the cost estimate of 

deploying two units of Active 

Denial System (ADS) onboard a 

DDG-51 class ship. 

LASER 

Weapon System 

(LaWS) 

No Power scaling 

upgrade; T&E 

To determine and estimate the 

upgrade and shipboard installation 

cost of the LASER Weapon 

System (LaWS) from its current 

33kW output to 150 kW. 

Maritime 

LASER 

Demonstration 

(MLD) 

Yes Power scaling 

upgrade, BQ 

upgrade, T&E 

To derive the cost estimate of 

integration and installation of the 

Maritime LASER Demonstration 

(MLD) onboard DDG-51 class 

ships. 

Tactical LASER 

System (TLS) 

Minimal Minimal To determine the estimated single 

unit cost of installing and 

deploying the Tactical LASER 

System (TLS) on DDG-51 class 

ships. 

 

Since much of the financial data for these scenarios is proprietary, and therefore 

not accessible to the project group, the next step was to obtain some type of baseline 

costs from trusted published references.  Table 36 depicts both the actual figures and data 

sources utilized to obtain the data. 

  



 

 

 

 

228 

Table 36. Baseline Costing Figures 

System Baseline 

Figure 

Remarks Company 

Active Denial System 

(ADS) 

$7.5M  Cost plus award fee contract to 

design, fabricate, and test  

Raytheon  

LASER Weapon 

System (LaWS) 

$17M  Per mount cost with CIWS 

integration once upgraded; 

TRL 7 upgrade estimated at 

$150M  

Raytheon  

Maritime LASER 

Demonstration (MLD) 

$98M  Indefinite delivery/indefinite 

quantity contract ceiling value  

Northrop  

Tactical LASER 

System (TLS) 

$2.8M Prototype development 

contract  

BAE  

 

In order to facilitate organization, the project cost estimate work scope was 

decomposed into smaller discrete components, meaning that all required WBS sub-

elements were identified. The items on the WBS generally consisted of the following: 

design, hardware, contractor support, government support, software and integration.They 

were derived using an Engineering & Manufacturing Development (EMD) table 

applicable to surface ships from a document of Standard Factors (Naval Center for Cost 

Analysis 1999).”DoD policies require that a WBS be established to provide a framework 

for program and technical planning, cost estimating, resource allocation, performance 

measurement, and status reporting.”  In addition, “the top three levels are the minimum 

recommended any program or contract needs for reporting purposes unless the items 

identified are high cost or high risk. Then, and only then, is it critical to define the 

product at a lower level of WBS detail” (Defense Acquisition University 2012). 

Maximum effort was made to ensure the project cost estimate WBS is compliant with 

DoD policies. 

For all systems, the cost estimate is calculated by analogy, and based on a cost 

factors approach. The Analogy method is most appropriate to use early in the program 

life cycle when the system is not yet well defined (Williams and Barber 2011). Due to the 
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unavailability of costing data for comparable/similar systems, the project group 

considered multiple cost factor combinations from various projects. The goal was to 

determine a best fit, and minimize uncertainty.  “A cost factor is derived from cost-to-

cost relationships between two similar systems. To derive a cost factor, one must select 

analogous tasks or products that represent a cost-to-cost relationship.”  Also, “uncertainty 

in a cost estimate using analogy is due to subjective evaluations made by the technical 

staff and cost estimators in their determination of the cost impacts of the differences 

between the old and new systems” (Williams and Barber 2011). Utilizing Naval 

Postgraduate School (NPS) faculty as technical staff it was agreed that cost factors 

derived from historical EMD ships data would be sufficient and adequate for analogous 

comparison. Specific factor ratios are provided in Figure 87. 

 

Figure 87. Cost Factors 

For comparative consistency, the group utilized a cumulative inflation approach 

to calculate the projected inflated cost for FY13. Inflation rates were obtained from the 

Joint Inflation Calculator. Even a cursory examination of Table 36 shows the baseline 

figures selected to be quite different in nature. In order to be of value, the baseline figures 

need to be normalized in some way such that an actual “apples to apples” comparison 

could be made. The group reconciled the actual cost figures with respect to the various 

cost factors identified with a more detailed summary of the normalization/reconciliation 

process for each system is provided in its specific methodology section. 

Taking the cost estimates’ high degree of uncertainty into consideration, 

sensitivity analysis was conducted for each of the respective systems. The analysis was 

conducted on the various cost factors to establish a range of estimated cost. The 
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Electronics Standard Factors Handbook provides Coefficient of Variance (CV) data for 

each cost factors. This CV value is used to calculate the standard deviation from the mean 

value, and subsequently used to derive the 95% confidence interval (CI) in accordance 

with the following equation: 

   (
 

 
)       

   
   

 

Equation 39. Standard Deviation from the mean value 

                

Equation 40. 95% Confidence Interval 

3. Assumptions 

 Total Life cycle Cost Estimate would be a waste of time due to high 

degree of uncertainty. 

 Estimating an implementation cost of a single unit is feasible. 

 Federal dollars expended to date are “sunk.” 

 DDG-51 class integration assumed due to short time requirement. 

 Sufficient power, cooling, weight, and space are available on the DDG-51. 

 Total hardware cost is proportional to LASER power (linear fit assumed 

for hardware). 

 Cost factors for aggregate shipboard electronics distributions are 

applicable to DEW. 

4. Tactical LASER System (TLS) 

a. Objective 

To derive the cost estimate of deploying two units of the Tactical LASER 

System (TLS) on DDG-51 class ships. 

b. Facts 

 TLS is a fiber Solid State LASER (SSL) with a LASER with a 

beam power of 10 kW that is designed to be added to the Mk 38 25 
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mm machine guns currently installed on some DDG-51 ship class 

decks (O'Rourke, Navy Shipboard LASERs for Surface, Air, and 

Missile Defense: Background and Issues for Congress 2013). 

 In March 2011 the Navy awarded a $2.8 million contract to BAE 

to develop a prototype of the TLS. Boeing is collaborating with 

BAE on the project (O'Rourke, Navy Shipboard LASERs for 

Surface, Air, and Missile Defense: Background and Issues for 

Congress 2013). 

 The LASER weapon consists of a Boeing 10kW fiber-LASER 

developed by International Photonic Group (IPG), coupled with 

the Air Force Research Lab (AFRL) Mobile Active Targeting 

Resource for Integrated Experiments (MATRIX) system, a mobile 

beam control and fire control solution also developed by Boeing 

(Defense Update 2011). 

 Field testing of the major components in the summer of 2012 at 

Eglin Air Force Base in Florida showed the system could 

distinguish between friendly and enemy activities in both daytime 

and nighttime environments (O'Rourke, Navy Shipboard LASERs 

for Surface, Air, and Missile Defense: Background and Issues for 

Congress 2013). 

 The TLS is about 30% efficient, meaning 34 kW of power is 

needed to operate the 10 kW LASER (U.S. Navy 2011). 

 Currently, the TLS will utilizes its own power distribution and 

cooling systems; the power requirement from a ship would be 

approximately 75 kW to run the LASER, power management, and 

currently installed/designed thermal management systems (U.S. 

Navy 2011). 

c. Ground Rules and Assumptions 

 Two TLS units would be required per ship; the units would likely 

be installed on the main deck, one port, and one starboard. 

 The weapon system would likely be operated from a standalone 

console installed on the bridge. 

 Since the proposed system is equipped with independent search, 

tracking, beam, and fire control; integration with currently installed 

shipboard combat systems would not be required. 

 The $2.8M contract awarded to BAE included funding for required 

additional R&D, design, prototype hardware, as well as T&E. 
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 Additional engineering development (design) would be required 

for actual shipboard integration and use; cost of additional 

development will be included in the final objective based cost 

estimate and be equivalent to approximately 15% of the total 

design cost. 

d. Cost Summary 

The deployment cost of TLS on DDG-51 class will primarily consist of 

the sum of the per unit hardware cost multiplied by two, the hardware integration cost, as 

well as some minimal costs associated with training and contractor support. 

Unfortunately, the $2.8M contract base figure obtained by the project group is not 

indicative of the sum of these costs since, as stated in the assumptions, it includes funding 

for R&D, design, and T&E. With one exception, these latter items are excluded from the 

cost estimate objective. However, it is first necessary to decompose the baseline contract 

amount into its respective discrete components, and identify the WBS sub-elements 

shown in Table 37. 
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Table 37. Tactical LASER System (TLS) Work Breakdown Structure (WBS) 

 
 

After the total contract is decomposed, the discrete components are 

adjusted for inflation. In this case, the adjustment from FY11 to FY13 yields an inflation 

factor of 3.20%. At this point, the sensitivity analysis is conducted. The total system cost 

calculation provides us with a 95% confidence interval from $1.2M to $5.2M FY13. 

Table 38 provides a start to finish estimate for TLS which includes design, prototype 

hardware assembly, as well as T&E. In accordance with project methodology, it is now 

necessary to factor out of the total cost estimate all elements not pertaining to the 

objective of estimating the single unit cost of installing and deploying the Tactical 

LASER System (TLS) on DDG-51 class ships. These elements include: 85% of the 

design cost, ST&E, Contractor SE/PM, MAN SUP, and T&E.   
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Table 38. Tactical LASER System (TLS) Sensitivity Analysis 

 
 

The sum of the remaining items, including two times the cost of hardware, 

will constitute a cost estimate consistent with the objective statement shown in Table 39. 
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Table 39. Tactical LASER System (TLS) Objective Cost Estimate 

 

Given the objective cost estimate (Equation 41), the project group is 95% 

confident that the cost of installing and deploying a two TLS on a single DDG-51 class 

ship will be between $825K and $4.8M FY13. 

 15% Design + 2 Contract HW  + Applicable CS & GS Elements + Software + Integration
 

Equation 41. Objective Cost Estimate 

5. Active Denial System (ADS) 

a. Objective 

To derive the cost estimate of deploying two units of Active Denial 

System (ADS) onboard a DDG-51 class ship. 

b. Facts 

 The Active Denial System (ADS) has a Technology Readiness 

Level (TRL) of 7, meaning that prototypes have been created and 

tested in the field (O'Rourke, Navy Shipboard LASERs for 
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Surface, Air, and Missile Defense: Background and Issues for 

Congress 2013). 

 Raytheon Missile Systems has been awarded a $7,549,715 cost-

plus award-fee contract. The purpose of this contract program is to 

design, fabricate, test, and rapidly field a fixed ADS referred to as 

System 2 and ADS2 (U.S. Department of Defense 2005). 

c. Ground Rules and Assumptions 

 The ADS has a physical dimension of 36 cubic meters (6m long x 

3m wide x 2m tall). As mentioned earlier on, the ADS will be able 

to fit on-board the DDG-51 class ship. 

 Shipboard organic power will be adequate to support the operation 

of the ADS. 

 The cost estimation will focus on the production, integration, and 

installation cost for one unit on one platform only, rather than total 

life cycle cost. 

 ADS is not “plug and play”; some physical modifications will be 

required to the DDG-51 class ship in order to accommodate the 

ADS. 

d. Cost Summary 

The initial goal was to approach the vendor to obtain the total cost of 

designing and manufacturing a single unit of the ADS. However, due to the sensitivity of 

the product no vendor was willing to reveal the cost figure. Therefore, an alternate 

approach relying on trusted published articles from web based sources was selected. 

Through research, a contract figure of $7,549,715 published by U.S. Department of 

Defense was discovered. The initial WBS decomposition is shown in Table 40. 
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Table 40. Active Denial System (ADS) Work Breakdown Structure (WBS) 

 

As the contract was awarded in Fiscal Year (FY) 2005, there was a need to 

include the inflation rate incurred until FY2013 for present reference. The inflation rate 

was obtained from the Joint Inflation Calculator. The next step was to conduct a 

sensitivity analysis on the various cost factors to establish a range of estimated total cost. 

The total system calculation provides us with a 95% confidence interval from $3.7M to 

$16M FY13 as shown in Table 41. 
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Table 41. Active Denial System (ADS) Sensitivity Analysis 

 

Table 41 provides a start to finish estimate for ADS which includes 

design, prototype hardware assembly, as well as T&E. In accordance with project 

methodology, it is now necessary to factor out of the total cost estimate all elements not 

pertaining to the objective of deploying one unit of ADS within a DDG-51 class ship. 

The objective cost estimate equation will be similar to that of TLS provided in the 

preceding section; however, since ADS has not undergone T&E in a maritime 

environment, the cost of government supported T&E is added to the equation as shown in 

Table 42. 
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Table 42. Active Denial System (ADS) Objective Cost Estimate 

 

The project group is 95% confident that the cost of installing and 

deploying two ADS on a single DDG-51 class ship will be between $2.5M and $15.1M 

FY13. 

6. LASER Weapon System (LaWS) 

a. Objective 

To determine and estimate the upgrade and shipboard installation cost of 

the LASER Weapon System (LaWS) from its current 33kW output to 150 kW. 

b. Facts 

 The cost apportioned for the development cost of the LaWS was 

obtained from CRS report for Congress (O'Rourke, Navy 

Shipboard LASERs for Surface, Air, and Missile Defense: 

Background and Issues for Congress 2011). The yearly breakdown 

for the “Funding for LaWS development” is shown in Table 43 for 

reference. 
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Table 43. Funding for LASER Weapon System (LaWS) Development 

 
 

 Funding for each year is projected from that year to a base 

reference year 2010. The inflation rates used for the calculation are 

obtained from the Joint Inflation Calculator and presented in Table 

44. 

 The LaWS prototype incoherently combines light beams from six 

fiber SSLs (commercial, off-the-shelf welding LASERs, each with 

a power of 5.5 kW) to create a LASER with a total power of 33 

kW and a BQ of 17 (Taylor 2010). 

 

Table 44. LASER Weapon System (LaWS) Base Costing Inflation Adjusted Totals 

 
 

c. Ground Rules and Assumptions 

 It is observed that Congress has requested no funding for LaWS in 

2011. From this cut in funding, we infer that from 2011 and 

onwards, there is no further funding to LaWS development. 
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 The funding for LaWS development includes all items in the WBS, 

encompassing the hardware components required to deliver the 

current 33kW output. 

 The cost of improved hardware components is scaled according to 

its power output (150kW from 33kW); assuming that the cost is 

linearly proportional to the output power. This would increase the 

hardware cost by a factor of 4.5 (approximate). 

 No further engineering development (design) is suspected to be 

required for actual shipboard integration and use; although the 

upgraded 150kW weapon variant is not believed to have been 

built, it is assumed the blueprints exist. 

 Additional T&E will be required for the upgraded 150kW variant; 

cost of T&E will be included in the objective estimate calculation. 

 Cost estimate assumes hybrid option (Phalanx CIWS) is also 

included. 

d. Cost Summary 

The deployment cost of LaWS on DDG-51 class will primarily consist of 

the scaled hardware improvement cost, the hardware integration cost, as well as the cost 

of additional T&E associated with the upgrade. No further design is required, and 

therefore a design cost estimate was not conducted. Given the $28.1M initial investment 

figure calculated by the project group it is first necessary to decompose the baseline 

amount into its respective discrete components, and identify the WBS sub-elements 

shown in Table 45. 
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Table 45. LASER Weapon System (LaWS) Work Breakdown Structure (WBS) 

 
 

As the contract was awarded in Fiscal Year (FY) 2010, there was a need to 

include the inflation rate incurred until FY2013 for present reference. The inflation rate 

was obtained from the Joint Inflation Calculator. The next step was to conduct a 

sensitivity analysis on the various cost factors to establish a range of estimated total cost. 

The total system cost calculation provides us with a 95% confidence interval from 

$12.4M to $53.7M FY13 as shown in Table 46. 



 

 

 

 

243 

Table 46. LASER Weapon System (LaWS) Sensitivity Analysis 

 
 

Table 46 provides a start to finish estimate for LaWS which includes 

design, prototype hardware assembly, as well as T&E. In accordance with project 

methodology, it is now necessary to factor out of the total cost estimate all elements not 

pertaining to the objective of determining and estimating the upgrade and shipboard 

installation cost of the LASER Weapon System (LaWS) from its current 33kW output to 

150 kW. The objective cost estimate equation will be similar to those provided in the 

preceding sections; however, since LaWS requires a technology upgrade, the hardware 

cost estimate has been adjusted accordingly as shown in Table 47. 
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Table 47. LASER Weapon System (LaWS) Objective Cost Estimate 

 
 

The project group is 95% confident that the upgrade and shipboard 

installation cost of the LASER Weapon System (LaWS) from its current 33kW output to 

150 kW will be between $16.2M and $70.3M FY13 per unit. 

7. Maritime LASER Demonstration (MLD) 

a. Objective 

To derive the cost estimate of integration and installation of the Maritime 

LASER Demonstration (MLD) onboard DDG-51 class ships. 

b. Facts 

 The contract award for the development of the first MLD unit is 

$98M (Department of the Navy 2009); the original scope of work 

includes assembling, integration and demonstration of the MLD 

(Optics.org 2011). 

 In March 2009, Northrop Grumman (NG) demonstrated a version 

of MLD that coherently combined seven slab SSLs, each with a 

power of about 15 kW, to create a beam with a power of about 105 
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kW (O'Rourke, Navy Shipboard LASERs for Surface, Air, and 

Missile Defense: Background and Issues for Congress 2013). 

 In 2011, MLD was the first LASER of that energy level to be put 

on a Navy ship, be powered from the ship, and counter a target at 

range in a maritime environment (O'Rourke, Navy Shipboard 

LASERs for Surface, Air, and Missile Defense: Background and 

Issues for Congress 2013). 

c. Ground Rules and Assumptions 

 The $98M contract awarded to Northrop Grumman in 2009 

includes the required funding for R&D, design, prototype hardware 

assembly, and T&E. 

 No further engineering development (design) is required for actual 

shipboard integration and use. 

 No additional hardware upgrade is required; the MLD is intended 

to operate at the originally designed 105kW power level. 

 The original contract’s high price tag (relative to other analyzed 

systems) is correlated to the MLD project’s robustness and high 

technical readiness level (TRL). 

d. Cost Summary 

The deployment cost of MLD on DDG-51 class will primarily consist of 

the projected hardware cost and hardware integration cost. No further technology upgrade 

is required, and therefore an upgrade cost estimate was not conducted. No further design 

is required, and therefore a design cost estimate was not conducted. Given the high $98M 

initial contract figure obtained by the project group it is necessary not only to decompose 

the baseline amount into its respective discrete components, and identify the WBS sub-

elements shown below, but also attempt to justify the additional expenditure. 
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Table 48. Maritime LASER Demonstration (MLD) Work Breakdown Structure 

(WBS) 

 
 

As the contract was awarded in Fiscal Year (FY) 2009, there was a need to 

include the inflation rate incurred until FY2013 for present reference. The inflation rate 

was obtained from the Joint Inflation Calculator. The next step was to conduct a 

sensitivity analysis on the various cost factors to establish a range of estimated total cost. 

The total system cost calculation provides us with a 95% confidence interval from 

$44.3M to $191.7M FY13 as shown in Table 49. 
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Table 49. Maritime LASER Demonstration (MLD) Sensitivity Analysis 

 
 

Table 49 provides a start to finish estimate for MLD which includes 

design, prototype hardware assembly, as well as T&E. In accordance with project 

methodology, it is now necessary to factor out of the total cost estimate all elements not 

pertaining to the objective of deriving the cost estimate of integration and installation of 

the Maritime LASER Demonstration (MLD) onboard DDG-51 class ships. The objective 

cost estimate equation will be similar to those provided in the preceding sections. The 

calculation is presented in Table 50. 
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Table 50. Maritime LASER Demonstration (MLD) Objective Estimate 

 
 

The project group is 95% confident that the integration and installation of 

the Maritime LASER Demonstration (MLD) onboard DDG-51 class ships will be 

between $17.3M and $145.4M FY13 per unit. 

8. Conclusion 

It can be reasoned from the overall methodology that the selected costing 

approach presented is not ideal, primarily due to the “reverse-engineering” steps utilized 

in obtaining the various cost factors. A 95% confidence interval was calculated around 

the cost factors using each of the respective factors’ associated co-variance value. Even 

though both the cost factors and co-variance data are subject to the same bias that account 

for the primary sources of error, the wide range of estimates given by the high and low 

calculations should more than compensate for any weaknesses attributable to the bias. A 

preferred approach would have been to obtain the actual cost data associated with the 

respective cost factors, and subsequently derive the total cost in a forward manner. 

However, as mentioned earlier, the actual figures were not available to the project group. 



 

 

 

 

249 

As a result, the best alternative method was used which bases the calculations on 

historical data obtained from prior projects. The cost estimation project group had made 

every effort to ensure the validity and applicability of historical data used. 

In addition, due to extreme scarcity of open source and unclassified contracting 

data, the baseline cost estimation figures are all mainly based on a single data point from 

a trusted published document pertaining to the programs development. Ideally, additional 

data points should have been used to verify, reinforce, or if necessary refine and adjust 

the final objective based cost estimate. 

Although it is important to acknowledge that cost will only be one of many 

attributes evaluated when making final project recommendations, a cost as an 

independent variable (CAIV) assessment is provided as follows: 

 Given today’s budgetary constraints, the Tactical LASER System is 

selected as the optimal choice with respect to CAIV. 

 With a middle objective estimate of less than $2.4M, the TLS acquisition 

burden is projected to be an entire order of magnitude smaller than any 

other solid state LASER system. 

 Acquisition of LaWS would cost approximately 16 times that of TLS. 

 Acquisition of MLD would cost approximately 1.7 times that of LaWS, 

and 27 times that of TLS. 

With a middle objective estimate of $7.4M, the Active Denial System is 

considered to be a good investment based on the additional and unique capability the 

system has the potential to provide to the warfare commander. 

E. OPERATIONAL AVAILABILITY 

The project team attempted to include an analysis on the operational availability 

of the four selected systems (LaWS, ADS, TLS, MLD). This analysis was to include 

analyzing reliability and maintainability of the systems with a comparison to current 

conventional systems. As this project was conducted at the unclassified level, open 

source data on the specific parameters of current conventional and DEW prototypes was 
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not available. The analysis should be conducted in the future once the data becomes 

available. 
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VI. ANALYSIS OF ALTERNATIVES 

An Analysis of Alternatives (AOA) was conducted in order to provide an 

analytical comparison of the operational effectiveness of the various DEWs. The 

weapons were analyzed by performance, integration, schedule and cost criteria. 

