Tailorable Remote / Unmanned Combat Craft (TRUCC)
Systems Engineering Analysis Cohort 18B
Tailorable Remote / Unmanned Combat Craft (TRUCC)

SEA-18B Capstone Project
CRUSER Brief
14 MAR 2012
• Provide front-end systems engineering analysis of the future of USVs
 – Outside current programmatic lifecycles
 – Influence future roadmap towards interoperable force structure
 • Manned / unmanned integration
 • Efficiency
 • Combat effectiveness
 • Risk mitigation
 • Joint interoperability
Project Goals

• Develop operational concept(s) for USV
 – Identify key design factors
 – Utilize modular sensors / weapons / comms
 • Leverage future technology upgrades
 – Maximize mission flexibility

• Context of analysis
 – High level strategy
 – Fiscal realities
 – Existing force structure / POM commitments
• Sort missions by high-level function
 – **Find unknowns** (mine warfare, counter piracy, ISR)
 – **Protect knowns** (ATFP, straits transit / convoy escort)
 – **Logistics**
 • Efficient ocean-going logistics already in place
 – **Offensive operations**
 • Air / Ground forces primary offensive vectors
Design Reference Mission

• TRUCCS escort HVUs through Straits of Hormuz
 – USVs refuel / refit in Jebel Ali
• Threat swarms
 – FAC / FIAC
 – Low Slow Fliers
 – ASCM
• “Dumb”; will head straight for HVU
• “Smart”; will maneuver around TRUCCS to get to HVU
• Model-Based Systems Engineering process

• Three modeling groups:
 – Mission Effectiveness
 • Model threat / weapon
 – Mission Vehicle
 • Relate sensor / weapon performance to physical element
 • Regress historical systems for simple future system characteristics (weight, Pk, etc)
 – Operational Availability
 • Project failure rates / maintenance availability
• Map Aware Non-uniform Automata (MANA) modeling software
• Produced by New Zealand’s Defence Technology Agency
 – Alternative to other combat models (CAEn, JANUS, etc)
 – Models Complex Adaptive Systems
 – Operated under NPS license
• MOP: Probability of HVU survival
• Fractional factorial modeling runs / stochastic results
Modeling Plan

• Fully model major threat scenarios
 – FAC / FIAC
 – LSF
 – ASCM

• Integrate three modeling groups for output:
 – Number of ships with baseline capability to defeat given threat
 • 20 x TRUCCS w/ speed XX, endurance YY capable of carry sensor / weapon payload ZZ will be able to counter 150 ASCM with capabilities as given in DRM...
 • 35 x TRUCCS w/ speed XX’, endurance YY’... can accomplish the same level of protection with an alternative physical architecture
• Add modeling complexity:
 – Threat systems attack defenders, not just HVU
 – Model impact of decoys (Advanced Offboard Decoy as reference system)
 – Shouldering tactics (i.e. can TRUCCS use non-kinetic tactics to prevent FAC/FIAC from closing on HVU)
 – Time delays / latency impact modeling (i.e. if man-in-the-loop causes time delays in weapons release authorization, what is the impact?)
• Identify physical TRUCC architecture(s) required to accomplish anti-swarm mission
 – Payload capacity for required weapons / sensors
 – Speed
 – Duration
• Identify sensitivities
• Investigate USV roadmap
 – Identify key technologies to enable TRUCC mission
 • Autonomy / processing speeds / communications
 – Policies
 • Man-in-loop time delay implications
 • Weapons release authorization
• Program Manager:
 – LCDR Loren Jacobi
 – ljacobi@nps.edu
• Lead Systems Engineer:
 – LT Adam Bush
 – arbush@nps.edu
Questions?