<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Naval Postgraduate School (U.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Catalogue of U.S. Naval Postgraduate School, Academic Year 1953-1954</td>
</tr>
<tr>
<td>Publisher</td>
<td>Monterey, California. Naval Postgraduate School</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1953</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10945/31709</td>
</tr>
</tbody>
</table>
Catalogue of

U.S. NAVAL POSTGRADUATE SCHOOL

Monterey, California

Academic Year 1953-1954
UNITED STATES NAVAL POSTGRADUATE SCHOOL

CATALOGUE
for the
Academic Year 1953 --1954

MONTEREY, CALIFORNIA

1 JULY 1953
Calendar of the United States Naval Postgraduate School
for the Academic Year 1953—1954
at Monterey, California

1953

Engineering School Registration
Saturday, August 1

Engineering School First Term Begins
Monday, August 3

General Line School (Class 1953B)
Thurday, August 6
Registration

General Line School Classes Begin
Monday, August 10

Labor Day (Holiday)
Monday, September 7

Engineering School First Term Ends
Thursday, October 8

Engineering School Second Term Begins
Tuesday, October 13

Armistice Day (Holiday)
Wednesday, November 11

Thanksgiving Day (Holiday)
Thursday, November 26

Engineering School Second Term Ends
Friday, December 18

Christmas Leave Period Begins
Friday, December 18

1954

General Line School Classes Resume
Monday, January 4

Engineering School Third Term Begins
Tuesday, January 5

Washington’s Birthday (Holiday)
Monday, February 22

General Line School Class 1953B
Friday, February 19
Graduation

Engineering School Third Term Ends
Tuesday, March 16

Engineering School Fourth Term Begins
Monday, March 22

General Line School (Class 1954A)
Thursday, March 25
Registration

General Line School Classes Begin
Monday, March 29

Engineering School Fourth Term ends
Friday, May 28

Memorial Day (Holiday)*
Sunday, May 30

Engineering School Commencement
Thursday, June 3

Independence Day (Holiday)**
Sunday, July 4

Engineering School Registration
Monday, August 2

Engineering School First Term Begins
Tuesday, August 3

General Line School Class 1954A
Friday, September 24
Graduation

* Holiday observed on Monday, May 31

** Holiday observed on Monday, July 5
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calendar</td>
</tr>
<tr>
<td>Table of Contents</td>
</tr>
<tr>
<td>Index</td>
</tr>
<tr>
<td>List of Illustrations</td>
</tr>
</tbody>
</table>

Section I
GENERAL INFORMATION

The Staff	1
Administrative Command	1
Historical	3
Postgraduate School Program	4
Components of the Postgraduate School	4
Facilities and Physical Plant	4

Student Housing	5
Educational Facilities	5
Flight Proficiency	5
Library Facilities	6
Recreation Facilities	6

Section II
THE ENGINEERING SCHOOL

Naval Staff	7
Civilian Faculty	8
Academic Associates	13
Liaison Officials at Civilian Institutions	13
Function of the School	14
Administration	15
Regulations Governing Degrees	15

Scholarship and Grading System	17
Laboratory Facilities and Equipment	18
Research Projects	20
Curricula at Monterey	20
Curricula Conducted Entirely at other Institutions	58
Description of Courses at Monterey	67

Section III
THE GENERAL LINE SCHOOL

Naval Staff	134
Civilian Faculty	136
Objective	137
Current and Future Programs	137