Preference weightings for the four criteria were assigned based on perspective of the 

three stakeholders for the project (operator/user, exploratory developer, and system 

developer). For operators/users, the energy/power output and beam quality are essential 

performance parameters that are linked. These two parameters represent a trade-off in 

damage effects on targets at various distances, size and weight of the DEW device, and 

prime power conversion efficiencies. Secondary issues include reliability, 

maintainability, and potential hazards due to support and usage.    The operator/user 

perspective is concerned about mission success which incorporates performance (0.50), 

cost (0.05), and schedule (0.25) for platform integration of the DEW (0.20). Contractors 

who perform engineering exploration of DEW candidates will have an initial focus on 

performance, in order to establish a competitive advantage over potential rivals and to 

establish themselves firmly as a premier provider of equipment, knowledge, and support. 

During the exploration phase of prototyping and demonstrating the DEW, the 

contractor(s) will have preference weighting similar to that of the user, reiterating the 

particular focus on performance factors. However, once sufficient damage on military 

relevant targets is demonstrated by the prototype DEW, the contractor’s attention turns to 

developing the DEW that is designed for platform integration, now with particular 

emphasis on life cycle costs). During prototype development, the contract developer(s) 

has preference weightings focused on increased performance (0.55), life cycle costs 

(0.35), and schedule (0.10). During this development phase, the tradeoff between 

energy/power output and beam quality may favor one DEW design over another design. 

The cost factor becomes more dominant once the utility of DEW is recognized as 

militarily relevant. This project was focused on the military relevant stage of DEW 
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development, i.e., what missions could be performed by prototype DEWs if the decision 

was made to integrate the best candidate(s) on ships. From this baseline of demonstrating 

minimal mission effectiveness, the development emphasizes achieving damage on similar 

targets at greater range. In other words, any improvement in performance (energy/power 

output and beam quality) is now on par with cost and schedule. All three are equal (0.33).  

Figure 88 shows the top level of the Analysis of Alternatives including the different 

stakeholders. 

 

 

Figure 88. Analysis of Alternatives (AOA) Top Level 

 Each of the three criteria was evaluated based upon the factors pertaining to it 

discussed in Chapter 5 and summarized here. Within the performance criterion, 

considerations were given to how the weapons performed amongst the different mission 

areas along with average ranges to first Type I and Type II engagements. In evaluating 

integration, considerations were made to sustainment, training and manning, and 

shipboard integration. Sustainment was based on materials, safety, sustaining 
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engineering, and disposal of the various weapons. Training and manning were evaluated 

based upon the additional personnel and work centers required for the various weapons. 

Shipboard integration involved evaluating factors such as weight, power requirements, 

cooling, coverage, and combat systems integration of the various weapons. The single 

unit procurement cost was the amount associated with each weapon system. The criteria 

were appropriated preference weights based on their respective value according to three 

stakeholder (Operator/User, Exploratory Developer, and System Developer) perspectives.  

Figure 89, Figure 90, and Figure 91 shows the AOA with the criteria and weights from 

the operator’s perspective. 

 



 

 

 

 

254 

 

 

Figure 89. Operator Performance Analysis of Alternatives (AoA) Breakdown 
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Figure 90. Operator Integration Analysis of Alternatives (AoA) Breakdown 

 

Figure 91. Operator Cost Analysis of Alternatives (AoA) Breakdown 
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Figure 92 displays the results of the AOA from the perspectives of the various 

stakeholders. For the operator, ADS is the best with a value of 0.66. An Exploratory 

Developer would find the TLS most satisfactorily with a score of 0.66. Like the 

Exploratory Developer, the TLS performed the best for an System Developer with a score 

of 0.70. On average, the TLS outperformed the other systems with a value of 0.62 

whereas the LaWS had the lowest on average amongst the systems with a value of 0.20. 

Despite the LaWS being the lowest it should be noted that its score was pretty 

comparable to the LaWS+ and MLD which had scores of .27 and .31 respectively 

indicating that any additional considerations that may be needed in order to place the 

LaWS, LaWS+, or MLD onto a platform may not result in much added value. In 

addition, ADS was not too far from the TLS on average with a score of .57. Although 

these results give some indication of the value of each system, an analysis of cost versus 

performance is called for in order to provide further clarity on which of the systems 

should be chosen. 

 

 

Figure 92. Analysis of Alternatives (AOA) Results 
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Figure 93  shows a Cost as an Independent Variable (CAIV) Analysis amongst 

the various stakeholders. When cost is not included in the total performance of the 

systems, ADS is the highest scoring weapon system. Moreover, it’s one of the cheapest. 

Although the LaWS, LaWS+, and MLD have comparable performance scores across the 

board, their costs are quite different and tend to go up as performance goes up. LaWS, 

LaWS+, and MLD cost $18,392,473, $38,451,727, and $65,073,960 respectively. Both 

ADS and TLS perform at a similar level of MLD, but at far cheaper costs of $5,689,818 

and $1,836,919 respectively. 

 

 

Figure 93. Cost as an Independent Variable (CAIV) Analysis 

The AOA indicates that the most expensive option is not necessarily the ‘best’ 

option. When considering performance as the key contributing factor, the ADS system 

would be the best option (the operator’s point of view). If considering both cost and 

performance, the TLS would be the best option (Exploratory and System Developers). 
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Since the key drivers for the Navy include cost and performance, we would recommend 

the TLS system as the most optimal system for integration onto the DDG-51 platform. 
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VII. CONCLUSION  

This report conducted an in-depth analysis at the unclassified level of several 

promising DE technologies and specific DEW prototypes for integration onboard U.S. 

Navy ships.   

A. METHODOLOGY 

The methodology using GINA and other models to corroborate GINA results 

focused on what current prototypes are capable of as opposed to what DE could be in the 

future. The result of that methodology was to reveal a lower cost means of meeting 

current U.S. Navy missions requirements. Validation of the models was conducted 

against available test data to ensure that all model results were consistent with 

experimental data in operational environs. Missions, threats, and weapons were mapped 

to determine which weapons would be suitable for given mission and threat 

combinations. A cost analysis was also conducted to illustrate the available trade space 

between alternatives. 

1. Mission Driven Analysis 

An analysis was conducted on which missions of the U.S. Navy DE offers both 

current utility and potential for future uses. Using the UNTL, UJTL, and SFTM, a list of 

81 missions and mission areas were identified. These missions could be completed by a 

DEW based strictly on the laws of physics and what is reasonable for a DEW (USW 

missions were not counted due to the high attenuation in seawater for example). There 

are other missions as well which a DEW could support but is not the prime factor in 

completing the mission, combat search and rescue (CSAR) is an example. Weapons are 

required for the protection of the CSAR aircraft, and a DEW has the potential to fill this 

requirement, but that is not the main purpose of CSAR, extracting personnel is. 
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2. Technology Driven Analysis 

An analysis of what current DEW technology can achieve was then conducted. As 

those missions in which DE could play a part were already identified, this list was 

narrowed further. The list of 81 potential missions for DE was limited further by what 

current DEW prototypes have the potential to fulfill. Current DEW prototypes can 

potentially fulfill 29 of the previously identified 81 mission areas. Of these 29 missions, 

21 are purely defensive in nature while the remaining eight have defensive elements. For 

example, ‘to engage surface ships could be offensive or defensive. No purely offensive 

mission was assessed as feasible by current DEW prototypes (e.g., naval surface fire 

support and strike warfare are two examples). 

The defensive missions for which DEWs are suitable also suggests which systems 

are appropriate to compare DEW performance against. BMD, strike, air defense against 

ASCM and manned aircraft, and surface warfare against major combatants are not 

achievable by current DE prototypes. Since these mission areas are not possible DE 

missions, the 5-inch gun, Standard Missiles, Tomahawks, and Harpoons are not suitable 

to compare against DEW.    CIWS, 25mm machine gun, and crew served weapons fulfill 

the same mission set as DEW have the potential to satisfy and this conventional set forms 

the appropriate weapons from which to compare DEWs. The expectation for the future is 

that DEWs will fulfill the BMD, strike, air defense, and surface warfare missions, but 

much greater power levels and beam quality must be achieved first. ABL was capable of 

BMD at a range of over 200km with a megawatt class laser (Cadena and Selinger 2009). 

Similar performance may be possible from a ship borne SSL in the future.   The analyses 

beyond the four-year timeframe of this project suggest further analyses into alleviating 

the effects of atmospheric. 

3. Model Validation 

The model validation was presented in Chapter 4. The overall model had two 

separate components, the HPM component and LASER component. Both components 
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had to be validated separately in order for the results to be accepted. Excel was the 

chosen tool to complete this validation. 

a. HPM 

Results of several tests conducted by the Army with ADS have been 

reported. These results were used to build the model as specific parameters of the system 

were not available.  Figure 24 from Chapter 4 is reproduced here as Figure 94. From the 

tests performed by the Army at a range of 500 yards, it took about one second from the 

time that ADS was energized to when the people moved out of the beam (LeVine 2009). 

This time is similar to what the project team developed for the model as shown by the red 

line in Figure 94. 

 

 

Figure 94. Active Denial System (ADS) Performance in Weather 

b. LASER 

Validation of the model depicting LASER performance was done 

similarly to that for HPM. The model was built and available data was input. Some 

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

50 250 450 650 850

Ti
m

e
 t

o
 P

ai
n

 (
Se

co
n

d
s)

 

Threat Range (meters): Human appraoching at 10 mph 

ADS Pain Threshold Weather Effects 

Clear

Light Rain

Heavy Rain



 

 

 

 

262 

assumptions had to be made and this is all detailed extensively in Chapter 4. Reproducing 

Figure 30 here as Figure 95, the performance of TLS is similar to that of LaWS+. A 

congressional report has said that TLS is on par with other LASER weapon systems 

despite the substantially lower power (O'Rourke, Navy Shipboard LASERs for Surface, 

Air, and Missile Defense: Background and Issues for Congress 2013). 

 

 

Figure 95. LASERs vs. Aluminum Boat, Clear Day 

A second test case was done to additionally validate the LASER model. 

As opposed to targeting a boat, a LSF was used instead.  Figure 31 is reproduced as 

Figure 96. Again, it should be noted that TLS performs similar to LaWS while MLD has 

an effective range over a mile. The range for MLD has been advertised as in the miles as 

opposed to yards (Brisbane Times 2011), and the model supports this claimed range of 

MLD. 
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Figure 96. LASERs vs. Aluminum LSF, Clear Day 

4. Mission Threat Mapping 

Perhaps the most unique aspect of this student project was not attempting to put a 

DEW on a ship, or even to do it in a four year timespan, but the manner in which the 

missions were analyzed. GINA provided a very unique tool to combine missions, threats, 

weapons, and environments. Arguably, the analyses the project team conducted could 

have been done with Excel using manual inputs to gather atmospheric data from 

MODTRAN 5 and correlating the data to a successful mission or not. The issue would be 

adding or changing analysis criteria (for example, someone could determine that the 

environment does not matter but the color of the operator’s eyes does). This change in 

excel could prove to be very difficult depending on the level of complexity of the 

spreadsheet and the amount of documentation on the construction of the model. In GINA, 

changing an attribute or adding a new factor or set of data is accomplished by adding an 

additional X-Type for eye color and removing the one for environment. Using GINA, 

these modifications to are an expansion of the computer environment, but not the manner 

or means of sharing data and access to data.. 
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As GINA has already been approved for use on DoD’s Secure Internet Protocol 

Router Network (SIPRNET), transferring the model and inputting classified data could 

provide more fidelity to the results reported here, (although such results will be the same 

on the gross level). The portability and tailorability of GINA could provide a unique 

analysis tool for determining interoperability for future systems, one part of which is the 

determination of effectiveness when two objects interact. This project demonstrated that 

changing threats, capabilities, environments, and other factors are readily implemented, 

thereby eliminating the need for extensive and expensive programming. The GINA 

interface is both intuitive and easy to use. Further, the GINA model could be modified for 

a non-DEW use altogether. Arguably, this project’s validation of GINA as a complex 

modeling tool for determining the feasibility of DEWs is the most significant output of 

the project. 

5. Cost Analysis 

Although specific cost data for operational DEW units do not exist, the cost 

estimation conducted in Chapter 5 provides great insight into comparative cost analyses 

in both collective as well as independent consideration of costs. Electrical distribution 

systems have been used for decades and several procurement programs have existed for 

developing, maintaining, and servicing these distribution systems. Comparing a DEW to 

such electrical distribution systems was done due to the lack of mature DEW systems. 

Fundamentally, electrical distribution systems and DEWs have similar complex electrical 

properties, traits, and attributes. Due to the covariance in each individual piece of data, 

the 95% confidence interval provides a substantial degree of likelihood for each 

prototype DEW. For the current embodiments of DEWs, ADS and TLS will cost 

approximately the same amount, LaWS+ and MLD will cost significantly more, and 

LaWS will be somewhere in the middle. Scaling the energy/power outputs to 

accommodate additional missions from the set of 81 potential missions will depend on 

the concept of operations. Of the two types considered in this report, multiple low power 

DE beams directed to strike a common point on a target simultaneously will outperform a 
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single beam aimed at the same target point. The cost of multiple lower output DEWs is 

notably and significantly less than a single higher output DEW. Moreover, the volumetric 

coverage of defending against swarm- or single-attack is greater for multiple lower output 

DEWs. And finally, a large number of multiple lower output DEWs is inherently more 

survivable. If one ship is sunk or otherwise rendered inoperable, the remaining ships will 

still be functional rendering the fleet still operational just at a degraded capability.   

The biggest takeaway from the cost analysis is that two each of TLS and ADS 

could be installed on a DDG-51 for less than any single unit of the other three systems. 

This would provide a tremendous added capability to current ships. TLS would be able to 

augment current kinetic weapons. Either TLS could be used exclusively against 

unarmored targets like small boats or UAVS or TLS could be used in conjunction with 

kinetic weapons to possibly reduce the conventional ammunition expended. ADS could 

be used for those AT/FP missions which currently do not have an adequate nonlethal 

option. Current tactics of using fire hoses, beanbags, or rubber bullets are not adequate 

against a determined adversary. ADS would provide a nonlethal option with a significant 

standoff range of over 200 meters. 

B. LASER 

Of the three LASER prototypes (TLS, LaWS/LaWS+, and MLD) analyzed for 

this project, the 10 kW TLS consistently performed as well or better than the other more 

powerful LASERs. The integration of TLS will be much less disruptive compared to 

significant modifications required for any of the other systems as the majority of the TLS 

equipment is in a box to be placed under existing 25mm machine gun mounts as shown in 

Chapter 5. This would facilitate quick installation as it could be done pier side as opposed 

to requiring a dry dock. The consistent high performance of TLS (compared to the other 

LASERs) and significantly lower cost made it the clear winner. If the trend of LaWS, 

LaWS+, and MLD was followed for TLS, the cost would be around $90 Million as 

opposed to the $2 Million as estimated. 
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C. HIGH POWER MICROWAVE (HPM) 

At the onset of the project, most of the team though ADS would be useless for the 

Navy (considering the Navy has not considered it for use onboard ships). Although the 

integration requirements are similar to MLD, the complexity is similar to a basic radar 

which can be very inexpensive. The greatest advantage to ADS is the identified gap of a 

nonlethal standoff weapon. Similar to TLS, the high performance and low cost of ADS is 

disproportionate compared to the other three options. If the trend of LaWS, LaWS+, and 

MLD was followed for ADS, the cost would be around $130 Million as opposed to the $7 

Million as estimated. 

D. CONCEPT OF OPERATIONS (CONOPS) 

Some general Concepts of Operation (CONOPS) were generated for the use of 

DEW. TLS, being similar in effect of a conventional weapon, could easily be used with 

existing tactics for use of the 25mm machine gun. ADS on the other hand does not have a 

current conventional analog, but would easily be integrated to force protection tactics 

with the limited avenues of approach to a ship. 

There is one distinct use for the TLS (or similarly low-powered LASER) 

compared to one of the other higher powered alternatives. As discussed previously, the 

Hughes’ Salvo Equations show that several smaller, less capable vessels are preferred 

over a few large, powerful ships (Hughes 2000). Current development of weapons for the 

Navy leans towards the later, a high-tech fleet with large (compared to other fleets) and 

expensive ships. Putting a LASER on this kind of ship would result in Figure 97, a single 

ship with a large laser targeting a single threat. This concept is acceptable as long as the 

ship is not destroyed or incapacitated (by damage or equipment casualty). 
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Figure 97. Single High-Powered LASER 

An alternative concept is shown in Figure 98, several ships with a single (or 

multiple) low-powered LASERs each. The aggregate power on the target from the 

multiple LASERs could equal that of the single large laser, but the system is more 

survivable. In the event one of the ships is destroyed or incapacitated, the remaining ships 

still offer the same ability, although in a degraded capacity. Arguably, it would be just as 

complicated developing a targeting system able to put multiple lasers onto the same aim 

point as it would be to develop the mirror/lens system of a large laser that can focus a 

single high-power beam. 

 

 

Figure 98. Multiple Low-Powered LASERs 

E. FINAL THOUGHTS 

Any of the potential prototypes would offer a unique (although limited) capability 

to the U.S. Navy compared to any other navy. The announcement of installing LaWS on 
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PONCE for an operational deployment is a step in the direction of incorporating DEW 

into the fleet as a whole, but there is much work to be done. A significant amount of time 

and money has been spent pursuing DEW for the military with varied results. Sometimes 

cutting your losses may be the right answer; however, the project research indicates that 

this is not one of those times. DE is on the cusp of being an operational weapon and the 

“game changer” politicians and researchers have been striving for since Townes and 

Schawlow designed the first LASER in 1957 and Maiman built it in 1960. 
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VIII. RECOMMENDATIONS 

This project used the Systems Engineering Process to examine how mature 

directed energy technologies can provide mission-essential performance across multiple 

warfare area domains and mission sub-sets for the U.S. Navy. While we achieved our 

goals of identifying and characterizing the capability gaps and providing a coherent 

vision of naval missions that could incorporate DEWs, the project team acknowledged 

that additional research and analysis could be conducted as a continuation of this project 

to provide even greater fidelity in the feasibility of ‘stacking’ TLS modules and 

comparing it to the scalability of LaWS and MLD, the feasibility of integrating DEW 

onto ship borne aircraft, applying GINA across mission domains to determine future 

requirements, expanding GINA to include a cost X-Type, an improved combat model to 

compare DEWs and conventional weapons, and modeling the anticipated operational 

availability of a DEW. 

Perhaps the most applicable future study would be on the scalability of TLS and 

comparing TLS against a single 10 kW module of the LaWS or 15kW LRU of the MLD. 

If TLS is limited by either the inability to add more units like LaWS and MLD, or to 

increase the number of paths through the medium to increase power, the future potential 

of TLS is limited. The future capabilities and upgradability is an aspect of the DEW 

systems which was not considered but is important for the selection of a system. TLS 

may perform better now, but if LaWS or MLD is easier to upgrade, that could be a key 

selling point. This study would require significant depth on the three systems, the method 

in which the beam is created, and the optics of the system. 

Although the tasking statement tasked the project team to explore DEW for the 

Navy, the project team scoped the project to surface ships only. This was done for several 

reasons detailed in Chapter 1, but there is still the potential for DEW onboard aircraft as 

shown by the ABL. The C-2 and decommissioned S-3 are the largest aircraft flown from 

ships, so the integration would likely be easiest on one of those platforms (although the 
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MV-22 and CH-53 are large and may be other possibilities). Adding a DEW to an aircraft 

would extend the reach of the ship and be a low cost and precise option of strike warfare. 

TLS being relatively small would be a likely candidate to integrate to an aircraft, but the 

power requirements may be an issue. A study on the capabilities of these platforms and 

the ability to integrate a DEW could potentially benefit from much of what was done 

with the ABL program, specifically with the optics and fire control systems. 

Expanding on the GINA model is another area which should be explored. Our 

project focused on what the Navy is currently required to do, what current DEWs can do, 

and how that could integrate. Expanding upon the missions and threats already input into 

GINA could lead to what future weapon requirements should be to counter these threats. 

This would require analyzing current and projected missions, threats, and environments. 

This analysis could help focus future R&D efforts for not only weapon systems, but 

platforms these systems would integrate with. If a megawatt class SSL was to be put on a 

ship, that ship would have to be specifically designed for the cooling and power loads 

required to fire the LASER. 

GINA also could be modified to include a cost X-Type. This would allow a 

variation on the current CAIV analysis. The project team was able to judge the overall 

performance of a system and then compare that to the cost of a system. Putting cost into 

GINA would allow the analysis of the cost of a specific mission based on the weapon 

used. This could give more fidelity to the sustainment costs of each system and a more 

accurate ‘per round’ comparison to conventional weapons. 

The conventional weapon comparison was simplified to distil the engagement 

equation outputs to values that had cross-domain relevance. An actual combat model 

validated against contextually significant data should be used to evaluate the 

conventional weapon performance. Using actual weapon parameters to account for 

sources of weapon failure, the effects of weather could be captured in a deterministic 

model at the unclassified level. 
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The final area for further study is an analysis on the operational availability of 

potential DEW systems. To truly determine the operational availability, the Mean Time 

Between Failure (MTBF) and Mean Time To Repair (MTTR) for the system needs to be 

known. Analyzing the MTBF and MTTR of major components would be more useful as 

it would give insight to which parts are more likely to fail or take a long time to repair. 

Initially, this analysis can be done with a two-state homogeneous Continuous Time 

Markov Chain. This analysis still would require some form of failure rate which the 

project team was unable to acquire. Once the LaWS has completed the deployment on 

PONCE, MTBF and MTTR data may become available to facilitate such an analysis. 

  



 

 

 

 

272 

THIS PAGE INTENTIONALLY LEFT BLANK   



 

 

 

 

273 

APPENDIX A. THREAT AND WEAPON MAPPING 

Mission Threat Map (From GINA Model DEWAnalysisSEA19B, at p4ie.nps.edu) 

Mission 

ID 

Mission Description Threat 

DESIG 

Threat Name 

ATFP 

12 

Pier Demonstration/Passive Protest 

Exercise 

Person Running 5 mph 

ATFP 

15 

Nighttime Small Boat Attack at Anchor FIAC Fiberglass Boat 

ATFP 4 Entry Control Point (ECP)Threat Person Running 5 mph 

ATFP 8 Pierside Small Boat Attack Exercise FIAC Fiberglass Boat 

ATFP 9 Terrorist A/C Attack Exercise Cessna Cessna 150 

ATFP 9 Terrorist A/C Attack Exercise Iranian 

UAV 

Ghods Ababil 

Ababil-T 

AW 1.1 Provide area defense for a strike group C-802 Saccade 

AW 1.1 Provide area defense for a strike group AS-11 Kilter 

AW 1.1 Provide area defense for a strike group F-14 Tomcat 

AW 1.1 Provide area defense for a strike group MiG-19 Fulcrum 

AW 1.1 Provide area defense for a strike group Iranian 

UAV 

Ghods Ababil 

Ababil-T 

AW 

1.12 

Provide air defense for non-combatant 

evacuations operations 

AS-11 Kilter 

AW 

1.12 

Provide air defense for non-combatant 

evacuations operations 

C-802 Saccade 

AW 

1.13 

Provide air defense for naval/joint/ 

combined TF operations 

C-802 Saccade 

AW 

1.13 

Provide air defense for naval/joint/ 

combined TF operations 

F-14 Tomcat 

AW 

1.13 

Provide air defense for naval/joint/ 

combined TF operations 

AS-11 Kilter 

AW 

1.13 

Provide air defense for naval/joint/ 

combined TF operations 

MiG-19 Fulcrum 

AW 

1.13 

Provide air defense for naval/joint/ 

combined TF operations 

Iranian 

UAV 

Ghods Ababil 

Ababil-T 

AW 1.2 Conduct air self-defense using AW 

Weapons 

C-802 Saccade 

AW 1.2 Conduct air self-defense using AW 

Weapons 

AS-11 Kilter 
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AW 1.2 Conduct air self-defense using AW 

Weapons 

Iranian 

UAV 

Ghods Ababil 

Ababil-T 

AW 1.4 Provide area defense for a convoy or 

underway replenishment group 

C-802 Saccade 

AW 1.4 Provide area defense for a convoy or 

underway replenishment group 

F-14 Tomcat 

AW 1.4 Provide area defense for a convoy or 

underway replenishment group 

Iranian 

UAV 

Ghods Ababil 

Ababil-T 

AW 1.4 Provide area defense for a convoy or 

underway replenishment group 

AS-11 Kilter 

AW 1.4 Provide area defense for a convoy or 

underway replenishment group 

MiG-19 Fulcrum 

AW 1.5 Provide area defense for amphibious 

forces in transit and in the amphibious 

objective area 

C-802 Saccade 

AW 1.5 Provide area defense for amphibious 

forces in transit and in the amphibious 

objective area 

F-14 Tomcat 

AW 1.5 Provide area defense for amphibious 

forces in transit and in the amphibious 

objective area 

Iranian 

UAV 

Ghods Ababil 

Ababil-T 

AW 1.5 Provide area defense for amphibious 

forces in transit and in the amphibious 

objective area 

AS-11 Kilter 

AW 1.5 Provide area defense for amphibious 

forces in transit and in the amphibious 

objective area 

MiG-19 Fulcrum 

AW 1.6 Provide area defense for a surface action 

group 

F-14 Tomcat 

AW 1.6 Provide area defense for a surface action 

group 

AS-11 Kilter 

AW 1.6 Provide area defense for a surface action 

group 

MiG-19 Fulcrum 

AW 1.6 Provide area defense for a surface action 

group 

C-802 Saccade 

AW 1.6 Provide area defense for a surface action 

group 

Iranian 

UAV 

Ghods Ababil 

Ababil-T 
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AW 9.1 Engage medium/high altitude, high-

speed airborne threats with AW 

weapons 

F-14 Tomcat 

AW 9.1 Engage medium/high altitude, high-

speed airborne threats with AW 

weapons 

MiG-19 Fulcrum 

AW 9.3 Engage low altitude threats with AW 

weapons 

C-802 Saccade 

AW 9.3 Engage low altitude threats with AW 

weapons 

AS-11 Kilter 

AW 9.4 Engage low/medium altitude airborne 

threats with AW weapons 

Iranian 

UAV 

Ghods Ababil 

Ababil-T 

AW 9.4 Engage low/medium altitude airborne 

threats with AW weapons 

Cessna Cessna 150 

NCO 

19.6 

Conduct seizure of noncombatant 

vessels 

Dhow Dhow 

NCO 

19.6 

Conduct seizure of noncombatant 

vessels 

FIAC Fiberglass Boat 

NCO 

19.9 

Conduct drug traffic suppression and 

interdiction operations 

FIAC Fiberglass Boat 

NCO 

19.9 

Conduct drug traffic suppression and 

interdiction operations 

Dhow Dhow 

SUW 

1.10 

Conduct close–in surface self-defense 

using crew operated SUW Weapons 

PC Boghammer 

SUW 

1.10 

Conduct close–in surface self-defense 

using crew operated SUW Weapons 

FIAC Fiberglass Boat 

SUW 

1.10 

Conduct close–in surface self-defense 

using crew operated SUW Weapons 

FAC Aluminum Boat 

SUW 

2.3 

Engage surface targets with assigned 

anti-surface sector 

PC Boghammer 

SUW 

2.3 

Engage surface targets with assigned 

anti-surface sector 

FAC Aluminum Boat 

 

Mission Weapons 

Mission 

ID 

Mission Description Weapon 

DESIG 

Weapon Name 

ATFP 

12 

Pier Demonstration/Passive 

Protest Exercise 

ADS Active Denial System 

ATFP 

15 

Nighttime Small Boat Attack 

at Anchor 

ADS Active Denial System 
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ATFP 

15 

Nighttime Small Boat Attack 

at Anchor 

LaWS LASER Weapon System 

ATFP 

15 

Nighttime Small Boat Attack 

at Anchor 

MK 38 Mod 

2 

25mm Bushmaster 

ATFP 

15 

Nighttime Small Boat Attack 

at Anchor 

MLD Maritime LASER 

Demonstration 

ATFP 

15 

Nighttime Small Boat Attack 

at Anchor 

TLS Tactical LASER System 

ATFP 4 Entry Control Point 

(ECP)Threat 

ADS Active Denial System 

ATFP 8 Pierside Small Boat Attack 

Exercise 

LaWS LASER Weapon System 

ATFP 8 Pierside Small Boat Attack 

Exercise 

ADS Active Denial System 

ATFP 8 Pierside Small Boat Attack 

Exercise 

MK 38 Mod 

2 

25mm Bushmaster 

ATFP 8 Pierside Small Boat Attack 

Exercise 

MLD Maritime LASER 

Demonstration 

ATFP 8 Pierside Small Boat Attack 

Exercise 

TLS Tactical LASER System 

ATFP 9 Terrorist A/C Attack Exercise LaWS LASER Weapon System 

ATFP 9 Terrorist A/C Attack Exercise ADS Active Denial System 

ATFP 9 Terrorist A/C Attack Exercise MK 38 Mod 

2 

25mm Bushmaster 

ATFP 9 Terrorist A/C Attack Exercise LaWS+ LASER Weapon System 

Enhanced 

ATFP 9 Terrorist A/C Attack Exercise MK 15 Close-In Weapon System 

ATFP 9 Terrorist A/C Attack Exercise RIM-116 Rolling Airframe Missile 

ATFP 9 Terrorist A/C Attack Exercise MLD Maritime LASER 

Demonstration 

ATFP 9 Terrorist A/C Attack Exercise TLS Tactical LASER System 

AW 1.1 Provide area defense for a 

strike group 

LaWS LASER Weapon System 

AW 1.1 Provide area defense for a 

strike group 

LaWS+ LASER Weapon System 

Enhanced 

AW 1.1 Provide area defense for a 

strike group 

MLD Maritime LASER 

Demonstration 

AW 1.1 Provide area defense for a 

strike group 

RIM-66 MR SM-2 Block III Medium 

Range 

AW 

1.12 

Provide air defense for non-

combatant evacuations 

LaWS LASER Weapon System 
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operations 

AW 

1.12 

Provide air defense for non-

combatant evacuations 

operations 

LaWS+ LASER Weapon System 

Enhanced 

AW 

1.12 

Provide air defense for non-

combatant evacuations 

operations 

MLD Maritime LASER 

Demonstration 

AW 

1.12 

Provide air defense for non-

combatant evacuations 

operations 

RIM-66 MR SM-2 Block III Medium 

Range 

AW 

1.13 

Provide air defense for 

naval/joint/ combined TF 

operations 

LaWS LASER Weapon System 

AW 

1.13 

Provide air defense for 

naval/joint/ combined TF 

operations 

LaWS+ LASER Weapon System 

Enhanced 

AW 

1.13 

Provide air defense for 

naval/joint/ combined TF 

operations 

MLD Maritime LASER 

Demonstration 

AW 

1.13 

Provide air defense for 

naval/joint/ combined TF 

operations 

RIM-66 MR SM-2 Block III Medium 

Range 

AW 1.2 Conduct air self-defense using 

AW Weapons 

LaWS LASER Weapon System 

AW 1.2 Conduct air self-defense using 

AW Weapons 

RIM-116 Rolling Airframe Missile 

AW 1.2 Conduct air self-defense using 

AW Weapons 

LaWS+ LASER Weapon System 

Enhanced 

AW 1.2 Conduct air self-defense using 

AW Weapons 

MK 15 Close-In Weapon System 

AW 1.2 Conduct air self-defense using 

AW Weapons 

MLD Maritime LASER 

Demonstration 

AW 1.2 Conduct air self-defense using 

AW Weapons 

TLS Tactical LASER System 

AW 1.4 Provide area defense for a 

convoy or underway 

replenishment group 

LaWS LASER Weapon System 

AW 1.4 Provide area defense for a 

convoy or underway 

replenishment group 

LaWS+ LASER Weapon System 

Enhanced 
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AW 1.4 Provide area defense for a 

convoy or underway 

replenishment group 

MLD Maritime LASER 

Demonstration 

AW 1.4 Provide area defense for a 

convoy or underway 

replenishment group 

TLS Tactical LASER System 

AW 1.4 Provide area defense for a 

convoy or underway 

replenishment group 

RIM-66 MR SM-2 Block III Medium 

Range 

AW 1.5 Provide area defense for 

amphibious forces in transit 

and in the amphibious 

objective area 

LaWS LASER Weapon System 

AW 1.5 Provide area defense for 

amphibious forces in transit 

and in the amphibious 

objective area 

LaWS+ LASER Weapon System 

Enhanced 

AW 1.5 Provide area defense for 

amphibious forces in transit 

and in the amphibious 

objective area 

MLD Maritime LASER 

Demonstration 

AW 1.5 Provide area defense for 

amphibious forces in transit 

and in the amphibious 

objective area 

RIM-66 MR SM-2 Block III Medium 

Range 

AW 1.6 Provide area defense for a 

surface action group 

LaWS LASER Weapon System 

AW 1.6 Provide area defense for a 

surface action group 

LaWS+ LASER Weapon System 

Enhanced 

AW 1.6 Provide area defense for a 

surface action group 

MLD Maritime LASER 

Demonstration 

AW 1.6 Provide area defense for a 

surface action group 

TLS Tactical LASER System 

AW 1.6 Provide area defense for a 

surface action group 

RIM-66 MR SM-2 Block III Medium 

Range 

AW 1.6 Provide area defense for a 

surface action group 

RIM-116 Rolling Airframe Missile 

AW 9.1 Engage medium/high altitude, 

high-speed airborne threats 

with AW weapons 

LaWS LASER Weapon System 
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AW 9.1 Engage medium/high altitude, 

high-speed airborne threats 

with AW weapons 

LaWS+ LASER Weapon System 

Enhanced 

AW 9.1 Engage medium/high altitude, 

high-speed airborne threats 

with AW weapons 

MLD Maritime LASER 

Demonstration 

AW 9.1 Engage medium/high altitude, 

high-speed airborne threats 

with AW weapons 

TLS Tactical LASER System 

AW 9.1 Engage medium/high altitude, 

high-speed airborne threats 

with AW weapons 

RIM-66 MR SM-2 Block III Medium 

Range 

AW 9.3 Engage low altitude threats 

with AW weapons 

ADS Active Denial System 

AW 9.3 Engage low altitude threats 

with AW weapons 

LaWS+ LASER Weapon System 

Enhanced 

AW 9.3 Engage low altitude threats 

with AW weapons 

MK 15 Close-In Weapon System 

AW 9.3 Engage low altitude threats 

with AW weapons 

MK 54 5 Inch/54 Cal. Deck Gun 

AW 9.3 Engage low altitude threats 

with AW weapons 

MLD Maritime LASER 

Demonstration 

AW 9.3 Engage low altitude threats 

with AW weapons 

TLS Tactical LASER System 

AW 9.3 Engage low altitude threats 

with AW weapons 

RIM-66 MR SM-2 Block III Medium 

Range 

AW 9.4 Engage low/medium altitude 

airborne threats with AW 

weapons 

LaWS LASER Weapon System 

AW 9.4 Engage low/medium altitude 

airborne threats with AW 

weapons 

RIM-116 Rolling Airframe Missile 

AW 9.4 Engage low/medium altitude 

airborne threats with AW 

weapons 

ADS Active Denial System 

AW 9.4 Engage low/medium altitude 

airborne threats with AW 

weapons 

LaWS+ LASER Weapon System 

Enhanced 

AW 9.4 Engage low/medium altitude 

airborne threats with AW 

weapons 

MK 15 Close-In Weapon System 
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AW 9.4 Engage low/medium altitude 

airborne threats with AW 

weapons 

MLD Maritime LASER 

Demonstration 

AW 9.4 Engage low/medium altitude 

airborne threats with AW 

weapons 

MK 54 5 Inch/54 Cal. Deck Gun 

AW 9.4 Engage low/medium altitude 

airborne threats with AW 

weapons 

TLS Tactical LASER System 

AW 9.4 Engage low/medium altitude 

airborne threats with AW 

weapons 

RIM-66 MR SM-2 Block III Medium 

Range 

NCO 

19.6 

Conduct seizure of 

noncombatant vessels 

ADS Active Denial System 

NCO 

19.6 

Conduct seizure of 

noncombatant vessels 

MK 38 Mod 

2 

25mm Bushmaster 

NCO 

19.9 

Conduct drug traffic 

suppression and interdiction 

operations 

ADS Active Denial System 

NCO 

19.9 

Conduct drug traffic 

suppression and interdiction 

operations 

MK 54 5 Inch/54 Cal. Deck Gun 

NCO 

19.9 

Conduct drug traffic 

suppression and interdiction 

operations 

MK 38 Mod 

2 

25mm Bushmaster 

NCO 

19.9 

Conduct drug traffic 

suppression and interdiction 

operations 

LaWS LASER Weapon System 

NCO 

19.9 

Conduct drug traffic 

suppression and interdiction 

operations 

LaWS+ LASER Weapon System 

Enhanced 

NCO 

19.9 

Conduct drug traffic 

suppression and interdiction 

operations 

MLD Maritime LASER 

Demonstration 

NCO 

19.9 

Conduct drug traffic 

suppression and interdiction 

operations 

TLS Tactical LASER System 

SUW 

1.10 

Conduct close–in surface self-

defense using crew operated 

SUW Weapons 

ADS Active Denial System 

SUW 

1.10 

Conduct close–in surface self-

defense using crew operated 

MK 38 Mod 

2 

25mm Bushmaster 
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SUW Weapons 

SUW 

1.10 

Conduct close–in surface self-

defense using crew operated 

SUW Weapons 

MK 15 Close-In Weapon System 

SUW 

2.3 

Engage surface targets with 

assigned anti-surface sector 

LaWS LASER Weapon System 

SUW 

2.3 

Engage surface targets with 

assigned anti-surface sector 

MK 38 Mod 

2 

25mm Bushmaster 

SUW 

2.3 

Engage surface targets with 

assigned anti-surface sector 

MK 54 5 Inch/54 Cal. Deck Gun 

SUW 

2.3 

Engage surface targets with 

assigned anti-surface sector 

LaWS+ LASER Weapon System 

Enhanced 

SUW 

2.3 

Engage surface targets with 

assigned anti-surface sector 

MLD Maritime LASER 

Demonstration 

SUW 

2.3 

Engage surface targets with 

assigned anti-surface sector 

TLS Tactical LASER System 

SUW 

2.3 

Engage surface targets with 

assigned anti-surface sector 

RIM-66 MR SM-2 Block III Medium 

Range 
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APPENDIX B. GLOBAL INFORMATION NETWORK 

ARCITECTURE (GINA) CUSTOM CONTENT MANAGER CODE 

using System.Collections.Generic; 
using System.Data; 
using Xslent.Base; 
using Xslent.Common; 
using Xslent.ContentManagers.Elements; 
using Xslent.ContentServers; 
using Xslent.DssComponents.ContentProxies; 
using Xslent.Filters; 
using Xslent.Platform; 
using System.Diagnostics; 
using ModTran5; 
using System; 
 
namespace Xslent.ContentManagers 
{ 
    /// <summary> 
    /// Provides content manager data services that aggregates data from multiple 
types. 
    /// </summary> 
    class DEWContentManager : 
        ContentManagerBase 
    { 
 
        private IClient r_client; 
 
        private const string m_modtran_call = “C:\\Program Files\\Spectral 
Sciences, Inc\\MODTRAN(R)\\5.2.2\\modtran.bat”; 
        private const string m_modtran_input = “C:\\Program Files\\Spectral 
Sciences, Inc\\MODTRAN(R)\\5.2.2\\NavyMaritime.tp5”; 
        private const string m_modtran_output = “C:\\Program Files\\Spectral 
Sciences, Inc\\MODTRAN(R)\\5.2.2\\NavyMaritime.tp6”; 
 
        private object m_lock_object = new object(); 
 
        /// <summary> 
        /// Initializes a new instance of an AggregateContentManager class. 
        /// </summary> 
        /// <param name=“p_control_handler”>Provides data and control factory 
services.</param> 
        /// <param name=“p_xtype_spec”>Specification of XType.</param> 
        /// <param name=“p_client”>Provides user access services.</param> 
        public DEWContentManager(IContentHandler p_content_handler, IContent 
p_xtype_spec, IClient p_client) 
            : base(p_content_handler, p_xtype_spec, p_client) 
        { 
            r_client = p_client; 
        } 
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        /// <summary> 
        /// Cause the content to be pushed all the way to the ContentServer. 
        /// </summary> 
        /// <param name=“p_content”>Reference to content.</param> 
        public override void updateContent(IContent p_content) 
        { 
            try 
            { 
                IContentManagerClient l_content_manager_client = 
ProtectedClientFactory.getContentManagerClient(p_content); 
                this.protectedMapCollectFilter(l_content_manager_client); 
                if (l_content_manager_client.getRowCount() == 0) 
                { 
                    return; 
                } 
                foreach (IContent l_resource in p_content) 
                { 
                    IContentManagerClient l_resource_content_manager_client = 
ProtectedClientFactory.getContentManagerClient(l_resource); 
                    l_resource_content_manager_client.save(); 
                    if (l_resource_content_manager_client.isNew()) 
                    { 
                        lock (m_lock_object) 
                        { 
                            double l_slant_range = this.callModtran(l_resource); 
                            this.callAnalyzer(l_resource, l_slant_range); 
                        } 
                      
                    } 
                } 
                
r_content_handler.updateContent(l_content_manager_client.getContentHolder());
 //Update after isNew() checked 
            } 
            catch (Exception l_exception) 
            { 
                throw new XslentException(l_exception, “Error processing 
engagement”); 
            } 
        } 
 
        private void callAnalyzer(IContent pContent, double p_slant_range) 
        { 
            try 
            { 
                /* 
                If Engagement.Weapon.WeaponType = HEL Then use the LASER portion 
of DEWAnalyzer 
                If Enagement.Weapon.WeaponType = HPM Then use the Microwave 
portion of DEWAnalyzer 
                If Engagement.Weapon.Weapon.Type = CONV Then use 
ConventionalWeaponAnalyzer 
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                */ 
 
                // Get the related threat instance 
                Guid threadGuid = UtilityContent.getGuid(pContent, “ThreatGUID”); 
                IFilter l_filter = FilterFactory.newFilter(“Threat,” “ThreatGUID,” 
threadGuid.ToString()); 
                IContent l_threat = 
r_content_handler.collectContent(r_client.getDssId(), “Threat,” l_filter, 
r_client); 
 
                // Get the related weapon instance 
                Guid weaponGuid = UtilityContent.getGuid(pContent, “WeaponGUID”); 
                l_filter = FilterFactory.newFilter(“Weapon,” “WeaponGUID,” 
weaponGuid.ToString()); 
                IContent l_weapon = 
r_content_handler.collectContent(r_client.getDssId(), “Weapon,” l_filter, 
r_client);//r_content_handler.collectContent(r_client.getDssId(), l_filter, 
r_client); 
 
                string l_weapon_type = UtilityContent.getString(pContent, 
“WeaponType”); 
 
                double tdAltitude = UtilityContent.getDouble(pContent, 
“ThreatDetectionAltitude_m”); 
 
 
                if (“HEL.”Equals(l_weapon_type)) 
                { 
                    // Then use the LASER portion of DEWAnalyzer 
                    DEWAnalyzerVS2010.DEWAnalysisSEA19B dewAnalyzer = new 
DEWAnalyzerVS2010.DEWAnalysisSEA19B(); 
 
 
                    dewAnalyzer.VitalAreaRadius = 
UtilityContent.getDouble(pContent, “VitalAreaRadius_m”); 
 