Administration	137
Facilities and Equipment	137
Curriculum and Instruction	137
INDEX FOR CATALOGUE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Page</td>
</tr>
<tr>
<td>Academic Associates</td>
<td>13, 15</td>
</tr>
<tr>
<td>Academic Dean</td>
<td>1, 3, 7, 15</td>
</tr>
<tr>
<td>Accreditation</td>
<td>3</td>
</tr>
<tr>
<td>Administrative Command</td>
<td>1, 4</td>
</tr>
<tr>
<td>Advanced Education Program</td>
<td>4, 14</td>
</tr>
<tr>
<td>Advanced Science</td>
<td>20, 21</td>
</tr>
<tr>
<td>Aerological Engineering</td>
<td>7, 15, 20, 22-23</td>
</tr>
<tr>
<td>Aerology Courses</td>
<td>68-73</td>
</tr>
<tr>
<td>Aerology Department</td>
<td>8, 19</td>
</tr>
<tr>
<td>Aeronautical Engineering</td>
<td>7, 24-31</td>
</tr>
<tr>
<td>Aeronautics Courses</td>
<td>74-78</td>
</tr>
<tr>
<td>Aeronautics Department</td>
<td>9, 18</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Bachelor Officers' Quarters</td>
<td>5</td>
</tr>
<tr>
<td>Business Administration</td>
<td>58</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering Curriculum</td>
<td>36, 37</td>
</tr>
<tr>
<td>Chemistry Courses</td>
<td>79-83</td>
</tr>
<tr>
<td>Cinematography</td>
<td>58, 59</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>58, 61-62</td>
</tr>
<tr>
<td>Civilian Colleges</td>
<td>13, 14, 58-65</td>
</tr>
<tr>
<td>Civilian Faculty</td>
<td>18-13, 136</td>
</tr>
<tr>
<td>Command & Staff Department</td>
<td></td>
</tr>
<tr>
<td>(General Line School)</td>
<td>134</td>
</tr>
<tr>
<td>Communications Courses</td>
<td>84-86</td>
</tr>
<tr>
<td>Communications Curricula</td>
<td>7, 8, 32</td>
</tr>
<tr>
<td>Comptrollership</td>
<td>58, 59</td>
</tr>
<tr>
<td>Conferring of Degrees</td>
<td>15, 17</td>
</tr>
<tr>
<td>Construction Program</td>
<td>5</td>
</tr>
<tr>
<td>Crystallography</td>
<td>87</td>
</tr>
<tr>
<td>Curricula, Engineering School</td>
<td>20-65</td>
</tr>
<tr>
<td>Curriculum, General Line School</td>
<td>137-144</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Degree, Bachelors'</td>
<td>3, 15-16</td>
</tr>
<tr>
<td>Degree, Doctorate</td>
<td>3, 16</td>
</tr>
<tr>
<td>Degree, Masters'</td>
<td>3, 16-17</td>
</tr>
<tr>
<td>Degrees, Regulation Governing</td>
<td>15, 17</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Educational Facilities</td>
<td>5</td>
</tr>
<tr>
<td>Electrical Engineering Courses</td>
<td>88-93</td>
</tr>
<tr>
<td>Electrical Engineering Curricula</td>
<td>38-39</td>
</tr>
<tr>
<td>Electrical Engineering Department</td>
<td>9</td>
</tr>
<tr>
<td>Electrical Engineering and Mathematics Department (General Line School)</td>
<td>136</td>
</tr>
<tr>
<td>Electronics Courses</td>
<td>94-101</td>
</tr>
<tr>
<td>Electronics and Physics Department</td>
<td>9-10</td>
</tr>
<tr>
<td>Engineering Council for Professional Development (ECPD)</td>
<td></td>
</tr>
<tr>
<td>Accreditation</td>
<td>3</td>
</tr>
<tr>
<td>Engineering and Damage Control Department (General Line School)</td>
<td>135-136</td>
</tr>
<tr>
<td>Engineering Electronics Curricula</td>
<td>8, 33-35</td>
</tr>
<tr>
<td>Engineering School</td>
<td>1, 4, 7-129</td>
</tr>
<tr>
<td>Engineering School, Administration</td>
<td>15</td>
</tr>
<tr>
<td>Engineering School, Civilian Faculty</td>
<td>8-13</td>
</tr>
<tr>
<td>Engineering School, Function</td>
<td>14</td>
</tr>
<tr>
<td>Engineering School, Laboratory Facilities</td>
<td>18-20</td>
</tr>
<tr>
<td>Engineering School, Naval Staff</td>
<td>7-8</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Flight Proficiency</td>
<td>5-6</td>
</tr>
<tr>
<td>Function of Engineering School</td>
<td>14</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Gas Turbines Curriculum (Naval Engineering)</td>
<td>21, 40-41</td>
</tr>
<tr>
<td>General Line School</td>
<td>134-144</td>
</tr>
<tr>
<td>General Line School, Administration</td>
<td>134-136</td>
</tr>
<tr>
<td>General Line School, Civilian Faculty</td>
<td>136</td>
</tr>
<tr>
<td>General Line School, Current and Future Programs</td>
<td>137</td>
</tr>
<tr>
<td>General Line School, Facilities and Equipment</td>
<td>137</td>
</tr>
<tr>
<td>General Line School, Instruction</td>
<td>137-144</td>
</tr>
<tr>
<td>General Line School, Laboratory Facilities</td>
<td>137</td>
</tr>
<tr>
<td>General Line School, Naval Staff</td>
<td>134-135</td>
</tr>
<tr>
<td>General Line School, Objective</td>
<td>137</td>
</tr>
<tr>
<td>Geology Courses</td>
<td>102</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>History of U. S. Naval Postgraduate School</td>
<td>3-4</td>
</tr>
<tr>
<td>Hydrographic Engineering</td>
<td>58, 59</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Industrial Engineering Courses</td>
<td>103</td>
</tr>
<tr>
<td>Intelligence School, Naval</td>
<td>4, 58, 59</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Journalism</td>
<td>58, 59</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Laboratory Facilities, Engineering School</td>
<td>18-20</td>
</tr>
<tr>
<td>Laboratory Facilities, General Line School</td>
<td>137</td>
</tr>
<tr>
<td>Law</td>
<td>58, 59</td>
</tr>
<tr>
<td>La Mesa Village (Housing)</td>
<td>5</td>
</tr>
<tr>
<td>Legislation</td>
<td>3, 15</td>
</tr>
<tr>
<td>Liaison Officials, at other Institutions</td>
<td>13-14</td>
</tr>
<tr>
<td>Library</td>
<td>6, 12</td>
</tr>
<tr>
<td>Logistic Support (Administrative Command)</td>
<td>4</td>
</tr>
</tbody>
</table>
INDEX FOR CATALOGUE

M

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management and Industrial Engineering</td>
<td>58, 59, 63</td>
</tr>
<tr>
<td>Marine Engineering Courses</td>
<td>104</td>
</tr>
<tr>
<td>Married Officer Students</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics Courses</td>
<td>105-111</td>
</tr>
<tr>
<td>Mathematics and Mechanics Department</td>
<td>10-11, 20</td>
</tr>
<tr>
<td>Mechanics Courses</td>
<td>112-113</td>
</tr>
<tr>
<td>Mechanical Engineering Courses</td>
<td>114-120</td>
</tr>
<tr>
<td>Mechanical Engineering Curricula (Naval Engineering)</td>
<td>41-45</td>
</tr>
<tr>
<td>Mechanical Engineering Department</td>
<td>11, 19</td>
</tr>
<tr>
<td>Metallurgical Engineering Curriculum (Naval Engineering)</td>
<td>45-46</td>
</tr>
<tr>
<td>Metallurgy Courses</td>
<td>121-123</td>
</tr>
<tr>
<td>Metallurgy and Chemistry Department</td>
<td>11-12, 18, 19</td>
</tr>
<tr>
<td>Mine Warfare Curriculum (Ordnance Engineering)</td>
<td>35, 36</td>
</tr>
</tbody>
</table>

N

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Auxiliary Air Station</td>
<td>5-6, 137</td>
</tr>
<tr>
<td>Naval Construction Engineering</td>
<td>58, 59, 63-64</td>
</tr>
<tr>
<td>Naval Engineering Curricula</td>
<td>8, 21, 36-47</td>
</tr>
<tr>
<td>Naval Intelligence</td>
<td>4, 58, 59</td>
</tr>
<tr>
<td>Naval Intelligence School</td>
<td>4, 58, 59</td>
</tr>
<tr>
<td>New Weapon Development</td>
<td>123</td>
</tr>
<tr>
<td>Nuclear Engineering (Advanced)</td>
<td>58, 69, 64</td>
</tr>
<tr>
<td>Nuclear Engineering (Effects) Curriculum (Ordnance Engineering)</td>
<td>48</td>
</tr>
</tbody>
</table>

O

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceanography</td>
<td>58, 60, 124</td>
</tr>
<tr>
<td>Officers-in-Charge, Curricula (Engineering School)</td>
<td>7-8</td>
</tr>
<tr>
<td>Operational Command Department (General Line School)</td>
<td>134-135</td>
</tr>
<tr>
<td>Operations Analysis</td>
<td>49, 125-126</td>
</tr>
<tr>
<td>Ordnance Courses</td>
<td>127-128</td>
</tr>
<tr>
<td>Ordnance Engineering Curricula</td>
<td>8, 50-57</td>
</tr>
<tr>
<td>Ordnance and Gunnery Department (General Line School)</td>
<td>135</td>
</tr>
</tbody>
</table>

P

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Buildings</td>
<td>5</td>
</tr>
<tr>
<td>Personnel Administration and Training</td>
<td>58, 60</td>
</tr>
<tr>
<td>Petroleum Engineering Curriculum (Naval Engineering)</td>
<td>47</td>
</tr>
<tr>
<td>Petroleum Logistics</td>
<td>58, 60</td>
</tr>
<tr>
<td>Photography</td>
<td>58, 60</td>
</tr>
<tr>
<td>Physics Courses</td>
<td>129-133</td>
</tr>
<tr>
<td>Postgraduate School Program</td>
<td>3, 4</td>
</tr>
<tr>
<td>Practice Cruise (General Line School)</td>
<td>138</td>
</tr>
<tr>
<td>Public Information</td>
<td>58, 60, 65</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Subject</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Entrance to Administration Building</td>
<td>Van De Graff Nuclear Accelerator</td>
</tr>
<tr>
<td>* Aerial view of existing buildings and campus</td>
<td>* Metallurgy and Plastics Laboratories</td>
</tr>
<tr>
<td>* Aerial view of campus and nearby city</td>
<td>* Chemistry Laboratory</td>
</tr>
<tr>
<td>Model showing ultimate establishment</td>
<td>* Class in Metallography</td>
</tr>
<tr>
<td>Between Pages 4 and 5</td>
<td>* Materials Testing Laboratory</td>
</tr>
<tr>
<td>* The chapel</td>
<td>* Department of Aeronautics Equipment</td>
</tr>
<tr>
<td>* The swimming pool</td>
<td>* Servomechanisms Laboratory</td>
</tr>
<tr>
<td>* Lobby of Administration Building</td>
<td>* Reference Library</td>
</tr>
<tr>
<td>* Engineering School buildings</td>
<td>Between Pages 18 and 19</td>
</tr>
<tr>
<td>* La Mesa Village Housing</td>
<td>* General Line School Class in Engineering</td>
</tr>
<tr>
<td>Training Plane over Peninsula</td>
<td>* General Line School Class in Navigation</td>
</tr>
<tr>
<td>Naval Auxiliary Air Station</td>
<td>* Typical General Line School Equipment</td>
</tr>
<tr>
<td>* Electronic Computing Machines</td>
<td>Model used in Engineering Classes, General Line School</td>
</tr>
<tr>
<td>Between Pages 6 and 7</td>
<td>Between Pages 132 and 133</td>
</tr>
</tbody>
</table>

Orientation Map --------------- Inside Back Cover

NOTE: The photographs indicated by an asterisk were made by Mr. James J. Melody through the courtesy of the Commanding Officer of the San Francisco Naval Shipyard.
LIST OF ILLUSTRATIONS

Subject

* Entrance to Administration Building
* Aerial view of existing buildings and campus
* Aerial view of campus and nearby city
Model showing ultimate establishment
Between Pages 4 and 5

* The chapel

* The swimming pool

* Lobby of Administration Building
* Engineering School buildings

* La Mesa Village Housing
Training Plane over Peninsula
Naval Auxiliary Air Station
* Electronic Computing Machines
Between Pages 6 and 7

Subject

Van De Graff Nuclear Accelerator
* Metallurgy and Plastics Laboratories
* Chemistry Laboratory
* Class in Metallography
* Materials Testing Laboratory
* Department of Aeronautics Equipment
* Servomechanisms Laboratory
* Reference Library
Between Pages 18 and 19

* General Line School Class in Engineering
* General Line School Class in Navigation
* Typical General Line School Equipment
Model used in Engineering Classes,
General Line School
Between Pages 132 and 133

Orientation Map --------------------- Inside Back Cover

NOTE: The photographs indicated by an asterisk were made by Mr. James J. Melody through the courtesy of the Commanding Officer of the San Francisco Naval Shipyard.
SECTION I
U.S. NAVAL POSTGRADUATE SCHOOL
GENERAL INFORMATION

Superintendent
Frederick MOOSBRUGGER, Rear Admiral, U. S. Navy

Academic Dean
Roy Stanley GLASGOW, B.S., M.S., E.E.

Director, Engineering School
James Henry WARD
Captain, U. S. Navy

Director, General Line School
George Kittrell FRASER
Captain, U. S. Navy

SUPERINTENDENTS STAFF

Charles Edwin CROMBE, Jr.
Captain, U. S. Navy
Aide and Chief of Staff

Warren Fuller ANDERSON
Commander, U. S. Navy
Staff Secretary

Freeman Mayville JONES
Lieutenant Commander, U. S. Navy
Administrative Assistant and
Public Relations Officer

ADMINISTRATIVE COMMAND

William Camp Fitzhugh ROBARDS
Captain, U. S. Navy
Commanding Officer

John Davis McCOMISH
Lieutenant Commander, U. S. Navy
Legal and Legal Assistance Officer

Arthur Frank HAMBY
Lieutenant Commander, U. S. Navy
First Lieutenant

Charles Hollis SARVER
Lieutenant, U. S. Navy
Special Services Officer

Clayton Forsling JOHNSON
Lieutenant, U. S. Navy
Closed Mess and BOQ Officer

David Nun HENRIQUES, Jr.
Lieutenant, U. S. Navy
Communications Officer

William Malcolm CALKINS
Lieutenant, U. S. Navy
Personnel Officer

Sara Elizabeth MITCHELL
Lieutenant, U. S. Navy
Custodian Registered Publications

Harry Edward HOWELL
Ship’s Clerk, U. S. Navy
Assistant Personnel Officer

MEDICAL

Lloyd Bertram SHONE
Captain, MC, U. S. Navy
Senior Medical Officer

Bruce Morgan SHEPARD
Commander, MC, U. S. Navy
Medical Officer

Dana Foster RICHARDS
Lieutenant, MC, U. S. Navy
Assistant Medical Officer

Thomas Frederick McGUIRE
Lieutenant (junior grade), MC, U. S. Navy
Assistant Medical Officer

Charles Leonard JERNSTROM
Lieutenant (junior grade), MC, U. S. Navy
Assistant Medical Officer