                    // Set the inputs 
                    dewAnalyzer.DetectionAlt = UtilityContent.getDouble(pContent, 
“ThreatDetectionAltitude_m”); 
                    dewAnalyzer.DetectionRange = 
UtilityContent.getDouble(pContent, “ThreatDetectionGroundRange_m”); 
                    dewAnalyzer.ThreatSpeed = UtilityContent.getDouble(l_threat, 
“ThreatSpeed_mPERs”); 
                    dewAnalyzer.Transmissivity = 
UtilityContent.getDouble(pContent, “AtmosphericAttenuation”); 
 
                    // Weapon inputs 
                    dewAnalyzer.LSWavelength = UtilityContent.getDouble(l_weapon, 
“DEWWavelength_m”); 
                    dewAnalyzer.LSLensDiameter = 
UtilityContent.getDouble(l_weapon, “LaserAppertureDiamater_m”); 
                    dewAnalyzer.LSGuassianBeamMFactor = 
UtilityContent.getDouble(l_weapon, “LaserGaussianBeamMatchingFactor”); 
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                    dewAnalyzer.LSPower = UtilityContent.getDouble(l_weapon, 
“DEWPower”); 
 
                    // Engagement inputs 
                    dewAnalyzer.MeltingTemp = UtilityContent.getDouble(pContent, 
“ArmorMeltingPoint_K”); 
                    dewAnalyzer.Density = UtilityContent.getDouble(pContent, 
“ArmorDensity_gPERcm3”); 
                    dewAnalyzer.SpecificHeat = UtilityContent.getDouble(pContent, 
“ArmorSpecificHeatCapacity_JPERgK”); 
                    dewAnalyzer.HeatOfFusion = UtilityContent.getDouble(pContent, 
“ArmorLatentHeatOfFusion_JPERg”); 
                    dewAnalyzer.Thickness = UtilityContent.getDouble(pContent, 
“ArmorThickness_cm”); 
                    dewAnalyzer.Relectance = UtilityContent.getDouble(pContent, 
“ArmorReflectivity”); 
 
                    // Run that analyzer 
                    dewAnalyzer.EvaluateLaserPerformance(); 
 
                    // Set the results in the engagement content 
                    pContent.setField(“NumberOfHardKillsPossible,” 
dewAnalyzer.NumberHKPossible); 
                    pContent.setField(“NumberOfSoftKillsPossible,” 
dewAnalyzer.NumberSKPossible); 
                    pContent.setField(“RangeOfFirstHardKill,” 
dewAnalyzer.RangeFirstHK); 
                    pContent.setField(“RangeOfFirstSoftKill,” 
dewAnalyzer.RangeFirstSK); 
                    pContent.setField(“DEWMaximumEffectiveRange,” 
dewAnalyzer.MaxEffectiveRange); 
                    pContent.setField(“DEWMaximumTacticalRange,” 
dewAnalyzer.RayleighRange); 
 
 
                } 
                else if (“HPM.”Equals(l_weapon_type)) 
                { 
                    //Then use the Microwave portion of DEWAnalyzer 
                    DEWAnalyzerVS2010.DEWAnalysisSEA19B dewAnalyzer = new 
DEWAnalyzerVS2010.DEWAnalysisSEA19B(); 
 
                    dewAnalyzer.VitalAreaRadius = 
UtilityContent.getDouble(pContent, “VitalAreaRadius_m”); 
 
                    if (dewAnalyzer.VitalAreaRadius < p_slant_range) 
                    { 
                        throw new XslentException(“Threat Detection Ground Range 
cannot be less than Mission Vital Area Radius”); 
                    } 
 
                    // Weapon inputs 
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dewAnalyzer.setMicrowaveData(UtilityContent.getDouble(l_weapon, 
“DEWWavelength_m”),  
                        UtilityContent.getDouble(l_weapon, “DEWPower”),  
                        UtilityContent.getDouble(l_weapon, 
“MicrowaveAntennaArea_m2”), 
                        UtilityContent.getDouble(l_weapon, 
“MicrowaveAntennaConstantOfProprtionality”),  
                        UtilityContent.getDouble(l_weapon, 
“MicrowaveAntennaEfficiency”)); 
 
                    // Set the inputs 
                    
dewAnalyzer.setMWScenarioData(UtilityContent.getDouble(pContent, 
“AtmosphericAttenuation”), 
                        UtilityContent.getDouble(pContent, 
“ThreatDetectionGroundRange_m”), 
                        UtilityContent.getDouble(pContent, 
“ThreatDetectionAltitude_m”), 
                        UtilityContent.getDouble(l_threat, “ThreatSpeed_mPERs”)); 
 
                    // Run the analyzer 
                    dewAnalyzer.EvaluateMicrowaveKillEffectiveness(); 
 
                    // Set the results in the engagement content 
                    pContent.setField(“NumberOfHardKillsPossible,” 
dewAnalyzer.MWHKP); 
                    pContent.setField(“NumberOfSoftKillsPossible,” 
dewAnalyzer.MWSKP); 
                    pContent.setField(“RangeOfFirstHardKill,” 
dewAnalyzer.MWRangeFirstHardKill); 
                    pContent.setField(“RangeOfFirstSoftKill,” 
dewAnalyzer.MWRangeFirstSoftKill);                       
                       
                } 
                else if (“CONV.”Equals(l_weapon_type)) 
                { 
                    //Then use ConventionalWeaponAnalyzer 
                    DEWAnalyzerVS2010.ConventionalWeaponAnalyzerSEA19B analyzer = 
new DEWAnalyzerVS2010.ConventionalWeaponAnalyzerSEA19B(); 
 
                    // Set the inputs 
                    analyzer.ThreatDetectionAltitude = 
UtilityContent.getDouble(pContent, “ThreatDetectionAltitude_m”); 
                    analyzer.ThreatDetectionRange = 
UtilityContent.getDouble(pContent, “ThreatDetectionGroundRange_m”); 
                    analyzer.ThreatSpeed = UtilityContent.getDouble(l_threat, 
“ThreatSpeed_mPERs”); 
 
                    analyzer.WeaponActivationTime = 
UtilityContent.getDouble(l_weapon, “WeaponActivationTime_sec”); 
                    analyzer.WeaponMaxEffectiveRange = 
UtilityContent.getDouble(l_weapon, “WeaponMaximumEffectiveRange_m”); 
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                    analyzer.WeaponMinEffectiveRange = 
UtilityContent.getDouble(l_weapon, “WeaponMinimumEffectiveRange_m”); 
                    analyzer.WeaponSpeed = UtilityContent.getDouble(l_weapon, 
“WeaponSpeed_mPERs”); 
 
                    analyzer.VitalAreaRadius = UtilityContent.getDouble(pContent, 
“VitalAreaRadius_m”); 
 
                    // Analyzer does its calcs 
                    analyzer.CalculateNumberOfHardKillsPossible(); 
 
                    // Set the results in the engagement content 
                    pContent.setField(“NumberOfHardKillsPossible,” 
analyzer.NumberHardKillsPossible); 
                    pContent.setField(“NumberOfSoftKillsPossible,” 
analyzer.NumberSoftKillsPossible); 
                    pContent.setField(“RangeOfFirstHardKill,” 
analyzer.RangeOfFirstHardKill); 
                    pContent.setField(“RangeOfFirstSoftKill,” 
analyzer.RangeOfFirstSoftKill); 
 
                } 
                else 
                { 
                    // Throw error 
                } 
            } 
            catch (Exception ex) 
            { 
                throw new XslentException(ex, “Error processing call to 
analylzer”); 
            } 
 
        } 
 
        private double callModtran(IContent pContent) 
        { 
            double l_slantrange = 0.0; 
            string l_weapon_type = UtilityContent.getString(pContent, 
“WeaponType”); 
            try 
            { 
                ModTran5.ModTran5 mt5 = new ModTran5.ModTran5(m_modtran_input, 
m_modtran_call, m_modtran_output); 
                m_diagnostics.debug(“Setting up modtran input values”); 
                double l_wavelength = 0.0; 
                if (“HEL.”Equals(l_weapon_type)) 
                { 
                    l_wavelength = Math.Round(UtilityContent.getDouble(pContent, 
“DEWWavelength_m”) * 1000000, 4); 
                    //LASER wavelength must be specified in micrometers 
                    m_diagnostics.debug(“Laser calculated wave length: ‘{0},’” 
l_wavelength); 
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                } 
                else if (“HPM.”Equals(l_weapon_type)) 
                { 
                    l_wavelength = Math.Round((1) / 
(UtilityContent.getDouble(pContent, “DEWWavelength_m”) * 100), 4); 
                    m_diagnostics.debug(“Microwave calculated wave length: ‘{0},’” 
l_wavelength); 
                    //l_wavelength = 1/(UtilityContent.getDouble(pContent, 
“DEWWavelength_m”) * 100); 
                    //Microwave wavelengths must be specified as wavenumbers in 
units 1/cm 
                } 
 
                string l_rainrate = UtilityContent.getString(pContent, 
“EnvironmentRainRate_mmPERhr”); 
                m_diagnostics.debug(“Rainrate from engagement: ‘{0},’” 
l_rainrate); 
                double l_bandwidth = 0.05;// * 0.5; 
                m_diagnostics.debug(“Bandwidth (hardcoded): ‘{0},’” l_bandwidth); 
                 
                double l_threat_altitude = 
Math.Round(UtilityContent.getDouble(pContent, “ThreatDetectionAltitude_m”) / 1000, 
4); 
                m_diagnostics.debug(“Threat detection altitude from engagement: 
‘{0},’” l_threat_altitude); 
 
                double l_threat_range = UtilityContent.getDouble(pContent, 
“ThreatDetectionGroundRange_m”) / 1000; 
                m_diagnostics.debug(“Threat detection range from engagement: 
‘{0},’” l_threat_range); 
                //All ranges and altitudes in MODTRAN must be specified as 
kilometers 
 
                l_slantrange = Math.Round(Math.Sqrt(Math.Pow(l_threat_range, 2) + 
Math.Pow(l_threat_altitude, 2)), 4); 
                m_diagnostics.debug(“Calculated slant range: ‘{0},’” 
l_slantrange); 
 
                pContent.setField(“InitialSlantRangeToThreat_m,” l_slantrange); 
                 
                string V1 = Math.Round((l_wavelength - l_bandwidth), 
4).ToString(); 
                m_diagnostics.debug(“Calculated V1: ‘{0},’” V1); 
 
                string V2 = Math.Round((l_wavelength + l_bandwidth), 
4).ToString(); 
                m_diagnostics.debug(“Calculated V2: ‘{0},’” V2); 
 
                m_diagnostics.debug(“Calling SetParam”); 
                mt5.SetParam(l_rainrate, “0,” l_threat_altitude.ToString(), 
l_slantrange.ToString(), V1, V2, l_weapon_type); 
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                // Don’t run modtran for conventional weapons 
                if (“HEL.”Equals(l_weapon_type) || “HPM.”Equals(l_weapon_type)) 
                { 
                    m_diagnostics.debug(“Calling GenerateInput”); 
                    mt5.GenerateInput(); 
 
                    m_diagnostics.debug(“Calling RunExe”); 
                    mt5.RunExe(); 
 
                    m_diagnostics.debug(“Calling ReadOutput”); 
                    string l_attenuation = mt5.ReadOutput(); 
 
                    m_diagnostics.debug(“Returned attenuation: ‘{0},’” 
l_attenuation); 
 
                    if (null == l_attenuation || l_attenuation.Length == 0) 
                    {                     
                        m_diagnostics.debug(“WARNING!!! Returned attenuation has 
no value!  Setting it to 1”); 
                        l_attenuation = “1”; 
                    } 
 
                    pContent.setField(“AtmosphericAttenuation,” l_attenuation); 
                } 
 
            } 
            catch (Exception ex) 
            { 
                throw new XslentException(ex, “Error processing call to modtran”); 
            } 
 
            return l_slantrange; 
        } 
    } 

} 
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APPENDIX C. GLOBAL INFORMATION NETWORK 

ARCITECTURE (GINA) X-TYPES, VECTORS, AND FORMS 

Element Source X-Type 

Attenuation AtmopshericAttenuation 

AttenuationGUID AtmopshericAttenuation 

Environment AtmopshericAttenuation 

H1PlatformHeight AtmopshericAttenuation 

H2ThreatDetectAlt AtmopshericAttenuation 

SlantRangeToThreat AtmopshericAttenuation 

Wavelength AtmopshericAttenuation 

AtmosphericAttenuation AtmosphericAttenuation 

Attenuation AtmosphericAttenuation 

AttenuationGUID AtmosphericAttenuation 

H1PlatformHeight AtmosphericAttenuation 

H2ThreatDetectAlt AtmosphericAttenuation 

MetersToKilometers AtmosphericAttenuation 

MetersToMicrons AtmosphericAttenuation 

SlantRangeToThreat AtmosphericAttenuation 

Wavelength AtmosphericAttenuation 

Description DEWEnumeration 

DEWEnumeration DEWEnumeration 

Enumeration DEWEnumeration 

EnumerationGUID DEWEnumeration 

EnumerationType DEWEnumeration 

ArmorDensity_gPERcm3 Engagement 

ArmorLatentHeatOfFusion_JPERg Engagement 

ArmorMassPerArea Engagement 

ArmorMeltingPoint_K Engagement 

ArmorReflectivity Engagement 

ArmorSpecificHeatCapacity_JPERgK Engagement 
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ArmorThickness_cm Engagement 

AtmosphericAttenuation Engagement 

CelciusToKelvinConstant Engagement 

Constant_1 Engagement 

DEWMaximumEffectiveRange Engagement 

DEWMaximumTacticalRange Engagement 

DEWPower Engagement 

DEWWavelength_m Engagement 

EnergyPerMassToMelt Engagement 

Engagement Engagement 

EngagementGUID Engagement 

EnvironmentDescription Engagement 

EnvironmentGUID Engagement 

EnvironmentModel Engagement 

EnvironmentRainRate_mmPERhr Engagement 

InitialSlantRangeToThreat_m Engagement 

LaserAppertureDiamater_m Engagement 

LaserGaussianBeamMatchingFactor Engagement 

MeltingAmbientTDiff Engagement 

MicrowaveAntennaArea_m2 Engagement 

MicrowaveAntennaConstantOfProprtionality Engagement 

MicrowaveAntennaEfficiency Engagement 

Mission Engagement 

MissionGUID Engagement 

MissionID Engagement 

NumberOfHardKillsPossible Engagement 

NumberOfSoftKillsPossible Engagement 

Platform Engagement 

PlatformHeight_m Engagement 

RangeOfFirstHardKill Engagement 

RangeOfFirstSoftKill Engagement 

SoftKillPercentageConstant Engagement 
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TempuratureAtMSL_Kelvin Engagement 

ThreaSpeed_mPERs Engagement 

Threat Engagement 

ThreatAbsorbtion Engagement 

ThreatDesignator Engagement 

ThreatDetectionAltitude_m Engagement 

ThreatDetectionGroundRange_m Engagement 

ThreatGUID Engagement 

ThreatThresholdFluenceForHardKill_jPERm2 Engagement 

ThreatThresholdFluenceForSoftKill_jPERm2 Engagement 

ThreatThresholdFluenceNoReflectivity Engagement 

TotalEnergyPerMassForDamage Engagement 

VitalAreaRadius_m Engagement 

WarfareAreaName Engagement 

Weapon Engagement 

WeaponDesignator Engagement 

WeaponGUID Engagement 

WeaponMaximumEffectiveRange_m Engagement 

WeaponMinimumEffectiveRange_m Engagement 

WeaponSpeed_mPERs Engagement 

WeaponType Engagement 

AtmospherName Environment 

CelciusToKelvinConversionFactor Environment 

Environment Environment 

EnvironmentDescription Environment 

EnvironmentGUID Environment 

ModtranModel Environment 

RainRate_mmPERhr Environment 

SurfaceType Environment 

TempuratureAtMSL_celcius Environment 

TempuratureAtMSL_Kelvin Environment 

Engagement Mission 
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Mission Mission 

MissionDescription Mission 

MissionGUID Mission 

MissionID Mission 

MissionThreatsMission Mission 

MissionToThreats Mission 

MissionWeapons Mission 

MissionWeaponsMission Mission 

Threat Mission 

VitalAreaRadius_m Mission 

WarfareAreaGUID Mission 

Weapon Mission 

Mission MissionThreats 

MissionGUID MissionThreats 

MissionThreats MissionThreats 

MissionThreatsGUID MissionThreats 

Threat MissionThreats 

ThreatDesignator MissionThreats 

ThreatGUID MissionThreats 

Mission MissionWeapons 

MissionGUID MissionWeapons 

MissionWeapons MissionWeapons 

MissionWeaponsGUID MissionWeapons 

Weapon MissionWeapons 

WeaponDesignator MissionWeapons 

WeaponGUID MissionWeapons 

AmorReflectivity_Percent Threat 

ArmorDensity_gPERcm3 Threat 

ArmorEMAbsorbtion_Percent Threat 

ArmorHeatOfVaporization Threat 

ArmorLatentHeatOfFusion_JPERg Threat 

ArmorMass_kg Threat 
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ArmorMeltingPoint_K Threat 

ArmorSpecificHeatCapacity_JPERgK Threat 

ArmorThermalConductivity Threat 

ArmorThermalCouplingCoefficient Threat 

ArmorThickness_cm Threat 

ArmorVaporizationTempurature_K Threat 

Constant_1 Threat 

HeadOnCrossSectionalArea_m2 Threat 

MissionThreats Threat 

MissionToThreats Threat 

SideCrossSectionalArea_m2 Threat 

Threat Threat 

ThreatArmorMaterialType Threat 

ThreatCoefficientOfDrag Threat 

ThreatDesignator Threat 

ThreatExplosiveMass_kg Threat 

ThreatExplosiveType Threat 

ThreatGUID Threat 

ThreatInitialTempurature_K Threat 

ThreatMaximumOverpressureSustainable_ATM Threat 

ThreatMissions Threat 

ThreatName Threat 

ThreatSpeed_mPERs Threat 

ThreatThresholdFluenceRequiredForHardKill Threat 

ThreatThresholdFluenceRequiredForSoftKill Threat 

ThreatType Threat 

Mission WarfareArea 

WarfareArea WarfareArea 

WarfareAreaGUID WarfareArea 

WarfareAreaName WarfareArea 

DEWContinuousWaveOnTimeBeforeRecharge_s Weapon 

DEWPower Weapon 
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DEWRechargeTime_s Weapon 

DEWWavelength_m Weapon 

LaserAppertureDiamater_m Weapon 

LaserGaussianBeamMatchingFactor Weapon 

LaserJitter_mRadPERsecond Weapon 

MicrowaveAntennaArea_m2 Weapon 

MicrowaveAntennaConstantOfProprtionality Weapon 

MicrowaveAntennaEfficiency Weapon 

MicrowaveAntennaGain Weapon 

MicrowaveBeamDivergence_rad Weapon 

MicrowaveBeamWidth_3dB_cm Weapon 

NumberOfMissilesOnboard Weapon 

PenetratorLength_cm Weapon 

PenetratorMass_g Weapon 

PenetratorMaterial Weapon 

PenetratorMaterialDensity_gPERcm3 Weapon 

PlatformGUID Weapon 

RateOfFire_PerMin Weapon 

TotalEnergyPerCharge_kw Weapon 

Weapon Weapon 

WeaponActivationTime_sec Weapon 

WeaponCoefficientOfDrag Weapon 

WeaponCrossSectionalArea_m2 Weapon 

WeaponDesignator Weapon 

WeaponExplosiveMass_kg Weapon 

WeaponExplosiveType Weapon 

WeaponGUID Weapon 

WeaponMaximumEffectiveRange_m Weapon 

WeaponMinimumEffectiveRange_m Weapon 

WeaponMissions Weapon 

WeaponName Weapon 

WeaponSpeed_mPERs Weapon 
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WeaponType Weapon 

 

SourceXType Description Vector Vector1 Vector2 VectorClass 

AtmosphericA

ttenuation 

Points from 

Atmospheri

cAttenation 

back to 

itself 

Atmosp

hericAt

tenuatio

n 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

Engagement   Engage

mentW

eaponQ

uery 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

Engagement   Mission

Engage

ment 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

Engagement   Platfor

mToEn

gageme

nt 

Weapon Weapon

Engage

ment 

Xslent.ContentManagers

.Elements.VDerivation,

Xslent.Dss 
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Engagement   ThreatE

ngagem

ent 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

Engagement   Warfar

eAreaT

oEngag

ement 

Warfare

AreaMis

sion 

Mission

Engage

ment 

Xslent.ContentManagers

.Elements.VDerivation,

Xslent.Dss 

Engagement   Weapo

nEngag

ement 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

Engagement Points back 

to 

Engagement

. 

Engage

ment 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

Environment Points back 

to 

Environmen

t 

Environ

ment 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 
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Mission   ThreatT

oMissio

n 

Mission

Threats 

Mission Xslent.ContentManagers

.Elements.VDerivation,

Xslent.Dss 

Mission   Warfar

eArea

Mission 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

Mission Points from 

Mission 

back to 

itself. 

Mission     Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

MissionThreat

s 

  Mission

Threats

Mission 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

MissionThreat

s 

  Mission

Threats

Threat 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 
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MissionThreat

s 

Points back 

to 

MissionThr

eats 

Mission

Threats 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

MissionWeap

ons 

  Mission

Weapo

nsMissi

on 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

MissionWeap

ons 

  Mission

Weapo

nsWeap

on 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

MissionWeap

ons 

Points back 

to 

MissionWea

pons 

Mission

Weapo

ns 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

Threat   Mission

ToThre

ats 

Mission

Threats

Mission 

Threat Xslent.ContentManagers

.Elements.VDerivation,

Xslent.Dss 
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Threat   ThreatF

orEnga

gement 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

Threat Points back 

to Threat 

from itself. 

Threat     Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

WarfareArea   Engage

mentTo

Warfar

eArea 

Mission Warfare

Area 

Xslent.ContentManagers

.Elements.VDerivation,

Xslent.Dss 

WarfareArea Points from 

WarfareAre

a back to 

itself. 

Warfar

eArea 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

Weapon   Mission

ToWea

pon 

Mission

Weapon

s 

Weapon Xslent.ContentManagers

.Elements.VDerivation,

Xslent.Dss 
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Weapon   Weapo

nQuery 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 

Weapon Points from 

Weapon 

back to 

itself. 