Claude Crawford CASON
Lieutenant, MSC, U. S. Navy
Medical Services Officer

Lucille Mary OTERO
Lieutenant, NC, U. S. Navy
Senior Nurse

Lida Gertrude PARDEE
Lieutenant, NC, U. S. Navy
Nurse

Eunice Eleanor RICHARDSON
Lieutenant, NC, U. S. Navy
Nurse
DENTAL

James Linford WANGER
Captain, DC, U. S. Navy
Dental Officer

Wayne Wilbur JARVIS
Lieutenant, DC, U. S. Navy
Assistant Dental Officer

Jack Harland WILHELM
Lieutenant, DC, U. S. Navy
Assistant Dental Officer

CHAPLAIN

Walter Albert MAHLER
Commander, ChC, U. S. Navy
Chaplain

SUPPLY

Ben Saule GANTZ, Jr.
Lieutenant Commander, SC, U. S. Navy
Supply Officer

Paul Willis CRAWFORD
Lieutenant, SC, U. S. Navy
Officer in Charge Branch Navy Exchange

Charles Louis CULWELL
Lieutenant (junior grade), SC, U. S. Navy
Assistant Supply Officer

Christopher Tom COMPOGIANNIS
Lieutenant (junior grade), SC, U. S. Navy
Disbursing Officer and Assistant to Supply Officer

John Hamilton GRESS
Ensign, SC, U. S. Navy
Assistant to Supply Officer

PUBLIC WORKS

William Washington MOORE, Jr.
Commander, CEC, U. S. Navy
Public Works Officer and Resident Officer in Charge of Construction

Francis Xavier CONNELLY
Lieutenant Commander, CEC, U. S. Navy
Assistant to Resident Officer in Charge of Construction

Whitney Burford JONES
Lieutenant, CEC, U. S. Navy
Assistant Public Works Officer

David Donald McNELIS
Ensign, CEC, U. S. Navy
Assistant Public Works Officer

Byron Curtis McKinney
Chief Carpenter, U. S. Navy
Assistant Public Works Officer

NOTE: The Naval Staffs of the Engineering School and the General Line School are listed in the corresponding sections of the catalogue devoted to those schools.
HISTORICAL

The U. S. Naval Postgraduate School had a modest beginning at the Naval Academy in Annapolis in 1906, at which time the first class of ten officers enrolled in a Marine Engineering curriculum. Today, in its new location in Monterey, California, approximately 1200 officer students—600 in the Engineering School and 1200 in the General Line School. Facilities are being planned and implemented to accommodate a total of 1800 officer students—600 in the Engineering School and 1200 in the General Line School. Since 1909 the growth and development of the U. S. Naval Postgraduate School has been in keeping with its original objective of providing the Navy with officers of advanced technical education capable of administering and directing a modern Navy.

The need for technically trained officers became evident at the turn of the century. The idea of a naval graduate school had its inception in a course of instruction in Marine Engineering which the Bureau of Engineering instituted in 1904. The results of this course were so encouraging that in 1909 the Secretary of the Navy established a School of Marine Engineering at the Naval Academy in Annapolis. In 1912 the School was designated the Postgraduate Department of the U. S. Naval Academy.

The operation of the School was temporarily suspended during World War I. In 1919 classes were resumed in the converted Marine Barracks on the Naval Academy grounds. At this time curricula in Mechanical Engineering and Electrical Engineering were added. With the passing years other curricula—Ordnance Engineering, Radio Engineering and Aerological Engineering—were added as the Navy's need for officers with technical knowledge in these fields became evident.

In 1927 the General Line School was established within the Postgraduate Department to provide courses of instruction to acquaint junior line officers returning from sea duty with modern developments taking place in the Navy. The courses dealt with naval and military subjects for the most part. The General Line School remained as an integral part of the Postgraduate Department until the declaration of the emergency prior to the outbreak of World War II, at which time it was discontinued because of the need for officers in the growing fleet.

The enrollment in the Postgraduate Department increased rapidly in the war years both in the several engineering curricula and in the communications curriculum which was added to meet the need for trained communication officers in the naval establishment. The School outgrew its quarters necessitating the building of an annex to house the additional classrooms and laboratories required. Even with this addition, the space requirements of the expanded school were not met.

The post-war program called for yet further expansion and the re-establishment of the General Line School with a greatly increased enrollment. In 1946 the General Line School was established at Newport, Rhode Island, as an outlying element of the Postgraduate Department; in 1948 an additional General Line School was established at Monterey, California. The objective of the General Line School program for the re-established schools—that of providing an integrated course in naval science to broaden the professional knowledge of unrestricted line officers of the Regular Navy—continued in effect as it had since the inception of this program. The current curriculum is designed to provide such a course of approximately six months in length for reserve and ex-temporary officers who have transferred to regular status.

The physical growth of the School and its increase in scope and importance were recognized in Congressional action which resulted in legislation during the years 1945 to 1951 emphasizing the academic level of the School, and providing for continued growth in a new location with modern buildings and equipment. This legislation authorized the School to confer Bachelors, Masters, and Doctors degrees in engineering and related subjects; created the position of Academic Dean to insure continuity in academic policy; established the School as a separate naval activity to be known as the United States Naval Postgraduate School; authorized the establishment of the School at Monterey, California; and provided funds to initiate the construction of buildings to house modern laboratories and class rooms at that location.

In December 1948 a survey was conducted by Region IV Committee on Engineering schools of the Engineering Council for Professional Development (ECPD). As a result of this survey which was a detailed and thorough investigation of the curricula, faculty and facilities of the School, the Naval Postgraduate School was informed on 29 October 1949 by the ECPD that the curricula in Aeronautical Engineering, Electrical Engineering (including option in Electronics) and Mechanical Engineering were accredited.

On 22 December 1951, by order of the Secretary of the Navy, the United States Naval Postgraduate School was officially disestablished at Annapolis, Maryland, and established at Monterey, California.
Concurrently with this relocation, the U. S. Naval School (General Line) at Monterey was disestablished as a separate military command and its functions and facilities were assumed by the U. S. Naval Postgraduate School. At the same time, there was established the U. S. Naval Administrative Command, U. S. Naval Postgraduate School, Monterey, to provide logistic support, including supply, public works, medical and dental functions, for the Naval Postgraduate School and its components.

During the period 21 November 1951 to 16 February 1952, the entire school at Annapolis—faculty, students and equipment—was moved to Monterey. This move, unique in character, involved the transcontinental transportation of approximately five hundred families, civilian and military, their household effects, and some three million pounds of school equipment. What had been the U. S. Naval Postgraduate School, Annapolis, was redesignated the Engineering School of the U. S. Naval Postgraduate School, Monterey.

The U. S. Naval Postgraduate School, Monterey, now comprises the Engineering School under a Director, the General Line School under a Director, and the Administrative Command under a Commanding Officer, in command of the Naval Postgraduate School and all of its components is a line officer of flag rank in the Regular Navy with the title of Superintendent.

POSTGRADUATE SCHOOL PROGRAM

The program for the advanced education and training of commissioned officers in general and technical subjects according to the Navy’s need is under the cognizance and direction of the Superintendent of the U. S. Naval Postgraduate School. From officers applying for postgraduate instruction and from officers nominated by the technical bureaus and other activities of the Navy, candidates are selected by boards appointed by the Chief of Naval Personnel. The U. S. Army, U. S. Air Force, and U. S. Coast Guard also select officers from their respective services to participate in certain of the postgraduate curricula conducted at the U. S. Naval Postgraduate School.

Postgraduate education is conducted at the U. S. Naval Postgraduate School in Monterey, and at many civilian institutions which cooperate in providing special curricula to meet the requirements of the Navy.

For the most part, all officer students commence their postgraduate education at the Naval Postgraduate School in Monterey. General Line School students attend for a course of approximately six months. Engineering School students, according to the curriculum to which assigned, may attend one, two, or three years at the School, or one or two years at the School and one or two years subsequently at a civilian university. The curricula commencing in the Engineering School at Monterey are set forth in Section II. Exceptions to the procedure set forth above are made in the cases of certain non-engineering curricula, e.g., Law, Business Administration, Theology, for which the entire postgraduate education is conducted at appropriate civilian institutions. These curricula and the institutions at which the instruction is conducted are briefly set forth in Section II.

COMPONENTS OF THE U. S. NAVAL POSTGRADUATE SCHOOL

Engineering School, located at Monterey, California, comprises the engineering and scientific division which was formerly that portion of the School located at Annapolis, Maryland. The School is supervised and administered by a Director, who is a line officer of the Regular Navy, with the rank of captain.

General Line School, located at Monterey, California, provides instruction to round out the junior officer’s preparation in professional naval subjects, in order to better fit him for continued general duties ashore and afloat. Though ultimately the curriculum will cover one year, for the present and until 1955, the General Line School program is shortened to six months in order to give the instruction to the large number of former reserve and temporary officers who, since World War II, have transferred to the Regular Navy. The School is under the supervision of a Director who is a line officer of the Regular Navy, with the rank of captain.

Administrative Command, located at Monterey, California, was established to provide logistic support to the Engineering School and the General Line School. It is a separate military command under a Commanding Officer, who is a line officer of the Regular Navy, with the rank of captain.

Naval Intelligence School, located at Anacostia, D. C., provides training in naval intelligence and foreign language instruction. The School is under a Commanding Officer, who is a line officer of the Regular Navy, with the rank of captain.

FACILITIES AND PHYSICAL PLANT

The Naval Postgraduate School is located east of the city of Monterey, California, on the grounds and in the buildings of the former Hotel Del Monte. The hotel buildings have been converted into laboratories, classrooms, offices, and living quarters to serve as an interim establishment until the completion of modern permanent buildings, construction
Main entrance to the Administrative Building. This building contains offices of the Superintendent, Academic Dean, Administrative Command, the Bachelor Officers' Quarters, and certain logistic facilities.
Air view of the Campus. The former hotel buildings, in center, serve as interim office, classroom and some laboratory space for General Line and Engineering Schools. The one-story buildings at far left are interim laboratories for the Engineering School. The Pacific Ocean is seen in the background.
Aerial view of campus and portion of nearby city of Monterey, with harbor, piers and breakwater in background.
of which started in June 1952, and which will be ready for occupancy in August, 1954.

The property acquired in the purchase of the site consists of some 604 acres. The buildings and the campus proper, lying between Fremont Street and Del Monte Avenue, occupy 133 acres of beautifully landscaped and wooded grounds.

The construction program as presently visualized will continue over a period of several years.

The first and second increments of the building program will be completed in the spring of 1954. These comprise the following Engineering School buildings:

A five-story building housing the departments of Electronics and Physics, Chemistry and Metallurgy, and Aerology.

An Electrical Engineering Laboratory of two stories.

A Mechanical Engineering and Aeronautical Engineering Laboratory of three stories.

A two-story building housing the Departments of Mathematics, Aeronautics and Aerology and providing offices, classrooms, drafting rooms, and interim library facilities for all departments.

A 1200-seat Lecture Hall.

A Power Plant.

Subsequent increments as yet planned but not appropriated for, and therefore not firmly scheduled for completion, are expected to provide the following additional laboratories:

A Steam Engineering Laboratory located on the beach to seaward of the main campus for the joint use of the Engineering School and the General Line School.

An Ordnance and Gunnery Laboratory similarly located for the joint use of both schools.

An Aeronautical Laboratory located adjacent to the Naval Auxiliary Air Station to house transonic and supersonic wind tunnels and jet combustion pits.

The third and next building increment is expected to comprise a General Line School Building, an Infirmary, and Barracks and Mess Hall for enlisted personnel. Subsequent increments are expected to provide a Library, an additional Line School building, a Gymnasium, Chapel and an Auditorium.

STUDENT HOUSING

Married Officer Students. The Housing Officer of the U. S. Naval Postgraduate School maintains an up-to-date list of available houses and apartments in the Monterey Peninsula area. All inquiries concerning housing should be directed to him.

Available to naval personnel ordered to duty in the Monterey area are 519 housing units at La Mesa Village, a Wherry Housing development, completed in February 1953 on the elevated “mesa” one mile south of the Postgraduate School. These units consist of detached houses, duplexes and apartments with from one to three bedrooms. They are modern in all respects, with ample baths, carporns and storage space. They are unfurnished except for stove, refrigerator, heater and blinds. They rent from $62.00 to $113.00 per month. Gas and electric power are paid for by the tenant. Water and garbage collection service are supplied by the management at no cost. Applications for these units can be obtained from the Housing Officer at the Postgraduate School.