Weapo

n 

    Xslent.ContentManagers

.Elements.VCollection,

Xslent.Dss 
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APPENDIX D. VISIUAL BASIC (VB) .NET CODE 

Note: originally, a Type I Engagement was called “Hard Kill” and a Type II 

Engagement was called “Soft Kill.” The original terminology was changed due to 

confusion, but remains in the code. 

Imports System.Math 
 
Public Class DEWAnalysisSEA19B 
    ‘Thesis Advisor: Prof. Gary O. Langford, Naval Postgraduate School, Systems 
Engineering Department 
    ‘Contact: golangfo@nps.edu 
 
    ‘Software Author: LT Daniel P. Ciullo (USN) 
    ‘Contact: dan.ciullo@gmail.com 
 
    ‘LASER Analysis Code 
 
    ‘Laser Weapon Variables 
    Public LSWavelength As Double 
    Public LSLensDiameter As Double 
    Public LSGuassianBeamMFactor As Double 
    Public LSPower As Double 
 
    ‘Laser Calculated Variables 
    Public Waist As Double 
    Public Divergence As Double 
    Public HalfAngle As Double 
    Public RayleighRange As Double 
    Public MaxEffectiveRange As Double 
    Private PeakIntensityAtRange As Double 
    Private AvgIntensityAtRange As Double 
    Public TotalIntensityOnThreat As Double 
 
 
    ‘Threat Target Variables 
    Public MeltingTemp As Double 
    Public Density As Double 
    Public SpecificHeat As Double 
    Public HeatOfFusion As Double 
    Public Thickness As Double 
    Public Relectance As Double 
    Public DetectionRange As Double 
    Public DetectionAlt As Double 
    Public ThreatSpeed As Double 
 
 
    ‘Threat Calculated Variables 
    Public FluenceForHardKill As Double 
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    Public FluenceForSoftKill As Double 
    Public LSHardKillsPossible As Double 
    Public LSSoftKillsPossible As Double 
    Public ThreatSlantRange As Double 
 
    ‘Scenario Variables 
    Public Transmissivity As Double 
    Public AmbientTemp As Double 
    Public Attenuation As Double 
 
    ‘Scenarior Calculated Variables 
    Public NumberHKPossible As Double 
    Public NumberSKPossible As Double 
    Public VitalAreaRadius As Double 
    Public RangeFirstHK As Double 
    Public RangeFirstSK As Double 
 
    ‘For GINA to run the MODTRAN 5 software 
    Public Function CalculateSlantRange(GroundRange As Double, Altitude As Double) 
        Return Sqrt(Pow(GroundRange, 2) + Pow(Altitude, 2)) 
    End Function 
 
    ‘Equation 3.37 from Combat Systems Vol. 2, Dr. Robert C. Harney 
    Private Function CalculateRayleighRange() As Double 
        Return (PI * Pow(LSLensDiameter, 2.0)) / (LSGuassianBeamMFactor * 
LSWavelength) 
    End Function 
 
    ‘Combat Systems Volume 2, equation 3.37, Dr. Robert C. Harney 
    Private Function CalculateBeamWaist() As Double 
        Return LSLensDiameter / Sqrt(LSGuassianBeamMFactor) 
    End Function 
 
    ‘Equation G.69 from Combat Systems Appendix G, Dr. Robert C. Harney. 
    ‘In this version, the full angle diverence is calculated differently using the 
M-squared beam quality factor. 
    Private Function CalculateHalfAngle() As Double 
        Return LSWavelength / (PI * Waist) 
    End Function 
 
    ‘Combat Systems Volume 6, equation M.6, Dr. Robert C. Harney 
    Private Function CalculateDivergence() As Double 
        Return Sqrt(2) * HalfAngle 
    End Function 
 
    ‘Converts the total transmittance over the detection range and allows it to be 
considered at each point of integration as the threat moves inbound 
    Private Function CalculateThreatSlantRange() As Double 
        Return Pow(Pow(DetectionAlt, 2.0) + Pow(DetectionRange, 2.0), 0.5) 
    End Function 
 
    Private Sub ConvertTransmittanceToAttenuation() 
        Attenuation = -1 * (Math.Log(Transmissivity) / (ThreatSlantRange / 1000)) 
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    End Sub 
 
    ‘Equation M.5 from Combat Systems Appendix M, Dr. Robert C. Harney 
    Private Function CalculatePeakIntensityAtRange(ByVal Range As Double) As 
Double 
        Return (4.0 * LSPower * Pow(Math.E, -1 * Attenuation * (Range / 1000))) / 
(PI * (Pow(Waist, 2.0) + Pow(Range, 2.0) * Pow(Divergence, 2.0))) 
    End Function 
 
    ‘Equation 17.8 from Combat Systems Vol. 3, Dr. Robert C. Harney 
    Public Function CalculateFluenceForHardKill() As Double 
        Return Density * Thickness * (SpecificHeat * (MeltingTemp - AmbientTemp) + 
HeatOfFusion) / (1 - Relectance) 
    End Function 
 
    ‘Prof. Gary O. Langford, NPS SE Department, LASER Weapon SME, based on 
empirical data. For CO2 LASERs ONLY use 20% reduction. 
    ‘Contact: golangfo@nps.edu 
    Public Function CalculateFluenceForSoftKill() As Double 
        Return FluenceForHardKill / 6 
    End Function 
 
    Public Sub EvaluateLaserPerformance() 
        ThreatSlantRange = CalculateThreatSlantRange() 
        ConvertTransmittanceToAttenuation() ‘This allows a more accurate 
integration of Intensity by considering attenuation at each point of integration 
        RayleighRange = CalculateRayleighRange() 
        Waist = CalculateBeamWaist() 
        HalfAngle = CalculateHalfAngle() 
        Divergence = CalculateDivergence() 
        FluenceForHardKill = CalculateFluenceForHardKill() 
        FluenceForSoftKill = CalculateFluenceForSoftKill() 
 
        RangeFirstHK = 0 
        RangeFirstSK = 0 
        MaxEffectiveRange = 0 
 
 
        Dim CRange As Double 
        CRange = ThreatSlantRange 
 
        Dim Time As Double = 0 
 
        Do While CRange > VitalAreaRadius 
 
            PeakIntensityAtRange = 0.0 
 
            PeakIntensityAtRange = CalculatePeakIntensityAtRange(CRange) 
 
            ‘Total Average Intensity on Threat: Average computed using a conical 
intensity profile 
            ‘Conical intensity profile is a simplified model of the Guassian 
intensity profile  
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            ‘This accounts for any jitter that may be inherent in the system 
            ‘From Prof. Gary O. Langford, LASER Weapon SME, NPS, SE Dept. Contact: 
golangfo@nps.edu 
            ‘For description of Guassian intensity profile see fig. M-8, Combat 
Systems Appendix M, Dr. Robert C. Harney 
            ‘Division by 10000 converts W/m^2 to W/cm^2 (to compare against 
fluence for damage units) 
            TotalIntensityOnThreat = TotalIntensityOnThreat + (((1 / 3) * 
(PeakIntensityAtRange)) / 10000) 
 
            ‘Check to see if Hard Kill threshold has been reached for the first 
time 
            If RangeFirstHK = 0 And TotalIntensityOnThreat > FluenceForHardKill 
Then 
                RangeFirstHK = CRange 
            End If 
 
            ‘Check to see if Soft Kill threshold has been reached for the first 
time 
            If RangeFirstSK = 0 And TotalIntensityOnThreat > FluenceForSoftKill 
Then 
                RangeFirstSK = CRange 
            End If 
 
            ‘MER as 10% of fluence for hard kill from Prof. Gary O. Langford, 
LASER Weapon SME, NPS, SE Dept. 
            ‘Contact: golangfo@nps.edu 
            If MaxEffectiveRange = 0 And TotalIntensityOnThreat > 0.1 * 
FluenceForHardKill Then 
                MaxEffectiveRange = CRange 
            End If 
 
 
            CRange = CRange - ThreatSpeed 
        Loop 
 
        NumberHKPossible = TotalIntensityOnThreat / FluenceForHardKill 
        NumberSKPossible = TotalIntensityOnThreat / FluenceForSoftKill 
 
 
    End Sub 
 
    ‘Microwave Analysis Code 
 
    ‘Microwave Weapon Variables 
    Public MWWavelength As Double 
    Public MWPower As Double 
    Public MWAntennaArea As Double 
    Public MWAntennaK As Double 
    Public MWAntennaGain As Double 
    Public MWAntennaEfficiency As Double 
 
    ‘Microwave Scenario Variables 
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    Public MWTrans As Double 
    Public MWThreatRange As Double 
    Public MWThreatSpeed As Double 
 
    ‘Resultant Variables 
    Public MWHKP As Double 
    Public MWSKP As Double 
    Public HKRadDose As Double 
    Public SKRadDose As Double 
    Public MWKillWindow As Double 
    Public MWIntialIntensity As Double 
    Public TimeToMWSK As Double 
    Public TimeToMWHK As Double 
    Private KWIntensity As Double 
    Public MWRangeFirstHardKill As Double 
    Public MWRangeFirstSoftKill As Double 
 
 
 
    Public Sub setMicrowaveData(W As Double, P As Double, AA As Double, AK As 
Double, AE As Double) 
        MWAntennaArea = AA 
        MWAntennaEfficiency = AE 
        MWWavelength = W 
        MWPower = P 
        MWAntennaK = AK 
 
        MWAntennaGain = CalculateAntennaGain() 
 
    End Sub 
 
    Public Sub setMWScenarioData(atn As Double, TrRng As Double, TrAlt As Double, 
TrSpd As Double) 
        MWTrans = atn 
        MWThreatSpeed = TrSpd 
        MWThreatRange = Sqrt(Pow(TrRng, 2) + Pow(TrAlt, 2)) 
 
    End Sub 
 
 
    ‘Payne, Craig. Principles of Naval Weapon Systems 2ed. Naval Institute Press: 
Anapolis, MD, 2010 
    ‘Eq. 3–13 
    Private Function CalculateAntennaGain() 
        Return ((4 * PI * MWAntennaArea * MWAntennaEfficiency) / (Pow(MWAntennaK, 
2) * Pow(MWWavelength, 2))) 
    End Function 
 
    ‘Eq. 3–20 with atmospheric attenuation from Harney ch 17 pg. 1037. 
    ‘Payne, Craig. Principles of Naval Weapon Systems 2ed. Naval Institute Press: 
Anapolis, MD, 2010. 
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    ‘Transmittance is used instead of attenuation because in this case we are not 
integrating over the entire range since we are predominately dealing with short 
ranges of engagement 
    ‘By using transmittance which is calculated in MODTRAN5, we save calculation 
time by not coverting back to attenuation as in the LASER use case 
    Private Function CalculateIntensityOnTarget() 
        Return ((MWPower * MWAntennaGain * MWTrans)) / ((4 * PI * 
Pow(MWThreatRange, 2))) 
    End Function 
 
    ‘Derived by LT Daniel Ciullo from data from Hymes, Boydell and Prescott. 
“Thermal Radiation: Physiological and Pathological Effects.” Tables 4.3 & 4.4 
    ‘Derived using power regression in MS Excel. 
    Private Function CalculateTimeToPain() 
        Return 99.896 * Pow(KWIntensity, -1.336) 
    End Function 
 
    ‘Derived by LT Daniel Ciullo from data from Hymes, Boydell and Prescott. 
“Thermal Radiation: Physiological and Pathological Effects.” Tables 4.3 & 4.4 
    ‘Derived using power regression in MS Excel. 
    Private Function CalculateTimeToLeathality() 
        Return 99.896 * Pow(KWIntensity / 10, -1.336) 
    End Function 
 
    ‘Developed by LT Daniel Ciullo 
    Public Sub EvaluateMicrowaveKillEffectiveness() 
 
        MWIntialIntensity = CalculateIntensityOnTarget() 
 
        KWIntensity = MWIntialIntensity / 1000 
 
        MWKillWindow = MWThreatRange / MWThreatSpeed 
 
        TimeToMWHK = CalculateTimeToLeathality() 
        TimeToMWSK = CalculateTimeToPain() 
 
        MWRangeFirstHardKill = TimeToMWHK * MWThreatSpeed 
        MWRangeFirstSoftKill = TimeToMWSK * MWThreatSpeed 
 
        MWSKP = MWKillWindow / TimeToMWSK 
        MWHKP = MWKillWindow / TimeToMWHK 
 
    End Sub 
 

End Class 
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APPENDIX E. THREAT AND CONVENTIONAL WEAPON DATA 

A. CONVENTIONAL WEAPON DATA 

Designato

r 

Name Speed 

(m/s)12 

Time 

Between 

Shots (s) 

Maximum 

Number of 

Shots13 

Maximum 

Effective 

Range (m) 

Minimum 

Effective 

Range (m)14 

M45 Mod 

4 

5”/54 

Cal Gun 

838 

(Navweap

s.com 

2011) 

Assuming 18 

rpm 

(Navweaps.c

om 2011), 

3.33 

20 (in drum) 

(Navweaps.com 

2011) 

15000 

(Navweaps

.com 2011) 

200 

(assumed) 

MK15  Phalanx 

CIWS 

1490 

(Navweap

s.com 

2010) 

Assuming a 

burst of 225 

rounds, 3 

6.89 (based on 

bursts of 225 and 

1550 rounds 

total) 

(Navweaps.com 

2010) 

1490 

(Navweaps

.com 2010) 

50 

(assumed) 

RIM-66 

MR 

Standar

d 

Missile 

2, 

Medium 

Range 

1191.015 
(Encyclop
edia 
Astronaut
ica n.d.) 
 

1 

(Alternatewa

rs.com 2012) 

96 (DDG-51 

FLT II) 

166680 

(United 

States 

Navy 

2012) 

2000 

(assumed) 

RIM-116 Rolling 

Airfram

e 

Missile 

680.58 
(Naval-
technolog
y.com 
2012) 

2 (CVN 76 

RAM 

Rolling 

Airframe 

Missile 

Shoot 2012) 

21 (LSD-41) 9000 

(Naval-

technology.

com 2012) 

500 

(assumed) 

MK38 

Mod 2 

25mm 

Bushma

ster 

1100 
(Navweap
s.com 
2006) 

Assuming 5 

round bursts,  

1.7 
(Navweaps.c
om 2006) 

Assuming 5 

round bursts and 

175 rounds total, 

35 

(Navweaps.com 

2457 

(Navweaps

.com 2006) 

100 

(assumed) 

                                                 
12 Muzzle velocity for guns, average speed for missiles 

13 Number of bursts for guns, single missile launch for missiles 

14 Based on gun elevation, approximate threat speeds, and project team experience 
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2006) 

B. THREAT DATA 

Designator Name Type Speed (m/s) Material Thickness 

(cm) 

AS-11 Kilter Missile 1167 (IHS 

Jane's 2012) 

Stainless Steel 

(IHS Jane's 

2012) 

0.1 

(assumed) 

C-802 Saccade Missile 266 (IHS Jane's 

2012) 

Stainless Steel 

(IHS Jane's 

2012) 

0.1 

(assumed) 

Cessna Cessna 150 Low Slow 

Flyer 

49 (Federal 

Aviation 

Administration 

2007, 1) 

Aluminum 

(WAG-AERO 

2013) 

0.051 

(WAG-

AERO 

2013)15 

Dhow Dhow Small 

Boat 

4 (assumed) Oak (assumed) 2.5 

(assumed) 

F-14 Tomcat Fighter 555 (IHS Jane's 

2011) 

Titanium (IHS 

Jane's 2011) 

1.27 

(assumed) 

FAC Aluminum 

Boat 

Small 

Boat 

23 (assumed) Aluminum 1 

(assumed) 

FIAC Fiberglass 

Boat 

Small 

Boat 

23 (assumed) Fiberglass 

(assumed) 

2.5 

(assumed) 

Iranian 

UAV 

Ghods 

Ababil 

Ababil-T 

UAV 103 (IHS Jane's 

2011) 

Aluminum 

(IHS Jane's 

2011) 

0.4 (IHS 

Jane's 

2011) 

MiG-29 Fulcrum Fighter 666 (Airforce-

technology.com 

2012) 

Aluminum 

(Airforce-

technology.com 

2012) 

1.27 

(assumed) 

PC Boghammer Patrol 

Craft 

9 (IHS Jane's 

2010) 

Stainless Steel 

(IHS Jane's 

2010) 

1.27 

(assumed) 

Person Running 5 

mph 

Personnel 2 (assumed) N/A N/A 

 

 

                                                 
15 Assuming original dimension is given in inches 
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APPENDIX F. TAPE 5 BASELINE INPUT FILE 

M   1    1    0    0    0    0    0    0    0    0    0    0    0    .000    .00 

f   8    0  380.000   1.00000   1.00000 3f 4 f 

01_2009 

 1.00 1.00 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00                              !CARD 1A5 

 1.85 2.25 1.00 1.00 2.75 4.00 1.00 1.00 1.00 1.00 0.73 1.00 1.00               !CARD 1A6 

    3    0    0    0    0    0      .000      .000      .000      .000      .000 

      .000      .000      .000    10.000      .000      .000    0        0.00000 

       900      1145         1         2rn        w1aa 

    0 
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APPENDIX G. CONVENTIONAL WEAPON ANALYSIS CLASS 

WRAPPER CODE 

Imports System.Math 
 
Public Class ConventionalWeaponAnalyzerSEA19B 
    ‘Thesis Advisor: Prof. Gary O. Langford, Naval Postgraduate School, Systems 
Engineering Department 
    ‘Contact: golangfo@nps.edu 
 
    ‘Software Author: LT Daniel P. Ciullo (USN) 
    ‘Contact: dan.ciullo@gmail.com 
 
 
    ‘Allows an array of missiles to be evaluated in order to determine how many 
kills are possible 
    Class Missile 
        ‘Allow main class variables to be visible 
        Inherits ConventionalWeaponAnalyzerSEA19B 
 
        Public CurrentDistanceFromPlatform As Double 
        Public LaunchInterval As Double = WeaponActivationTime 
        Public InFlight As Boolean = False 
 
    End Class 
 
    ‘Threat Input Variables 
    Public ThreatSpeed As Double ‘meters per second 
    Public ThreatDetectionRange As Double ‘meters 
    Public ThreatDetectionAltitude As Double ‘meters 
 
 
    ‘Platform Input Variable 
    Public VitalAreaRadius As Double ‘meters 
 
    ‘Weapon Input Variables 
    Public WeaponSpeed As Double ‘meters per second 
    Public WeaponMaxEffectiveRange As Double ‘meters 
    Public WeaponMinEffectiveRange As Double ‘meters 
    Public WeaponActivationTime As Double ‘Seconds between rounds/missiles fired 
from platform 
 
    ‘Intermediate Variables 
    Public ThreatSlantRange As Double 
 
    ‘Analysis Output Variables 
    Public NumberHardKillsPossible As Double 
    Public NumberSoftKillsPossible As Double = 0.0 ‘Always Zero for Conventional 
Weapons 
    Public RangeOfFirstHardKill As Double 
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    Public RangeOfFirstSoftKill As Double = 0.0 ‘Always Zero for 
ConvetionalWeapons 
 
    Private Function CalculateThreatSlantRange() 
 
        Return Sqrt(Pow(ThreatDetectionAltitude, 2.0) + Pow(ThreatDetectionRange, 
2.0)) 
 
    End Function 
 
 
    ‘Calculate total kills possible and record range of first kill 
    Public Sub CalculateNumberOfHardKillsPossible() 
 
        Dim tIntercept As Double = 0 
        Dim RangeIntercept As Double = 0 
 
        NumberHardKillsPossible = 0 
        RangeOfFirstHardKill = 0 
 
        ThreatSlantRange = CalculateThreatSlantRange() 
 
        NumberHardKillsPossible = Truncate(ThreatSlantRange / ThreatSpeed / 
WeaponActivationTime - Max(VitalAreaRadius, WeaponMinEffectiveRange) / ThreatSpeed 
/ WeaponActivationTime) 
 
        tIntercept = (ThreatSlantRange + WeaponActivationTime) / (WeaponSpeed + 
ThreatSpeed) 
 
        RangeOfFirstHardKill = tIntercept * (-1.0 * ThreatSpeed) + 
ThreatSlantRange 
 
    End Sub 
 
 

End Class 
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APPENDIX H. MODTRAN 5 CLASS WRAPPER 

A. DEVELOPMENT PROCESS 

MODTRAN5 runs by receiving inputs via an input file in order to perform 

atmospheric calculations. This is called a Tape 5 file, which harkens back to the original 

FORTRAN implementation of the application of the early 1980s. MODTRAN5 then 

writes the results into an output file. Several output files are generated, but we were 

concerned with the Tape 6 file in particular because it provides a point estimate of 

average transmittance over a user-defined frequency band. In order for GINA to leverage 

MODTRAN5 for atmospheric calculations, the team developed a MODTRAN5 C# 

Wrapper as a gateway. 

The MODTRAN5 C# Wrapper would write to the input file using values from the 

GINA model, run MODTRAN5 and then read the output file, returning the resultant 

value back to the GINA model. 

The software development effort for MODTRAN5 C# Wrapper was broken down 

into three tasks: (1) Input File Format Analysis and Creation, (2) Output File Analysis 

and Extraction, and (3) Software Coding.  