The Wherry Housing at La Mesa Village is not adequate to meet the requirements of all students. Many highly satisfactory private houses are available in the Monterey Peninsula area for rental by officer students. Rentals average somewhat higher than in many other localities since this is a resort area.

All officers ordered to the U. S. Naval Postgraduate School will be provided with the School’s “Information Bulletin,” which treats this subject in greater detail.

Bachelor Officers’ Quarters. A Bachelor Officers’ Quarters and a Closed Mess, which facilities can accommodate approximately 160 officers, are operated in the main building of the Postgraduate School. Bachelor officers can expect to be ordered to occupy the BOQ up to its capacity.

EDUCATIONAL FACILITIES

The Monterey Peninsula area has adequate public school facilities from kindergarten through two years of college for the dependents of naval personnel. In addition, there are several private schools in the area offering education through high school. The Postgraduate School’s “Information Bulletin” furnished to each officer ordered to the School thoroughly covers this subject.

FLIGHT PROFICIENCY

In order to provide for maintenance of flight proficiency for the large number of aviators in the Postgraduate School student body and the staff, the facilities of the Naval Auxiliary Air Station, Monterey, are made available. The Commanding Officer of that activity reports to the Superintendent, U. S. Naval Postgraduate School, for additional duty in connection with flight proficiency of all naval avia-
tors attached to the School. The Air Station is located about two miles, by road, from the campus.

The Flight Liaison Officer, a naval aviator attached to the staff of the Postgraduate School, assists the Commanding Officer of the Naval Air Station in flight scheduling and maintains the close liaison necessary for smooth operations. Due to the limited number of planes and other facilities available at this small auxiliary air station, careful scheduling and planning are essential. Every effort is made to schedule the required minimum flight time with the least possible interference with the student’s academic work.

LIBRARY FACILITIES

The Libraries of the U. S. Naval Postgraduate School, which contain various collections of published and unpublished materials for the use of students, faculty and staff of the Engineering School and of the General Line School, are three in number—the Reference and Research Library, the Technical Text Library and the Christopher Buckley Library.

The Reference and Research Library, temporarily located on the ground floor of the Administration Building, is an active collection of some 36,000 books, 15,000 bound volumes of periodicals and 65,000 research and development reports dealing mainly with the curricular subjects in the fields of science, engineering and naval studies. It receives over 600 periodicals and many serially published technical and scientific government publications as well as those issued by engineering stations of various universities and by industrial corporations. Its research and development report collection, including a classified section, is maintained for the purpose of keeping students and faculty currently informed of research being done—under government sponsored projects, by industrial organizations, by universities and by independent researchers. The Reference and Research Library also furnishes microfilm and photostat services and will obtain, on interlibrary loan, any publications which are requested and which are not present in its own collections.

The Technical Text Library, also located on the ground floor of the Administration Building, contains approximately 70,000 textbooks, reference books and pamphlets in multiple copies, which are issued to students on a term-loan basis and to instructors for an unlimited period. Students are assigned certain specified texts for their courses but may use this Library to obtain related material to use in conjunction with them.

The Christopher Buckley, Jr. Library, located on the first floor of the Administration Building, immediately above the Reference and Research Library, is a collection of about 4,000 books relating mainly to naval history or to subjects connected with the sea. It contains, among these, many rare or otherwise valuable books, including Sir Walter Raleigh’s “Excellent Observations and Notes, Concerning the Royall Navy and Sea-Service”, published in 1650; Samuel Pepys’ “Memoirs Relating to the State of the Royal Navy of England for Ten Years, Determin’d December 1688”, the first edition (1773-1784) of Capt. James Cook’s “Voyages”, in eight volumes, a number of manuscripts, and many other interesting items. It is a comfortably furnished library in surroundings that are conducive to reading, relaxing, browsing or study. This collection was the result of the generosity and kindness of Mr. Christopher Buckley, resident of Pebble Beach, California, who donated these books in 1952.

The Reference and Research Library will occupy, on a temporary basis, a portion of one of the new Engineering School buildings which will be completed early in 1954; all Libraries will be accommodated eventually in the New Library Building.

RECREATION FACILITIES

The U. S. Naval Postgraduate School is situated in a nationally famous recreational area, consisting generally of the Monterey Peninsula, the nearby Santa Cruz Mountain area, and the rugged Santa Lucia range extending to the southeastward along the coast.

On the campus are several tennis courts, heavily wooded walking areas, a golf putting green, and a beautiful swimming pool with pavilion. There are also a child’s wading pool, a badminton court, a playground and a screened sand-lot to make this pool area a valuable source of recreation. Bowling alleys are available at the Naval Auxiliary Air Station.

About one-half mile to the northward, across the Southern Pacific Railroad tracks, lies the ocean, with miles of beach. A nearby fish pier and small boat harbor afford opportunities for ocean fishing.

Golf is perhaps the most popular sport in the Monterey Peninsula area. The Del Monte Golf Course, formerly connected with the Hotel, is available to the public and lies directly across Fremont Avenue (State Route 1) from the Postgraduate School. Also available to the public is the Pacific Grove municipal course. Other outstanding courses in the vicinity include the Pebble Beach, Cypress Point, and Monterey Peninsula Country Club courses, all located in Del Monte Forest.

The primitive mountain country in this part of California provides many opportunities for hunting, fishing and hiking. Only a few hours distant are the mountain resorts such as Yosemite, Lake Tahoe and the Mount Shasta country.
of which started in June 1952, and which will be ready for occupancy in August, 1954.

The property acquired in the purchase of the site consists of some 604 acres. The buildings and the campus proper, lying between Fremont Street and Del Monte Avenue, occupy 133 acres of beautifully landscaped and wooded grounds.

The construction program as presently visualized will continue over a period of several years.

The first and second increments of the building program will be completed in the spring of 1954. These comprise the following Engineering School buildings:

A five-story building housing the departments of Electronics and Physics, Chemistry and Metallurgy, and Aerology.

An Electrical Engineering Laboratory of two stories.

A Mechanical Engineering and Aeronautical Engineering Laboratory of three stories.

A two-story building housing the Departments of Mathematics, Aeronautics and Aerology and providing offices, classrooms, drafting rooms, and interim library facilities for all departments.

A 1200-seat Lecture Hall.

A Power Plant.

Subsequent increments as yet planned but not appropriated for, and therefore not firmly scheduled for completion, are expected to provide the following additional laboratories:

A Steam Engineering Laboratory located on the beach to seaward of the main campus for the joint use of the Engineering School and the General Line School.

An Ordnance and Gunnery Laboratory similarly located for the joint use of both schools.

An Aeronautical Laboratory located adjacent to the Naval Auxiliary Air Station to house transonic and supersonic wind tunnels and jet combustion pits.

The third and next building increment is expected to comprise a General Line School Building, an Infirmary, and Barracks and Mess Hall for enlisted personnel. Subsequent increments are expected to provide a Library, an additional Line School building, a Gymnasium, Chapel and an Auditorium.

STUDENT HOUSING

Married Officer Students. The Housing Officer of the U. S. Naval Postgraduate School maintains an up-to-date list of available houses and apartments in the Monterey Peninsula area. All inquiries concerning housing should be directed to him.

Available to naval personnel ordered to duty in the Monterey area are 519 housing units at La Mesa Village, a Wherry Housing development, completed in February 1953 on the elevated “mesa” one mile south of the Postgraduate School. These units consist of detached houses, duplexes and apartments with from one to three bedrooms. They are modern in all respects, with ample baths, carports and storage space. They are unfurnished except for stove, refrigerator, heater and blinds. They rent from $62.00 to $113.00 per month. Gas and electric power are paid for by the tenant. Water and garbage collection service are supplied by the management at no cost. Applications for these units can be obtained from the Housing Officer at the Postgraduate School.

The Wherry Housing at La Mesa Village is not adequate to meet the requirements of all students. Many highly satisfactory private houses are available in the Monterey Peninsula area for rental by officer students. Rentals average somewhat higher than in many other localities since this is a resort area.

All officers ordered to the U. S. Naval Postgraduate School will be provided with the School’s “Information Bulletin,” which treats this subject in greater detail.

Bachelor Officers’ Quarters. A Bachelor Officers’ Quarters and a Closed Mess, which facilities can accommodate approximately 160 officers, are operated in the main building of the Postgraduate School. Bachelor officers can expect to be ordered to occupy the BOQ up to its capacity.

EDUCATIONAL FACILITIES

The Monterey Peninsula area has adequate public school facilities from kindergarten through two years of college for the dependents of naval personnel. In addition, there are several private schools in the area offering education through high school. The Postgraduate School’s “Information Bulletin” furnished to each officer ordered to the School thoroughly covers this subject.

FLIGHT PROFICIENCY

In order to provide for maintenance of flight proficiency for the large number of aviators in the Postgraduate School student body and the staff, the facilities of the Naval Auxiliary Air Station, Monterey, are made available. The Commanding Officer of that activity reports to the Superintendent, U. S. Naval Postgraduate School, for additional duty in connection with flight proficiency of all naval avia-
tors attached to the School. The Air Station is located about two miles, by road, from the campus.

The Flight Liaison Officer, a naval aviator attached to the staff of the Postgraduate School, assists the Commanding Officer of the Naval Air Station in flight scheduling and maintains the close liaison necessary for smooth operations. Due to the limited number of planes and other facilities available at this small auxiliary air station, careful scheduling and planning are essential. Every effort is made to schedule the required minimum flight time with the least possible interference with the student's academic work.

LIBRARY FACILITIES

The Libraries of the U. S. Naval Postgraduate School, which contain various collections of published and unpublished materials for the use of students, faculty and staff of the Engineering School and of the General Line School, are three in number—the Reference and Research Library, the Technical Text Library and the Christopher Buckley Library.

The Reference and Research Library, temporarily located on the ground floor of the Administration Building, is an active collection of some 36,000 books, 15,000 bound volumes of periodicals and 65,000 research and development reports dealing mainly with the curricular subjects in the fields of science, engineering and naval studies. It receives over 600 periodicals and many serially published technical and scientific government publications as well as those issued by engineering stations of various universities and by industrial corporations. Its research and development report collection, including a classified section, is maintained for the purpose of keeping students and faculty currently informed of research being done—under government sponsored projects, by industrial organizations, by universities and by independent researchers. The Reference and Research Library also furnishes microfilm and photocopy services and will obtain, on interlibrary loan, any publications which are requested and which are not present in its own collections.

The Technical Text Library, also located on the ground floor of the Administration Building, contains approximately 70,000 textbooks, reference books and pamphlets in multiple copies, which are issued to students on a term-loan basis and to instructors for an unlimited period. Students are assigned certain specified texts for their courses but may use this Library to obtain related material to use in conjunction with them.

The Christopher Buckley, Jr. Library, located on the first floor of the Administration Building, immediately above the Reference and Research Library, is a collection of about 4,000 books relating mainly to naval history or to subjects connected with the sea. It contains, among these, many rare or otherwise valuable books, including Sir Walter Raleigh's "Excellent Observations and Notes, Concerning the Royall Navy and Sea-Service", published in 1650; Samuel Pepys' "Memoires Relating to the State of the Royal Navy of England for Ten Years, Determin'd December 1688", the first edition (1773-1784) of Capt. James Cook's "Voyages", in eight volumes, a number of manuscripts, and many other interesting items. It is a comfortably furnished library in surroundings that are conducive to reading, relaxing, browsing or study. This collection was the result of the generosity and kindness of Mr. Christopher Buckley, resident of Pebble Beach, California, who donated these books in 1952.

The Reference and Research Library will occupy, on a temporary basis, a portion of one of the new Engineering School buildings which will be completed early in 1954; all Libraries will be accommodated eventually in the New Library Building.

RECREATION FACILITIES

The U. S. Naval Postgraduate School is situated in a nationally famous recreational area, consisting generally of the Monterey Peninsula, the nearby Santa Cruz Mountain area, and the rugged Santa Lucia range extending to the southeastward along the coast.

On the campus are several tennis courts, heavily wooded walking areas, a golf putting green, and a beautiful swimming pool with pavilion. There are also a child's wading pool, a badminton court, a playground and a screened sand-lot to make this pool area a valuable source of recreation. Bowling alleys are available at the Naval Auxiliary Air Station.

About one-half mile to the northward, across the Southern Pacific Railroad tracks, lies the ocean, with miles of beach. A nearby fish pier and small boat harbor afford opportunities for ocean fishing.