1. Input File Format Analysis and Creation 

The input file to be read by MODTRAN5 and generated by MODTRAN5 C# 

Wrapper was a “NavyMaritime.tp5” file. According to the MODTRAN®5.2.1 User’s 

Manual, each input file must be formatted to include six cards minimally: Card 1, Card 

1A, Card 2, Card 3, Card 4 and Card 5. For our model, three additional cards were 

required: Card 1A Option, Card 3A1 and Card 3A2. The additional cards allowed us to 

evaluate the effect of rain as well as to take slant path propagation into account. 
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In order for the wrapper to generate a valid and correct input file, the team had to 

analyze the complicated input file structure. Each card contained the values of the 

following variables16:  

 

 CARD 1: MODTRN, SPEED, BINARY, LYMOLC, MODEL, T_BEST, 

ITYPE, IEMSCT, IMULT, M1, M2, M3, M4, M5, M6, MDEF, I_RD2C, 

NOPRNT, TPTEMP, SURREF  

FORMAT (4A1, I1, A1, I4, 10I5, 1X, I4, F8.0, A7)  

 CARD 1A: DIS, DISAZM, DISALB, NSTR, SFWHM, CO2MX, 

H2OSTR, O3STR, C_PROF, LSUNFL, LBMNAM, LFLTNM, H2OAER, 

CDTDIR, SOLCON, CDASTM, ASTMC, ASTMX, ASTMO, AERRH, 

NSSALB  

FORMAT (3A1, I3, F4.0, F10.0, 2A10, 2A1, 4(1X, A1), F10.0, A1, F9.0, 

3F10.0, I10)  

 CARD 2: APLUS, IHAZE, CNOVAM, ISEASN, ARUSS, IVULCN, 

ICSTL, ICLD, IVSA, VIS, WSS, WHH, RAINRT, GNDALT  

FORMAT (A2, I3, A1, I4, A3, I2, 3I5, 5F10.0)  

 CARD 3: H1, H2, ANGLE, RANGE, BETA, RO, LENN, PHI  

FORMAT (6F10.0, I5, 5X, 2F10.0)  

 CARD 3A1: IPARM, IPH, IDAY, ISOURC  

FORMAT (4I5) (If IEMSCT = 2 or 4)  

 CARD 3A2: PARM1, PARM2, PARM3, PARM4, TIME, PSIPO, 

ANGLEM, G  

FORMAT (8F10.0) 

 CARD 4: V1, V2, DV, FWHM, YFLAG, XFLAG, DLIMIT, FLAGS, 

MLFLX, VRFRAC  

FORMAT (4F10.0, 2A1, A8, A7, I3, F10.0) 

 CARD 5: IRPT  

FORMAT (I5) 

                                                 
16 The cards did not lend themself to human-interpretation as they record only the values of the listed 

variables without indication of what they represented.  The above formats extracted from the user manual 
were more helpful but still contained archaic abbreviations. 
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The value formats were specified using the codes listed below with their 

representation listed on the right: 

 A – Alphabet 

 I – Integer 

 F – Floating Point 

 2A1 – 2 Alphabet with up to 1 Character 

 10I5 – 10 Integer with up to 5 Characters 

 F10.0 – Floating Point with up to 10 Characters 

If no value was available for a variable, it would be represented by a blank space.  

Figure 99 shows the input file “NavyMaritime.tp5,” the file format and the lines 

representing the cards. 

Card 1 M   6    2    2    1    0    0    0    0    0    0    0    0   -1          .0500 

F   8    0   380.000   1.00000   1.00000 f 4 f    

15_2009 

    3    0    0    3    0    0     0.000      .000      .000      .000           

    50.000       .10                  .0                                         

    2    2    0    0 

       45.   60.                                                                 

        .3     .3500     .0001    0.0002R $       MT      

    0 

Card 1A 

Card 1 A Option 

Card 2 

Card 3 

Card 3A1 

Card 3A2 

Card 4 

Card5 

Figure 99. NavyMaritime.tp5 File Format 

2. Output File Format Analysis and Extraction 

The output file generated by MODTRAN5 was named “NavyMaritime.tp6.” The 

MODTRAN5 C# Wrapper would be able to read the contents and extract the Average 

Transmittance Result if the file contained no error.  Figure 100 shows a correctly 

generated “NavyMaritime.tp6” with the Average Transmittance result calculated. 
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Figure 100. MODTRAN Tape 6 File Format 

 

3. Coding of Software 

The MODTRAN5 Wrapper was written in .NET Framework 4.5 using C# 

Programming Language. The software package contained three C# source files: (1) 

Program.cs, (2) Form1.cs, and (3) MODTRAN5.cs. 

The Program.cs file starts the program in standalone mode. The Form1.cs file 

encodes the Graphical Interface through which a human user can enter inputs to be read 

by the MODTRAN5 executable for atmospheric calculations. This was used for software 

debugging and verification.  Figure 101 shows the Graphical Interface of the 

MODTRAN5 C# Wrapper. The file MODTRAN5.cs is the main library class file for 

creating the input file, running the MODTRAN5 executable and extracting of result from 

the output file.  

The software package could be compiled into a library file (.dll file) so that 

MODTRAN5 class can be called or imported into other software (such as GINA). To do 

so, one could refer to Form1.cs which is an example of how the MODTRAN5 class could 

be invoked and passed parameters. 
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The input file for MODTRAN5 was created by MODTRAN5.cs based on the 

format as understood from the “Input File Format Analysis and Creation” task. Each card 

was coded as a C# struct for ease of reference and development. The MODTRAN5.cs file 

then executes the MODTRAN5 executable file by calling a batch file that wraps the 

executable file. The MODTRAN5 executable file then reads the input file and performs 

its calculations before generating the output file. The output file is read by the 

MODTRAN5.cs where it looks for a specific line containing the result required as shown 

from the “Output File Format Analysis and Extraction.” 

 

Figure 101. MODTRAN5 C# Wrapper Form1 User Interface 

Once tested, the wrapper class was then interfaced into GINA using a custom 

content manager. Content managers are objects used by GINA to process, move, and 

store data within GINA. The software team at Big Kahuna Technologies modified the 
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“Save and Update” content manager so that when an Engagement X-type is saved, this 

code as well as the appropriate analysis code is called so that the engagement results can 

be calculated and saved in the GINA model. 

B. CODE 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
using System.IO; 
using System.Diagnostics; 
 
namespace ModTran5 
{ 
    class ModTran5 
    { 
        Card1 c1 = new Card1(); 
        Card1A c1A = new Card1A(); 
        Card1AOption c1AOption = new Card1AOption(); 
        Card2 c2 = new Card2(); 
        Card3 c3 = new Card3(); 
        Card3A1 c3A1 = new Card3A1(); 
        Card3A2 c3A2 = new Card3A2(); 
        Card4 c4 = new Card4(); 
        Card5 c5 = new Card5(); 
        string inputfile = ““; 
        string outputfile = ““; 
        string exefile = ““; 
 
        public  ModTran5(string input, string exe, string output) 
        { 
            inputfile = input; 
            outputfile = output; 
            exefile = exe; //MODTRAN cannot be run directly from the exe file. 
Therefore, this points to a batch file that runs MODTRAN 
        } 
 
        public struct Card1 
        { 
            // Set up Card 1 (mandatory - main radiative transport) 
            public string MODTRN;     // MODTRAN band model 
            public string SPEED ;      // Slow algorithm 
            public string BINARY ;     // Output will be ASCII 
            public string LYMOLC ;     // Exclude 16 auxiliary trace gases 
            public string MODEL ;        // Mid-latitude wstringer canned 
atmosphere  
            public string T_BEST;        // Mid-latitude wstringer canned 
atmosphere  
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            public string ITYPE;        // Slant path to ground 
            public string IEMSCT;       // Compute path radiance, including solar 
scatter  
            public string IMULT;       // Include multiple scatter, computed at H2 
(target/pixel) 
            public string M1;           // Temperature/pressure default to MODEL 
(Mid-latitude wstringer profile) 
            public string M2;           // Water vapor defaults to MODEL profile 
            public string M3;           // Ozone defaults to MODEL profile1. 
            public string M4;           // Methane defaults to MODEL profile 
            public string M5;           // Nitrous oxide defaults to MODEL profile 
            public string M6;           // Carbon monoxide defaults to MODEL 
profile 
            public string MDEF;         // Default O2, NO, SO2, NO2, NH3, and HNO3 
species profiles. 
            public string I_RD2C;       // Normal program operation - no user 
input for profiles 
            public string NOPRNT;       // Minimize prstringing to Tape6 output 
file 
            public string TPTEMP;       // Temperature at H2 - not important, only 
VIS/NIR 
            public string SURREF;   // Earth reflectance (albedo) 50// right 
across spectrum 
 
        } 
 
        public struct Card1A 
        { 
            // Set up Card 1A (mandatory - main radiative transport continued) 
            public string DIS;        // Not using DISORT multiple scattering 
algorithm 
            public string DISAZM ;     // Therefore, also not using azimuth 
dependence in DISORT 
            public string DISALB ;     // Don”t calculate atmospheric correction 
data 
            public string NSTR ;         // Isaacs 2-stream multiple scattering 
model 
            public string SFWHM ;        // Default solar irradiance data 
            public string CO2MX ;      // CO2 mixing ratio, 370 ppm by volume 
            public string H2OSTR ;    // No scaling of canned water vapor profile 
(MODEL/M2)ing 
            public string O3STR ;     // No scaling of canned ozone profile 
(MODEL/M3) 
            public string C_PROF ;     // No scaling of default molecular species 
profiles 
            public string LSUNFL ;     // Don”t read alternative solar irradiance 
data 
            public string LBMNAM ;     // Don”t read alternative band model file 
            public string LFLTNM ;     // Must read filter file specified 
            public string H2OAER ;     // Don”t bother to modify aerosol 
properties on the basis of H2OSTR 
            public string CDTDIR ;     // Data files are in the default location 
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            public string SOLCON ;      // Unity scaling of TOA solar irradiance, 
but apply seasonal correction 
            public string CDASTM ;     // No Angstrom law manipulations 
            public string NSSALB ;       // Use reference aerosol single-
scattering albedo 
 
        } 
 
        public struct Card1AOption 
        { 
            public string Card1AOptionFName; 
        } 
 
        public struct Card2 
        { 
            // Set up Card 2 (mandatory - main aerosol and cloud options) 
            public string APLUS ;     // Don’t use flexible aerosol manipulations 
            public string IHAZE;        // Rural aerosol model, visibility = 23 km 
(modified below) 
            public string CNOVAM;     // Don’t invoke NOVAM 
            public string ISEASN;       // Use default seasonal aerosol tweaking 
            public string ARUSS;    // Don’t use extended user-defined aerosol 
facility 
            public string IVULCN;       // Background stratospheric aerosol 
profile 
            public string ICSTL;        // Continental influence of maritime 
aerosols - not applicable to this case 
            public string ICLD;         // ** No clouds or rain 
            public string IVSA;         // Don’t use Army Vertical Structure 
Algorithm for boundary layer aerosols 
            public string VIS;         // km. Reduce visibility, scales up aerosol 
amount in boundary layer 
            public string WSS;          // Use default wind speed for named MODEL 
            public string WHH;          // Use default 24 hr average wind speed 
for named MODEL 
            public string RAINRT;       // ** Rain rate is zero (mm/hour), anyway 
no cloud/rain (ICLD) 
            public string GNDALT;       // Target surface (H2) is at sea level 
        } 
 
        public struct Card3 
        { 
            // Set up Card 3 (mandatory - Line of sight geometry) 
            // To define path (LOS) geometry in this case use PHI, H1 and H2 
(combination 3c in manual) 
            public string H1;           // **Not used in this case - we are using 
a slant path to space 
            public string H2;           // **km. Target pixel is at sea level 
            public string ANGLE;        // Not used in this case. (Zenith angle at 
H1) 
            public string RANGE;        // **Not used in this case. Path length. 
            public string BETA;         // Not used in this case. Earth centre 
angle. 
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            public string RO ;           // Not used in this case. Radius of the 
Earuth, will default to a reasonable value. 
            public string LENN;         // Not used in this case. Short path/long 
path switch. 
            public string PHI;         // degrees. Zenith angle at H2 
(pixel/target) to H1 (satellite camera) 
        } 
 
        public struct Card3A1 
        { 
            // Set up Card 3A1 (Solar scattering geometry, required for IEMSCT = 
2) 
            public string IPARM;       // Will specify relative solar azimuth 
angle and solar zenith angle below (PARM1 and PARM2) 
            public string IPH;          // Use Mie-generated internal database for 
aerosol phase functions 
            public string IDAY;// Compute day number corresponding to 2 Nov 2009 
(works out as IDAY = 306). 
            public string ISOURC;       // The Sun is the extraterrestrial source 
of scattered radiation 
        } 
 
        public struct Card3A2 
        { 
            // Set up Card 3A2 (Solar scattering geometry, also required for 
IEMSCT = 2) 
            public string PARM1;       // deg. The Sun azimuth is 50 deg East of 
LOS azimuth (H2 to H1) 
            public string PARM2;       // deg. Sun zenith angle at H2 
(target/pixel). 
            public string PARM3;        // Not used in this case. 
            public string PARM4;        // Not used in this case. 
            public string TIME;         // Not used in this case. 
            public string PSIPO;        // Not used in this case. 
            public string ANGLEM;       // Not used in this case. 
            public string G;            // Not used in this case. (Henyey-
Greenstein asymmetry parameter) 
        } 
 
        public struct Card4 
        { 
            // Set up Card 4 (mandatory - spectral range and resolution) 
            public string V1;         // Start of spectral computation range in nm 
(see FLAGS(1)) 
            public string V2;         // End of spectral computation range in nm 
            public string DV;         // Spectral increment in nm 
            public string FWHM;         // Convolution filter width in nm 
            public string YFLAG;      // Not going to generate .plt or .psc files 
            public string XFLAG;      // Not going to generate .plt or .psc files 
            public string DLIMIT; 
            public string FLAGS1;   // Use nanometres for spectral units 
(FLAGS(1)). 
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            public string FLAGS2;   // Use nanometres for spectral units 
(FLAGS(1)). 
            public string FLAGS3;   // Use nanometres for spectral units 
(FLAGS(1)). 
            public string FLAGS4;   // Put ALL radiance components in convolved 
data (tp7) 
            public string FLAGS5;   // Use nanometres for spectral units 
(FLAGS(1)). 
            public string FLAGS6;   // Use nanometres for spectral units 
(FLAGS(1)). 
            public string FLAGS7;   // Put ALL radiance components in convolved 
data (tp7) 
        } 
 
        public struct Card5 
        { 
            // Set up Card 5 (mandatory - Repeat option) 
            public string IRPT;         // Stop program, only one sub-case in this 
run 
        } 
 
        public void SetupCard1(){ 
        // Set up Card 1 (mandatory - main radiative transport) 
            c1.MODTRN = “M”;     // MODTRAN band model 
            c1.SPEED = “ “;      // Slow algorithm 
            c1.BINARY = “ “;     // Output will be ASCII 
            c1.LYMOLC = “ “;     // Exclude 16 auxiliary trace gases 
            c1.MODEL = “6”;        // Mid-latitude wstringer canned atmosphere  
            c1.T_BEST = “ “;        // Mid-latitude wstringer canned atmosphere  
            c1.ITYPE = “2.”PadLeft(4);        // Slant path to ground 
            c1.IEMSCT = “2.”PadLeft(5);       // Compute path radiance, including 
solar scatter  
            c1.IMULT = “1.”PadLeft(5);       // Include multiple scatter, computed 
at H2 (target/pixel) 
            c1.M1 = “0.”PadLeft(5);           // Temperature/pressure default to 
MODEL (Mid-latitude wstringer profile) 
            c1.M2 = “0.”PadLeft(5);           // Water vapor defaults to MODEL 
profile 
            c1.M3 = “0.”PadLeft(5);           // Ozone defaults to MODEL profile1. 
            c1.M4 = “0.”PadLeft(5);           // Methane defaults to MODEL profile 
            c1.M5 = “0.”PadLeft(5);           // Nitrous oxide defaults to MODEL 
profile 
            c1.M6 = “0.”PadLeft(5);           // Carbon monoxide defaults to MODEL 
profile 
            c1.MDEF = “0.”PadLeft(5);         // Default O2, NO, SO2, NO2, NH3, 
and HNO3 species profiles. 
            c1.I_RD2C = “0.”PadLeft(5);       // Normal program operation - no 
user input for profiles 
            c1.NOPRNT = “-1.”PadLeft(5);       // Minimize prstringing to Tape6 
output file 
            c1.TPTEMP = “ .”PadLeft(8);       // Temperature at H2 - not 
important, only VIS/NIR 
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            c1.SURREF = .”0500.”PadLeft(7);   // Earth reflectance (albedo) 50// 
right across spectrum 
 
        } 
 
        public void SetupCard1A() 
        { 
            // Set up Card 1A (mandatory - main radiative transport continued) 
            c1A.DIS = “F”;        // Not using DISORT multiple scattering 
algorithm 
            c1A.DISAZM = “ “;     // Therefore, also not using azimuth dependence 
in DISORT 
            c1A.DISALB = “ “;     // Don”t calculate atmospheric correction data 
            c1A.NSTR = “ 8 “;         // Isaacs 2-stream multiple scattering model 
            c1A.SFWHM = “0.”PadLeft(4);        // Default solar irradiance data 
            c1A.CO2MX = “380.000.”PadLeft(10);      // CO2 mixing ratio, 370 ppm 
by volume 
            c1A.H2OSTR = “1.00000.”PadLeft(10);    // No scaling of canned water 
vapor profile (MODEL/M2)ing 
            c1A.O3STR = “1.00000.”PadLeft(10);     // No scaling of canned ozone 
profile (MODEL/M3) 
            c1A.C_PROF = “ “;     // No scaling of default molecular species 
profiles 
            c1A.LSUNFL = “f”;     // Don”t read alternative solar irradiance data 
            c1A.LBMNAM = “ “;     // Don”t read alternative band model file 
            c1A.LFLTNM = “4”;     // Must read filter file specified 
            c1A.H2OAER = “ “;     // Don”t bother to modify aerosol properties on 
the basis of H2OSTR 
            c1A.CDTDIR = “f”;     // Data files are in the default location 
            c1A.SOLCON = “ “;      // Unity scaling of TOA solar irradiance, but 
apply seasonal correction 
            c1A.CDASTM = “ “;     // No Angstrom law manipulations 
            c1A.NSSALB = “ “;       // Use reference aerosol single-scattering 
albedo 
 
 
        } 
 
        public void SetupCard1AOption() 
        { 
            c1AOption.Card1AOptionFName = “15_2009”; 
 
        } 
 
        public void SetupCard2() 
        { 
            // Set up Card 2 (mandatory - main aerosol and cloud options) 
            c2.APLUS = “  “;     // Don’t use flexible aerosol manipulations 
            c2.IHAZE = “4.”PadLeft(3);        // MARITIME extinction, default VIS 
= 23 km (LOWTRAN model). 
            c2.CNOVAM = “ “;     // Don’t invoke NOVAM 
            c2.ISEASN = “0.”PadLeft(4);       // Use default seasonal aerosol 
tweaking 
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            c2.ARUSS = “   “;    // Don’t use extended user-defined aerosol 
facility 
            c2.IVULCN = “0.”PadLeft(2);       // Background stratospheric aerosol 
profile 
            c2.ICSTL = “3.”PadLeft(5);        // Continental influence of maritime 
aerosols - not applicable to this case 
            c2.ICLD = “0.”PadLeft(5);         // ** No clouds or rain 
            c2.IVSA = “0.”PadLeft(5);         // Don’t use Army Vertical Structure 
Algorithm for boundary layer aerosols 
            c2.VIS = “0.000.”PadLeft(10);         // km. Reduce visibility, scales 
up aerosol amount in boundary layer 
            c2.WSS = .”000.”PadLeft(10);          // Use default wind speed for 
named MODEL 
            c2.WHH = .”000.”PadLeft(10);          // Use default 24 hr average 
wind speed for named MODEL 
            c2.RAINRT = .”000.”PadLeft(10);       // ** Rain rate is zero 
(mm/hour), anyway no cloud/rain (ICLD) 
            c2.GNDALT = “0.”PadLeft(10);       // Target surface (H2) is at sea 
level 
 
        } 
 
        public void SetupCard3() 
        { 
            // Set up Card 3 (mandatory - Line of sight geometry) 
            // To define path (LOS) geometry in this case use PHI, H1 and H2 
(combination 3c in manual) 
            c3.H1 = “0.0000.”PadLeft(10);           // Weapon Height 
            c3.H2 = “  0.0.”PadRight(10);           // Threat Height 
            c3.ANGLE = “ .”PadLeft(10);        // Not used in this case. (Zenith 
angle at H1) 
            c3.RANGE = “1.”PadLeft(10);        // Slant Range 
            c3.BETA = “ .”PadLeft(10);         // Not used in this case. Earth 
centre angle. 
            c3.RO = “ .”PadLeft(10);           // Not used in this case. Radius of 
the Earuth, will default to a reasonable value. 
            c3.LENN = “0.”PadLeft(10);         // Not used in this case. Short 
path/long path switch. 
            c3.PHI = “ .”PadLeft(10);         // degrees. Zenith angle at H2 
(pixel/target) to H1 (satellite camera) 
 
        } 
 
        public void SetupCard3A1() 
        { 
 
            // Set up Card 3A1 (Solar scattering geometry, required for IEMSCT = 
2) 
            c3A1.IPARM = “2.”PadLeft(5);       // Will specify relative solar 
azimuth angle and solar zenith angle below (PARM1 and PARM2) 
            c3A1.IPH = “2.”PadLeft(5);          // Use Mie-generated internal 
database for aerosol phase functions 
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            c3A1.IDAY = “0.”PadLeft(5);// Compute day number corresponding to 2 
Nov 2009 (works out as IDAY = 306). 
            c3A1.ISOURC = “0.”PadLeft(5);       // The Sun is the extraterrestrial 
source of scattered radiation 
 
        } 
 
        public void SetupCard3A2() 
        { 
            // Set up Card 3A2 (Solar scattering geometry, also required for 
IEMSCT = 2) 
            c3A2.PARM1 = “45..”PadLeft(10);       // deg. The Sun azimuth is 50 
deg East of LOS azimuth (H2 to H1) 
            c3A2.PARM2 = “60.    .”PadLeft(10);       // deg. Sun zenith angle at 
H2 (target/pixel). 
            c3A2.PARM3 = “.”PadLeft(10);        // Not used in this case. 
            c3A2.PARM4 = “.”PadLeft(10);        // Not used in this case. 
            c3A2.TIME = “.”PadLeft(10);         // Not used in this case. 
            c3A2.PSIPO = “.”PadLeft(10);        // Not used in this case. 
            c3A2.ANGLEM = “.”PadLeft(10);       // Not used in this case. 
            c3A2.G = “.”PadLeft(10);            // Not used in this case. (Henyey-
Greenstein asymmetry parameter) 
 
        } 
          
        public void SetupCard4() 
        { 
 
            // Set up Card 4 (mandatory - spectral range and resolution) 
            c4.V1 = .”3.”PadLeft(10);         // Start of spectral computation 
range in nm (see FLAGS(1)) 
            c4.V2 = .”3500.”PadLeft(10);         // End of spectral computation 
range in nm 
            c4.DV = .”005.”PadLeft(10);         // Spectral increment in nm 
            c4.FWHM = .”010.”PadLeft(10);         // Full Width Half Maximum 
            c4.YFLAG = “T”;      // Not going to generate .plt or .psc files 
            c4.XFLAG = “ “;      // Not going to generate .plt or .psc files 
            c4.DLIMIT = “$.”PadRight(8); 
            c4.FLAGS1 = “M”;   // Use µm for spectral units (FLAGS(1)). 
            c4.FLAGS2 = “R”;   // Use nanometres for spectral units (FLAGS(1)). 
            c4.FLAGS3 = “ “;   // Use nanometres for spectral units (FLAGS(1)). 
            c4.FLAGS4 = “ “;   // Put ALL radiance components in convolved data 
(tp7) 
            c4.FLAGS5 = “ “;   // Use nanometres for spectral units (FLAGS(1)). 
            c4.FLAGS6 = “ “;   // Use nanometres for spectral units (FLAGS(1)). 
            c4.FLAGS7 = “ “;   // Put ALL radiance components in convolved data 
(tp7) 
        } 
 
        public void SetupCard5() 
        { 
            // Set up Card 5 (mandatory - Repeat option) 
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            c5.IRPT = “0.”PadLeft(5);         // Stop program, only one sub-case 
in this run 
 
        } 
 
        public void SetParam(string RAINRT, string H1, string H2, string RANGE, 
string V1, string V2) 
        { 
            SetupCard1(); 
            SetupCard1A(); 
            SetupCard1AOption(); 
            SetupCard2(); 
            SetupCard3(); 
            SetupCard3A1(); 
            SetupCard3A2(); 
            SetupCard4(); 
            SetupCard5(); 
 
             
            c2.RAINRT = RAINRT.PadLeft(10); 
            c3.H1 = H1.PadLeft(10); 
            c3.H2 = H2.PadLeft(10); 
            c3.RANGE = RANGE.PadLeft(10); 
            c4.V1 = V1.PadLeft(10); 
            c4.V2 = V2.PadLeft(10); 
             
        } 
 
        public void GenerateInput() 
        { 
            FileInfo fi = new FileInfo(inputfile); 
            StreamWriter sw = fi.CreateText(); 
 
            //SetParam(); 
 
            string Card1 = c1.MODTRN + c1.SPEED + c1.BINARY + c1.LYMOLC + c1.MODEL 
+ c1.T_BEST + c1.ITYPE + c1.IEMSCT + c1.IMULT + c1.M1 + c1.M2 + c1.M3 + c1.M4 
                + c1.M5 + c1.M6 + c1.MDEF + c1.I_RD2C + c1.NOPRNT + c1.TPTEMP + 
c1.SURREF; 
 
            string Card1A = c1A.DIS + c1A.DISAZM + c1A.DISALB + c1A.NSTR + 
c1A.SFWHM + c1A.CO2MX + c1A.H2OSTR + c1A.O3STR + c1A.C_PROF + c1A.LSUNFL + 
c1A.LBMNAM 
                + c1A.LFLTNM + c1A.H2OAER + c1A.CDTDIR + c1A.SOLCON + c1A.CDASTM + 
c1A.NSSALB; 
 
            string Card1AOption = c1AOption.Card1AOptionFName; 
            string Card2 = c2.APLUS + c2.IHAZE + c2.CNOVAM + c2.ISEASN + c2.ARUSS 
+ c2.IVULCN + c2.ICSTL + c2.ICLD + c2.IVSA + c2.VIS + c2.WSS + c2.WHH + c2.RAINRT 
+ c2.GNDALT; 
 
            string Card3 = c3.H1 + c3.H2 + c3.ANGLE + c3.RANGE + c3.BETA + c3.RO + 
c3.LENN + c3.PHI; 
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            string Card3A1 = c3A1.IPARM + c3A1.IPH + c3A1.IDAY + c3A1.ISOURC; 
 
            string Card3A2 = c3A2.PARM1 + c3A2.PARM2 + c3A2.PARM3 + c3A2.PARM4 + 
c3A2.TIME + c3A2.PSIPO + c3A2.ANGLEM + c3A2.G; 
 
            string Card4 = c4.V1 + c4.V2 + c4.DV + c4.FWHM + c4.YFLAG + c4.XFLAG + 
c4.DLIMIT + c4.FLAGS1 + c4.FLAGS2 + c4.FLAGS3 + c4.FLAGS4 + c4.FLAGS5 + c4.FLAGS6 
+ c4.FLAGS7; 
 
            string Card5 = c5.IRPT; 
 
            sw.WriteLine(Card1); 
            sw.WriteLine(Card1A); 
            sw.WriteLine(Card1AOption); 
            sw.WriteLine(Card2); 
            sw.WriteLine(Card3); 
            sw.WriteLine(Card3A1); 
            sw.WriteLine(Card3A2); 
            sw.WriteLine(Card4); 
            sw.WriteLine(Card5); 
            sw.Close(); 
 
        } 
 
        public void RunExe() 
        { 
            // Prepare the process to run 
            ProcessStartInfo start = new ProcessStartInfo(); 
            // Enter the executable to run, including the complete path 
            start.FileName = exefile; 
            // Do you want to show a console window? 
            start.WindowStyle = ProcessWindowStyle.Hidden; 
            start.CreateNoWindow = true; 
 
            // Run the external process & wait for it to finish 
            using (Process proc = Process.Start(start)) 
            { 
                proc.WaitForExit(20000); 
            } 
 
        } 
 
        public string ReadOutput() 
        { 
            string output = ““; 
 
            try 
            { 
                using (FileStream fs = new FileStream(outputfile, FileMode.Open)) 
                { 
                    using (StreamReader reader = new StreamReader(fs, 
Encoding.UTF8)) 
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                    { 
                        string line = null; 
                        while ((line = reader.ReadLine()) != null) 
                        { 
                            //Console.WriteLine(line); 
                            if (line.Contains(“AVERAGE TRANSMITTANCE”)) 
                            { 
                                output = line.Split(new char[] { ‘=‘ }, 
StringSplitOptions.RemoveEmptyEntries)[1].Trim() ; 
                            } 
                        } 
                    } 
                } 
            } 
            catch (Exception ex) 
            { 
                Console.WriteLine(ex.ToString()); 
            } 
            return output; 
 
        } 
         
    } 

} 
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APPENDIX I. MICROWAVE FULL SENSITIVITY ANALYSIS 

VALUES 

Antenna 

Area (m
2
) 

Antenna 

Efficiency (%) 

Antenna 

Constant K 

Power 

(W) 

Seconds 

to Pain 

Seconds 

to Lethal 

4 0.8 1.27324 100000 1.8015 39.053 

1 0.8 1.27324 100000 11.4818 248.891 

2 0.8 1.27324 100000 4.5481 98.59 

6 0.8 1.27324 100000 1.0481 22.719 

8 0.8 1.27324 100000 0.7136 15.47 

10 0.8 1.27324 100000 0.5297 11.482 

4 0.8 0.5 100000 0.1482 3.214 

4 0.8 0.7 100000 0.3643 7.897 

4 0.8 0.8 100000 0.5205 11.282 

4 0.8 0.88 100000 0.6714 14.554 

4 0.8 1 100000 0.9448 20.48 

4 0.8 1.1 100000 1.2188 26.42 

4 0.8 1.2 100000 1.5378 33.336 

4 0.8 1.3 100000 1.9046 41.285 

4 0.8 1.5 100000 2.7916 60.513 

4 0.8 2 100000 6.0213 130.523 

4 0.1 1.27324 100000 28.9857 628.325 

4 0.2 1.27324 100000 11.4818 248.89 

4 0.3 1.27324 100000 6.6796 144.794 

4 0.4 1.27324 100000 4.5481 98.59 

4 0.5 1.27324 100000 3.3757 73.175 

4 0.6 1.27324 100000 2.6459 57.355 

4 0.7 1.27324 100000 2.1534 46.68 
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4 0.8 1.27324 100000 1.8016 39.053 

4 0.9 1.27324 100000 1.5393 33.367 

4 0.95 1.27324 100000 1.432 31.042 

4 0.8 1.27324 10000 39.0532 846.557 

4 0.8 1.27324 20000 15.4696 335.336 

4 0.8 1.27324 30000 8.9996 195.084 

4 0.8 1.27324 40000 6.1278 132.832 

4 0.8 1.27324 50000 4.5481 98.59 

4 0.8 1.27324 60000 3.5649 77.276 

4 0.8 1.27324 70000 2.9014 62.893 

4 0.8 1.27324 80000 2.4273 52.617 

4 0.8 1.27324 90000 2.0739 44.956 

4 0.8 1.27324 150000 1.0481 22.719 

4 0.8 1.27324 200000 0.7136 15.47 

4 0.8 1.27324 300000 0.4152 9 

4 0.8 1.27324 400000 0.2827 6.128 

4 0.8 1.27324 500000 0.2098 4.548 

4 0.8 1.27324 600000 0.1645 3.565 

4 0.8 1.27324 700000 0.1338 2.901 

4 0.8 1.27324 800000 0.112 2.427 

4 0.8 1.27324 900000 0.0957 2.074 

4 0.8 1.27324 1000000 0.0831 1.802 
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APPENDIX J. LASER SENSITIVITY FULL RANGE OF FACTORS 

Wavelength 

(um) 

Lens 

Diameter 

(m) 

Gaussian 

Factor M 

Power 

(kW) 

Target 

Reflectance 

(%) 

Maximum 

Effective 

Range (m) 

Number 

T1E 

Range 

1st 

T1E 

Number 

T2E 

Range 

1st 

T2E 

1.064 0.66 6.5 33 0.89 7500 0.40802 0 2.4481 5800 

1.6 0.66 6.5 33 0.89 7400 0.40717 0 2.443 5800 

1.064 0.66 5 33 0.89 6700 0.31369 0 1.8821 4500 

1.064 0.66 5.5 33 0.89 7000 0.34489 0 2.0694 5000 

1.064 0.66 6 33 0.89 7200 0.37606 0 2.2563 5400 

1.064 0.66 7 33 0.89 7600 0.43823 0 2.6294 6000 

1.064 0.66 7.5 33 0.89 7800 0.46923 0 2.8154 6300 

1.064 0.66 8 33 0.89 7900 0.50018 0 3.0011 6500 

1.064 0.1 6.5 33 0.89 8800 5.28482 4100 31.7089 8200 

1.064 0.2 6.5 33 0.89 9500 3.30804 5700 19.8482 9100 

1.064 0.3 6.5 33 0.89 9400 1.82745 4100 10.9647 8900 

1.064 0.4 6.5 33 0.89 9000 1.08315 700 6.4989 8300 

1.064 0.5 6.5 33 0.89 8500 0.70415 0 4.2249 7500 

1.064 0.6 6.5 33 0.89 7900 0.49183 0 2.951 6500 

1.064 0.7 6.5 33 0.89 7100 0.36225 0 2.1735 5200 

1.064 0.8 6.5 33 0.89 6300 0.27769 0 1.6661 3900 
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1.064 0.9 6.5 33 0.89 5300 0.21955 0 1.3173 2300 

1.064 1 6.5 33 0.89 4200 0.1779 0 1.0674 600 

1.064 0.66 6.5 10 0.89 1800 0.12339 0 0.7403 * 

1.064 0.66 6.5 20 0.89 5800 0.24677 0 1.4806 3100 

1.064 0.66 6.5 40 0.89 7900 0.49354 0 2.9612 6500 

1.064 0.66 6.5 50 0.89 8300 0.61693 0 3.7016 7200 

1.064 0.66 6.5 60 0.89 8600 0.74031 0 4.4419 7700 

1.064 0.66 6.5 70 0.89 8800 0.8637 0 5.1822 8000 

1.064 0.66 6.5 80 0.89 9000 0.98708 0 5.9225 8200 

1.064 0.66 6.5 90 0.89 9100 1.11047 1000 6.6628 8400 

1.064 0.66 6.5 100 0.89 9200 1.23385 1800 7.4031 8600 

1.064 0.66 6.5 110 0.89 9300 1.35724 2500 8.1434 8700 

1.064 0.66 6.5 120 0.89 9300 1.48062 3100 8.8837 8800 

1.064 0.66 6.5 130 0.89 9400 1.60401 3600 9.624 8900 

1.064 0.66 6.5 140 0.89 9400 1.72739 4100 10.3643 9000 

1.064 0.66 6.5 150 0.89 9500 1.85078 4400 11.1047 9100 

1.064 0.66 6.5 200 0.89 9600 2.4677 5800 14.8062 9300 

1.064 0.66 6.5 300 0.89 9800 3.70155 7200 22.2093 9600 

1.064 0.66 6.5 400 0.89 9800 4.9354 7900 29.6124 9700 

1.064 0.66 6.5 500 0.89 9900 6.16925 8300 37.0155 9800 

1.064 0.66 6.5 33 0.8 8600 0.74031 0 4.4419 7700 

1.064 0.66 6.5 33 0.85 8100 0.55523 0 3.3314 6900 
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1.064 0.66 6.5 33 0.9 7200 0.37016 0 2.2209 5300 

1.064 0.66 6.5 33 0.95 4400 0.18508 0 1.1105 1000 

1.064 0.66 6.5 33 0.99 0 0.03702 0 0.2221 0 
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APPENDIX K. LASER SENSITIVITY FULL 2
K
 VALUES 

Diameter 

(m) 

Gaussian 

Factor M 

Power 

(kW) 

Reflectance 

(%) 

Wavelength 

(um) 

Maximum 

Effective 

Range (m) 

Range 

First 

T1E (m) 

Range 

First 

T2E (m) 

0.3 5 10 0.8 1.6 8600 0 7700 

0.66 8 150 0.8 1.064 9800 7600 9600 

0.3 5 150 0.8 1.6 10000 9100 9900 

0.66 5 150 0.99 1.6 2400 0 0 

0.66 5 10 0.99 1.064 0 0 0 

0.66 5 10 0.8 1.6 4200 0 500 

0.66 5 150 0.8 1.064 9600 6100 9400 

0.3 5 150 0.8 1.064 10000 9200 9900 

0.66 5 10 0.99 1.6 0 0 0 

0.66 5 150 0.99 1.064 2400 0 0 

0.66 8 10 0.8 1.6 6300 0 3900 

0.3 8 150 0.99 1.6 8700 0 7800 

0.3 8 10 0.8 1.064 9100 2100 8600 

0.66 5 10 0.8 1.064 4200 0 600 

0.66 8 150 0.8 1.6 9800 7500 9600 

0.3 5 10 0.99 1.064 0 0 0 

0.66 8 10 0.99 1.064 0 0 0 

0.3 5 150 0.99 1.6 8200 0 7000 

0.3 8 10 0.8 1.6 9000 1600 8300 

0.3 8 150 0.99 1.064 8900 0 8100 

0.3 8 10 0.99 1.6 0 0 0 

0.3 8 150 0.8 1.6 10000 9300 9900 
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0.3 8 10 0.99 1.064 0 0 0 

0.66 8 150 0.8 1.064 9800 7600 9600 

0.66 8 10 0.99 1.6 0 0 0 

0.66 8 150 0.99 1.6 5100 0 2000 

0.3 5 150 0.99 1.064 8300 0 7200 

0.66 8 150 0.99 1.064 5200 0 2000 

0.3 5 10 0.8 1.6 8600 0 7700 

0.66 5 150 0.8 1.6 9600 6100 9400 

0.3 5 10 0.8 1.064 8700 0 7900 

0.3 8 150 0.8 1.064 10000 9400 9900 
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APPENDIX L. GLOBAL INFORMATION NETWORK 

ARCHITECTURE (GINA) ENGAGEMENTS FROM ENGAGEMENT 

QUERY 

Mission

ID 

ThreatDesig

nator 

ThreatDetectionAlti

tude_m 

ThreatDetectionGround

Range_m 

WeaponDesig

nator 

ATFP 8 FIAC 1 1000 ADS 

ATFP 9 Cessna 500 1500 ADS 

ATFP 9 Cessna 500 1500 ADS 

AW 9.3 AS-11 5 8000 ADS 

SUW 

1.10 

FAC 1 1000 ADS 

SUW 

1.10 

FAC 1 1000 ADS 

SUW 

1.10 

FAC 1 1000 ADS 

SUW 

1.10 

PC 1 1500 ADS 

SUW 

1.10 

PC 1 1500 ADS 

SUW 

1.10 

PC 1 1500 ADS 

ATFP 

15 

FIAC 1 700 ADS 

SUW 

1.10 

FIAC 1 700 ADS 

SUW 

1.10 

FIAC 1 700 ADS 

ATFP 

15 

FIAC 1 700 ADS 

SUW 

1.10 

FIAC 1 700 ADS 

SUW 

1.10 

PC 1 1500 ADS 

ATFP 9 Cessna 500 1500 ADS 

NCO 

19.6 

FIAC 1 500 ADS 

NCO 

19.6 

FIAC 1 500 ADS 

NCO FIAC 1 500 ADS 
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19.9 

NCO 

19.6 

FIAC 1 500 ADS 

SUW 

1.10 

FAC 1 1000 ADS 

ATFP 4 Person 1 300 ADS 

SUW 

1.10 

FIAC 1 700 ADS 

ATFP 4 Person 1 300 ADS 

ATFP 4 Person 1 300 ADS 

NCO 

19.6 

Dhow 1 250 ADS 

NCO 

19.6 

Dhow 1 250 ADS 

NCO 

19.6 

Dhow 1 250 ADS 

NCO 

19.6 

FIAC 1 500 ADS 

NCO 

19.9 

FIAC 1 500 ADS 

NCO 

19.6 

Dhow 1 250 ADS 

ATFP 9 Cessna 500 1500 ADS 

AW 1.4 MiG-29 30000 20000 LaWS 

AW 1.5 F-14 1000 30000 LaWS 

AW 1.5 MiG-29 10000 20000 LaWS 

AW 1.6 Iranian 

UAV 

500 10000 LaWS 

AW 1.6 MiG-29 10000 20000 LaWS 

AW 1.4 AS-11 5 7000 LaWS 

AW 1.2 Iranian 

UAV 

500 3000 LaWS 

AW 9.1 F-14 40000 20000 LaWS 

AW 1.2 AS-11 200 2500 LaWS 

AW 1.2 Iranian 

UAV 

500 3000 LaWS 

AW 1.2 C-802 5 2000 LaWS 

AW 1.2 AS-11 200 2500 LaWS 

ATFP 9 Cessna 500 1500 LaWS 

AW 1.2 C-802 5 2000 LaWS 

AW 1.2 Iranian 500 3000 LaWS 
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UAV 

ATFP 9 Iranian 

UAV 

500 1000 LaWS 

ATFP 9 Cessna 500 1500 LaWS 

AW 1.2 C-802 5 2000 LaWS 

ATFP 9 Iranian 

UAV 

500 1000 LaWS 

ATFP 

15 

FIAC 1 700 LaWS 

ATFP 8 FIAC 1 1000 LaWS 

AW 1.6 Iranian 

UAV 

500 10000 LaWS 

ATFP 9 Cessna 500 1500 LaWS 

AW 

1.13 

C-802 5 7000 LaWS 

AW 1.4 AS-11 5 7000 LaWS 

NCO 

19.9 

Dhow 1 500 LaWS 

ATFP 

15 

FIAC 1 700 LaWS 

ATFP 9 Iranian 

UAV 

500 1000 LaWS 

AW 1.5 AS-11 5 1000 LaWS 

AW 1.1 C-802 5 5000 LaWS 

NCO 

19.9 

Dhow 1 500 LaWS 

AW 1.5 MiG-29 10000 20000 LaWS 

ATFP 

15 

FIAC 1 700 LaWS 

AW 1.2 Iranian 

UAV 

500 3000 LaWS 

AW 1.2 AS-11 200 2500 LaWS 

AW 1.2 C-802 5 2000 LaWS 

ATFP 9 Cessna 500 1500 LaWS 

ATFP 9 Iranian 

UAV 

500 1000 LaWS 

ATFP 

15 

FIAC 1 700 LaWS 

AW 

1.12 

AS-11 5 10000 LaWS 

AW AS-11 5 10000 LaWS 
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1.12 

AW 1.2 AS-11 200 2500 LaWS 

AW 1.5 AS-11 5 10000 LaWS 

AW 1.6 AS-11 5 10000 LaWS 

AW 1.6 AS-11 5 10000 LaWS 

AW 1.6 AS-11 5 10000 LaWS 

AW 

1.13 

AS-11 5 9000 LaWS 

AW 

1.13 

AS-11 5 9000 LaWS 

ATFP 8 FIAC 1 1000 LaWS 

AW 1.6 C-802 5 15000 LaWS 

AW 

1.13 

F-14 2000 20000 LaWS+ 

AW 

1.13 

MiG-29 10000 30000 LaWS+ 

AW 1.5 Iranian 

UAV 

500 10000 LaWS+ 

AW 9.1 MiG-29 60000 30000 LaWS+ 

AW 9.4 Cessna 500 15000 LaWS+ 

AW 

1.13 

Iranian 

UAV 

1000 15000 LaWS+ 

AW 1.4 MiG-29 30000 20000 LaWS+ 

AW 1.6 F-14 1000 30000 LaWS+ 

AW 1.6 Iranian 

UAV 

500 10000 LaWS+ 

AW 9.4 Cessna 500 15000 LaWS+ 

AW 1.4 F-14 10000 10000 LaWS+ 

AW 9.3 AS-11 5 8000 LaWS+ 

AW 1.2 Iranian 

UAV 

500 3000 LaWS+ 

AW 1.4 MiG-29 30000 20000 LaWS+ 

AW 1.2 AS-11 200 2500 LaWS+ 

AW 1.2 C-802 5 2500 LaWS+ 

AW 1.1 AS-11 5 5000 LaWS+ 

AW 1.2 Iranian 

UAV 

500 3000 LaWS+ 

AW 1.2 AS-11 200 2500 LaWS+ 

AW 1.2 C-802 5 2000 LaWS+ 

AW 1.2 Iranian 

UAV 

500 3000 LaWS+ 
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ATFP 9 Iranian 

UAV 

500 1000 LaWS+ 

AW 1.1 Iranian 

UAV 

500 1000 LaWS+ 

AW 1.2 AS-11 200 2500 LaWS+ 

ATFP 9 Cessna 500 1500 LaWS+ 

AW 1.4 Iranian 

UAV 

1000 2000 LaWS+ 

AW 1.2 C-802 5 2000 LaWS+ 

ATFP 9 Iranian 

UAV 

500 1000 LaWS+ 

ATFP 9 Cessna 500 1500 LaWS+ 

AW 1.1 F-14 1000 10000 LaWS+ 

AW 9.3 AS-11 5 8000 LaWS+ 

AW 

1.12 

C-802 5 8000 LaWS+ 

AW 

1.13 

C-802 5 7000 LaWS+ 

AW 1.1 Iranian 

UAV 

100 7000 LaWS+ 

NCO 

19.9 

Dhow 1 500 LaWS+ 

ATFP 9 Iranian 

UAV 

500 1000 LaWS+ 

ATFP 9 Cessna 500 1000 LaWS+ 

AW 1.1 C-802 5 5000 LaWS+ 

NCO 

19.9 

FIAC 1 500 LaWS+ 

AW 1.2 Iranian 

UAV 

500 3000 LaWS+ 

AW 1.4 MiG-29 30000 20000 LaWS+ 

AW 1.2 C-802 5 2000 LaWS+ 

ATFP 9 Cessna 500 1500 LaWS+ 

ATFP 9 Iranian 

UAV 

500 1000 LaWS+ 

AW 

1.13 

AS-11 5 9000 LaWS+ 

AW 1.2 AS-11 200 2500 LaWS+ 

ATFP 9 Cessna 500 1500 LaWS+ 

SUW 

2.3 

FAC 1 4000 LaWS+ 
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SUW 

2.3 

FAC 1 4000 LaWS+ 

SUW 

2.3 

PC 1 7000 LaWS+ 

SUW 

2.3 

PC 1 7000 LaWS+ 

AW 1.5 C-802 5 15000 LaWS+ 

ATFP 9 Iranian 

UAV 

500 1000 MK 15 

ATFP 9 Iranian 

UAV 

500 1000 MK 15 

ATFP 9 Iranian 

UAV 

500 1500 MK 15 

ATFP 9 Cessna 500 1500 MK 15 

ATFP 9 Cessna 500 1500 MK 15 

ATFP 9 Cessna 500 1500 MK 15 

ATFP 9 Cessna 500 1500 MK 15 

ATFP 9 Cessna 500 1500 MK 15 

AW 1.2 AS-11 200 2500 MK 15 

AW 1.2 AS-11 200 2500 MK 15 

AW 1.2 AS-11 200 2500 MK 15 

AW 1.2 AS-11 200 2500 MK 15 

AW 1.2 C-802 5 2000 MK 15 

AW 1.2 C-802 5 2000 MK 15 

AW 1.2 C-802 5 2000 MK 15 

AW 1.2 C-802 5 2000 MK 15 

AW 1.2 Iranian 

UAV 

500 3000 MK 15 

AW 1.2 Iranian 

UAV 

500 3000 MK 15 

AW 1.2 Iranian 

UAV 

500 3000 MK 15 

AW 9.3 AS-11 5 8000 MK 15 

AW 9.3 C-802 5 7000 MK 15 

AW 9.4 Cessna 500 15000 MK 15 

SUW 

1.10 

FIAC 1 700 MK 15 

SUW 

1.10 

FIAC 1 700 MK 15 

SUW 

1.10 

FIAC 1 700 MK 15 
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SUW 

1.10 

FIAC 1 700 MK 15 

SUW 

1.10 

FAC 1 1000 MK 15 

SUW 

1.10 

FAC 1 1000 MK 15 

SUW 

1.10 

FAC 1 1000 MK 15 

SUW 

1.10 

FAC 1 1000 MK 15 

SUW 

1.10 

PC 1 1500 MK 15 

SUW 

1.10 

PC 1 1500 MK 15 

SUW 

1.10 

PC 1 1500 MK 15 

SUW 

1.10 

PC 1 1500 MK 15 

ATFP 9 Iranian 

UAV 

500 1000 MK 15 

AW 1.2 Iranian 

UAV 

500 3000 MK 15 

ATFP 

15 

FIAC 1 700 MK 38 Mod 

2 

ATFP 

15 

FIAC 1 700 MK 38 Mod 

2 

ATFP 

15 

FIAC 1 700 MK 38 Mod 

2 

ATFP 

15 

FIAC 1 700 MK 38 Mod 

2 

ATFP 9 Iranian 

UAV 

500 1000 MK 38 Mod 

2 

ATFP 9 Iranian 

UAV 

500 1000 MK 38 Mod 

2 

ATFP 9 Iranian 

UAV 

500 1000 MK 38 Mod 

2 

ATFP 9 Iranian 

UAV 

500 1000 MK 38 Mod 

2 

ATFP 9 Cessna 500 1500 MK 38 Mod 

2 

ATFP 9 Cessna 500 1500 MK 38 Mod 

2 
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ATFP 9 Cessna 500 1500 MK 38 Mod 

2 

ATFP 9 Cessna 500 1500 MK 38 Mod 

2 

NCO 

19.6 

Dhow 1 250 MK 38 Mod 

2 

NCO 

19.6 

Dhow 1 250 MK 38 Mod 

2 

NCO 

19.6 

Dhow 1 250 MK 38 Mod 

2 

NCO 

19.6 

Dhow 1 250 MK 38 Mod 

2 

NCO 

19.6 

FIAC 1 500 MK 38 Mod 

2 

NCO 

19.6 

FIAC 1 500 MK 38 Mod 

2 

NCO 

19.6 

FIAC 1 500 MK 38 Mod 

2 

NCO 

19.6 

FIAC 1 500 MK 38 Mod 

2 

NCO 

19.9 

Dhow 1 500 MK 38 Mod 

2 

NCO 

19.9 

Dhow 1 500 MK 38 Mod 

2 

SUW 

1.10 

FIAC 1 700 MK 38 Mod 

2 

SUW 

1.10 

FIAC 1 700 MK 38 Mod 

2 

SUW 

1.10 

FIAC 1 700 MK 38 Mod 

2 

SUW 

1.10 

FIAC 1 700 MK 38 Mod 

2 

SUW 

1.10 

FAC 1 1000 MK 38 Mod 

2 

SUW 

1.10 

FAC 1 1000 MK 38 Mod 

2 

SUW 

1.10 

FAC 1 1000 MK 38 Mod 

2 

SUW 

1.10 

FAC 1 1000 MK 38 Mod 

2 

SUW 

1.10 

PC 1 1500 MK 38 Mod 

2 
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SUW 

1.10 

PC 1 1500 MK 38 Mod 

2 

SUW 

1.10 

PC 1 1500 MK 38 Mod 

2 

SUW 

1.10 

PC 1 1500 MK 38 Mod 

2 

SUW 

2.3 

PC 1 7000 MK 38 Mod 

2 

AW 9.3 AS-11 5 8000 MK 54 

AW 9.3 C-802 5 7000 MK 54 

NCO 

19.9 

FIAC 1 500 MK 54 

SUW 

2.3 

FAC 1 4000 MK 54 

SUW 

2.3 

FAC 1 4000 MK 54 

SUW 

2.3 

PC 1 7000 MK 54 

AW 1.1 F-14 1000 10000 MLD 

AW 

1.13 

MiG-29 10000 30000 MLD 

AW 1.4 MiG-29 30000 20000 MLD 

AW 1.6 Iranian 

UAV 

500 10000 MLD 

AW 1.1 MiG-29 700 10000 MLD 

AW 1.5 F-14 1000 30000 MLD 

AW 1.5 MiG-29 10000 20000 MLD 

AW 1.6 F-14 1000 30000 MLD 

AW 9.1 F-14 40000 20000 MLD 

AW 9.4 Iranian 

UAV 

250 10000 MLD 

AW 1.5 MiG-29 10000 20000 MLD 

AW 1.6 MiG-29 10000 20000 MLD 

AW 9.4 Iranian 

UAV 

250 10000 MLD 

AW 1.1 F-14 1000 10000 MLD 

AW 1.2 Iranian 

UAV 

500 3000 MLD 

AW 1.4 C-802 5 3000 MLD 

AW 9.3 C-802 5 7000 MLD 

AW 9.1 F-14 40000 20000 MLD 
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AW 1.2 AS-11 200 2500 MLD 

AW 1.2 C-802 5 2000 MLD 

AW 1.5 F-14 1000 30000 MLD 

AW 1.2 AS-11 200 2500 MLD 

ATFP 9 Cessna 500 1500 MLD 

AW 1.2 C-802 5 2000 MLD 

AW 1.2 Iranian 

UAV 

500 3000 MLD 

ATFP 9 Iranian 

UAV 

500 1000 MLD 

AW 1.2 AS-11 200 2500 MLD 

ATFP 9 Cessna 500 1500 MLD 

AW 9.4 Cessna 500 15000 MLD 

AW 

1.13 

F-14 2000 20000 MLD 

AW 1.4 Iranian 

UAV 

1000 2000 MLD 

AW 

1.13 

Iranian 

UAV 

1000 15000 MLD 

AW 1.2 C-802 5 2000 MLD 

ATFP 9 Iranian 

UAV 

500 1000 MLD 

AW 9.4 Iranian 

UAV 

250 10000 MLD 

ATFP 

15 

FIAC 1 700 MLD 

ATFP 8 FIAC 1 1000 MLD 

ATFP 9 Cessna 500 1500 MLD 

ATFP 

15 

FIAC 1 700 MLD 

ATFP 9 Iranian 

UAV 

500 1000 MLD 

ATFP 9 Iranian 

UAV 

500 1000 MLD 

ATFP 8 FIAC 1 1000 MLD 

ATFP 9 Cessna 500 1500 MLD 

AW 1.5 MiG-29 10000 20000 MLD 

ATFP 

15 

FIAC 1 700 MLD 

AW 1.4 C-802 5 3000 MLD 

NCO FIAC 1 500 MLD 
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19.9 

AW 1.2 Iranian 

UAV 

500 3000 MLD 

AW 1.4 F-14 10000 10000 MLD 

AW 1.2 AS-11 200 2500 MLD 

AW 1.2 C-802 5 2000 MLD 

ATFP 

15 

FIAC 1 700 MLD 

AW 

1.13 

AS-11 5 9000 MLD 

AW 1.5 AS-11 5 10000 MLD 

AW 1.6 AS-11 5 10000 MLD 

AW 1.6 AS-11 5 10000 MLD 

AW 

1.13 

F-14 2000 20000 MLD 

AW 

1.12 

AS-11 5 10000 MLD 

AW 1.2 Iranian 

UAV 

500 3000 MLD 

AW 1.6 Iranian 

UAV 

5 10000 MLD 

AW 1.5 C-802 5 15000 MLD 

AW 1.2 C-802 5 2000 RIM-116 

AW 1.1 C-802 5 5000 RIM-66 MR 

AW 1.1 F-14 1000 10000 RIM-66 MR 

AW 1.1 Iranian 

UAV 

100 7000 RIM-66 MR 

AW 

1.12 

AS-11 5 10000 RIM-66 MR 

AW 

1.13 

AS-11 5 9000 RIM-66 MR 

AW 

1.13 

AS-11 5 9000 RIM-66 MR 

AW 

1.13 

AS-11 5 9000 RIM-66 MR 

AW 

1.13 

C-802 5 7000 RIM-66 MR 

AW 

1.13 

MiG-29 10000 30000 RIM-66 MR 

AW 1.4 Iranian 

UAV 

1000 2000 RIM-66 MR 
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AW 1.5 AS-11 5 10000 RIM-66 MR 

AW 1.5 MiG-29 10000 20000 RIM-66 MR 

AW 1.5 C-802 5 16000 RIM-66 MR 

AW 1.5 F-14 1000 30000 RIM-66 MR 

AW 1.5 Iranian 

UAV 

500 10000 RIM-66 MR 

AW 1.6 AS-11 5 10000 RIM-66 MR 

AW 1.6 MiG-29 10000 20000 RIM-66 MR 

AW 1.6 Iranian 

UAV 

500 10000 RIM-66 MR 

AW 9.1 F-14 40000 20000 RIM-66 MR 

AW 9.1 MiG-29 60000 30000 RIM-66 MR 

AW 9.3 AS-11 5 8000 RIM-66 MR 

SUW 

2.3 

FAC 1 4000 RIM-66 MR 

SUW 

2.3 

PC 1 7000 RIM-66 MR 

AW 1.6 F-14 1000 30000 TLS 

AW 1.6 F-14 1000 30000 TLS 

AW 9.3 AS-11 5 8000 TLS 

AW 9.3 AS-11 5 8000 TLS 

AW 9.4 Cessna 500 15000 TLS 

AW 1.6 MiG-29 10000 20000 TLS 

AW 9.1 F-14 40000 20000 TLS 

AW 9.3 AS-11 5 8000 TLS 

AW 1.2 Iranian 

UAV 

500 3000 TLS 

AW 1.4 AS-11 5 7000 TLS 

AW 1.2 AS-11 200 2500 TLS 

AW 1.2 Iranian 

UAV 

500 3000 TLS 

AW 1.2 C-802 5 2000 TLS 

AW 1.2 AS-11 200 2500 TLS 

ATFP 9 Cessna 500 1500 TLS 

AW 1.6 F-14 1000 30000 TLS 

AW 1.2 C-802 5 2000 TLS 

AW 1.2 Iranian 

UAV 

500 3000 TLS 

ATFP 9 Iranian 

UAV 

500 1000 TLS 

ATFP 9 Cessna 500 1500 TLS 
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AW 1.2 AS-11 200 2500 TLS 

AW 1.2 C-802 5 2000 TLS 

ATFP 9 Iranian 

UAV 

500 1000 TLS 

ATFP 

15 

FIAC 1 700 TLS 

ATFP 9 Cessna 500 1500 TLS 

ATFP 

15 

FIAC 1 700 TLS 

ATFP 9 Iranian 

UAV 

500 1000 TLS 

AW 9.3 AS-11 5 8000 TLS 

AW 1.4 AS-11 5 7000 TLS 

AW 9.3 C-802 5 7000 TLS 

ATFP 

15 

FIAC 1 700 TLS 

AW 1.4 C-802 5 3000 TLS 

AW 1.2 Iranian 

UAV 

500 3000 TLS 

AW 1.4 F-14 10000 10000 TLS 

AW 1.2 AS-11 200 2500 TLS 

AW 1.2 C-802 5 2000 TLS 

ATFP 9 Cessna 500 1500 TLS 

ATFP 9 Iranian 

UAV 

500 1000 TLS 

ATFP 

15 

FIAC 1 700 TLS 

SUW 

2.3 

FAC 1 4000 TLS 

AW 9.4 Cessna 500 15000 TLS 
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APPENDIX M. MAP AWARE NON-UNIFORM AUTOMATA 

(MANA) SIMULATION RESULTS 

MANA Result for UAV Scenario 

  LaWS LaWS+ TLS MLD 

1 3 7 1 5 

2 4 7 0 5 

3 3 7 0 5 

4 3 7 1 5 

5 4 7 1 5 

6 3 7 0 5 

7 4 7 0 5 

8 4 7 0 5 

9 4 7 1 5 

10 4 7 1 5 

11 3 7 1 5 

12 4 7 0 4 

13 4 7 0 5 

14 3 7 0 5 

15 4 7 1 4 

16 3 7 1 5 

17 4 7 1 5 

18 3 7 0 5 

19 3 7 0 4 

20 4 7 0 5 

21 4 7 0 5 

22 3 7 1 5 

23 3 7 0 5 

24 3 7 1 5 

25 4 7 1 5 

26 4 7 1 5 

27 4 7 0 5 

28 4 7 0 5 

29 4 7 0 5 

30 3 7 0 5 
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Average 3.57  7.00  0.43  4.90  

 

 

MANA Result for Small Boat Scenario 

  LaWS LaWS+ TLS MLD 

1 3 7 0 3 

2 2 7 0 3 

3 3 7 0 3 

4 3 7 0 3 

5 3 7 0 3 

6 2 7 0 3 

7 2 7 0 3 

8 2 7 0 4 

9 3 7 0 3 

10 3 7 0 3 

11 2 7 0 3 

12 3 7 0 3 

13 3 7 0 3 

14 2 7 0 3 

15 3 7 0 3 

16 3 7 0 3 

17 2 7 0 3 

18 2 7 0 3 

19 3 7 0 3 

20 3 7 0 3 

21 3 7 0 3 

22 3 7 0 3 

23 2 7 0 3 

24 3 7 0 3 

25 2 7 0 3 

26 3 7 0 3 

27 3 7 0 3 

28 2 7 0 3 

29 2 7 0 3 

30 2 7 0 3 

Average 2.57  7.00  0.00  3.03  
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MANA Result for Supersonic ASCM Scenario 

  LaWS LaWS+ TLS MLD 

1 0 2 0 0 

2 0 2 0 0 

3 0 2 0 0 

4 0 2 0 0 

5 0 1 0 0 

6 0 2 0 0 

7 0 2 0 0 

8 0 1 0 0 

9 0 2 0 0 

10 0 2 0 0 

11 0 2 0 0 

12 0 2 0 0 

13 0 2 0 0 

14 0 2 0 0 

15 0 2 0 0 

16 0 2 0 0 

17 0 2 0 0 

18 0 2 0 0 

19 0 2 0 0 

20 0 2 0 0 

21 0 2 0 0 

22 0 2 0 0 

23 0 2 0 0 

24 0 1 0 0 

25 0 2 0 0 

26 0 2 0 0 

27 0 2 0 0 

28 0 2 0 0 

29 0 2 0 0 

30 0 2 0 0 

Average 0.00  1.90  0.00  0.00  
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MANA Result for Subsonic ASCM Scenario 

  LaWS LaWS+ TLS MLD 

1 1 5 0 2 

2 1 5 0 2 

3 1 5 0 2 

4 2 5 0 2 

5 1 5 0 2 

6 2 5 0 2 

7 1 5 0 2 

8 1 5 0 2 

9 1 5 0 2 

10 1 5 0 2 

11 2 5 0 2 

12 1 5 0 2 

13 2 5 0 2 

14 1 5 0 2 

15 1 5 0 2 

16 1 5 0 2 

17 2 5 0 2 

18 1 5 0 2 

19 1 5 0 2 

20 1 5 0 2 

21 1 5 0 2 

22 1 5 0 2 

23 2 5 0 2 

24 1 5 0 2 

25 2 5 0 2 

26 1 5 0 2 

27 1 5 0 2 

28 1 5 0 2 

29 1 5 0 2 

30 1 5 0 2 

Average 1.23  5.00  0.00  2.00  
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Multiple targets For LaWS 

  Subsonic ASCM UAV Small Boat 

1 1 3 1 

2 1 3 1 

3 1 3 1 

4 1 3 0 

5 1 3 1 

6 1 3 1 

7 1 3 1 

8 1 3 2 

9 1 3 1 

10 1 3 1 

11 1 3 1 

12 1 3 1 

13 1 3 1 

14 1 3 1 

15 1 3 1 

16 1 3 1 

17 1 3 1 

18 1 3 2 

19 1 3 1 

20 1 3 1 

21 1 3 1 

22 1 3 1 

23 1 3 1 

24 1 3 2 

25 1 3 1 

26 1 3 2 

27 1 3 1 

28 1 3 1 

29 1 3 1 

30 1 3 1 

Average 1.00  3.00  1.10  
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Multiple targets For LaWS+ 

  Subsonic ASCM UAV Small Boat 

1 1 3 5 

2 1 3 5 

3 1 3 5 

4 1 3 5 

5 1 3 5 

6 1 3 5 

7 1 3 5 

8 1 3 5 

9 1 3 5 

10 1 3 5 

11 1 3 5 

12 1 3 5 

13 1 3 5 

14 1 3 5 

15 1 3 5 

16 1 3 5 

17 1 3 5 

18 1 3 5 

19 1 3 5 

20 1 3 5 

21 1 3 5 

22 1 3 5 

23 1 3 5 

24 1 3 5 

25 1 3 5 

26 1 3 5 

27 1 3 5 

28 1 3 5 

29 1 3 5 

30 1 3 5 

Average 1.00  3.00  5.00  
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Multiple targets MLD 

  Subsonic ASCM UAV Small Boat 

1 1 3 3 

2 1 3 3 

3 1 3 2 

4 1 3 3 

5 1 3 2 

6 1 3 2 

7 1 3 3 

8 1 3 3 

9 1 3 3 

10 1 3 1 

11 1 3 1 

12 1 3 3 

13 1 3 2 

14 1 3 1 

15 1 3 2 

16 1 3 3 

17 1 3 2 

18 1 3 2 

19 1 3 2 

20 1 3 3 

21 1 3 2 

22 1 3 3 

23 1 3 3 

24 1 3 3 

25 1 3 3 

26 1 3 3 

27 1 3 2 

28 1 3 2 

29 1 3 3 

30 1 3 3 

Average 1.00  3.00  2.43  
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Multiple targets TLS 

  Subsonic ASCM UAV Small Boat 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

6 0 0 0 

7 0 0 0 

8 0 0 0 

9 0 0 0 

10 0 0 0 

11 0 0 0 

12 0 0 0 

13 0 0 0 

14 0 0 0 

15 0 0 0 

16 0 0 0 

17 0 0 0 

18 0 0 0 

19 0 0 0 

20 0 0 0 

21 0 0 0 

22 0 0 0 

23 0 0 0 

24 0 0 0 

25 0 0 0 

26 0 0 0 

27 0 0 0 

28 0 0 0 

29 0 0 0 

30 0 0 0 

Average 0.00  0.00  0.00  
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APPENDIX N. FINAL PROGRESS REVIEW (FPR) SLIDES 
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