Golf is perhaps the most popular sport in the Monterey Peninsula area. The Del Monte Golf Course, formerly connected with the Hotel, is available to the public and lies directly across Fremont Avenue (State Route 1) from the Postgraduate School. Also available to the public is the Pacific Grove municipal course. Other outstanding courses in the vicinity include the Pebble Beach, Cypress Point, and Monterey Peninsula Country Club courses, all located in Del Monte Forest.

The primitive mountain country in this part of California provides many opportunities for hunting, fishing and hiking. Only a few hours distant are the mountain resorts such as Yosemite, Lake Tahoe and the Mount Shasta country.
The Interim Establishment Chapel, in former hotel lobby space, Administration Building.
Swimming Pool and Pavilion, on the campus, affording valuable recreation and exercise for students, faculty, staff and dependents.
Lobby of Administration Building.
Architect's sketch showing portions of five Engineering School buildings now under construction, scheduled for occupancy in 1954. At lower left is a lecture hall; other buildings house laboratories, offices, classrooms and the interim library.
A typical view in the La Mesa low-cost housing project, located near the campus.

A typical housing unit in La Mesa Village.
Aerial view of Monterey peninsula showing the “La Mesa Village” housing in the left foreground, the school buildings near the shore in the center, city of Monterey at the left, and the Naval Auxiliary Air Field at the right. The Del Monte public golf course is shown in the foreground. The airplane shown is one of the planes used for flight proficiency by the students.
Training plane and control tower, Naval Auxiliary Air Station, about two miles from campus. Here the Postgraduate School students can take flight proficiency flying.

"Flight Line" of SNB planes assigned to Naval Auxiliary Air Station, Monterey, and used for flight proficiency training.
The electronic digital computer. This machine, like the analog computer, is used for computation connected with research projects, and to support Mathematics Department courses in modern computing methods. With such equipment, a great variety of complex problems, such as high-order differential equations, can be solved in a few seconds, which would require several days by more conventional methods.

(By courtesy of Computer Research Corporation. Photo by Dean Vance)
SECTION II
THE ENGINEERING SCHOOL

Director
Harold David KRICK, Captain, U. S. Navy
B.S., USNA, 1923; M.S., Univ. of Mich., 1930.
(Detached in July 1953)

James Henry WARD, Captain, U. S. Navy
B.S., USNA, 1926.
(Reporting in August 1953)

Assistant to the Director
Richard Archibald MONTFORT, Lieutenant Commander, U. S. Navy
B.C.S., Drake Univ., 1939.

NAVAL STAFF

AEROLOGICAL ENGINEERING CURRICULA

† George Deveraux GOOD
Commander, U. S. Navy
 Office in Charge
B.S., USNA, 1935.

William Stanley LANTERMAN
Commander, U. S. Navy
 Assistant Officer in Charge
 Aerological Engineering Instructor
B.S. Lafayette College, 1935; M.S., 1937.

Robert Earl MOTTERN
Lieutenant Commander, U. S. Navy
 Aerological Engineering Instructor
B.S., USNA, 1942; M.S., USNPGS, 1948.

James Francis O'CONNOR
Lieutenant Commander, U. S. Navy
 Aerological Engineering Instructor

Charles Gerhard KNUDSEN
Lieutenant Commander, U. S. Navy
 Aerological Engineering Instructor

Willard Samuel HOUSTON, Jr.
Lieutenant, U. S. Navy
 Aerological Engineering Instructor
M.S., USNPGS, 1953.

Elston WYATT
Lieutenant, U. S. Navy
 Aerological Engineering Instructor
B.S., USNA, 1943; M.S., USNPGS, 1950.

Edward Snide HUDSON
Chief Aerographer, U. S. Navy
 Aerological Engineering Instructor

Richard LANE
Chief Aerographer, U. S. Navy
 Aerological Engineering Instructor

AERONAUTICAL ENGINEERING CURRICULA

† Edwin Samuel LEE, Jr.
Captain, U. S. Navy
 Office in Charge
B.S., USNA, 1934; M.S.(AE) and AeE, Cal. Tech., 1943.

Loys Malcolm SATTERFIELD
Lieutenant Commander, U. S. Navy
 Assistant to Officer in Charge
B.S., Trinity Univ., 1940; AeE, Cal. Tech., 1947.

COMMUNICATIONS CURRICULA

Leland Griffith SHAFFER
Captain, U. S. Navy
 Office in Charge
B.S., USNA, 1931.

Robert Gwathmey MERRITT
Commander, U. S. Navy
 Assistant to Officer in Charge
B.S., USNA, 1939.

James Joseph McMULLAN
Lieutenant Commander, U. S. Navy
 Communications Instructor
B.S.S., St Mary's College, 1941.

Richard Webster HYDE
Lieutenant Commander, U. S. Navy
 Communications Instructor
B.S., Yale Univ., 1940.

Myles Cornelius KING
Lieutenant Commander, U. S. Navy
 Communications Instructor
A.B., Boston College, 1938.

Melvin Eugene FOX
Lieutenant, U. S. Navy
 Communications Instructor
THE ENGINEERING SCHOOL

Donald Douglas RITCHIE
Lieutenant, U. S. Navy
Communications Instructor

Clarence Joseph ZIELKE
Lieutenant, U. S. Navy
Communications Instructor

Francis Emil HOROBETZ
Lieutenant, U. S. Navy
Communications Instructor

Richard Erwin CROSS
Lieutenant, U. S. Navy
Communications Instructor

Dale Eugene COCHRAN
Commander, U. S. Navy
Assistant to Officer in Charge
Naval Engineering Instructor
B.S., USNA, 1935.

William Mac NICHOLSON
Commander, U. S. Navy
Naval Engineering Instructor
B.S., USNA, 1941; M.S., M.I.T., 1948.

Claude Clyde BRUBAKER
Lieutenant Commander, U. S. Navy
Laboratory and Machine Shop Officer

ENGINEERING ELECTRONICS CURRICULA

** Charles Maurice RYAN
Captain, U. S. Navy
Officer in Charge
B.S., USNA, 1925; M.S., Univ. of Calif., 1933.

Jackson Madison RIGHTMYER
Lieutenant Commander, U. S. Navy
Assistant to Officer in Charge

Richard Labagh KILE
Lieutenant, U. S. Navy
Engineering Electronics Instructor

NAVAL ENGINEERING CURRICULA

Wells THOMPSON
Captain, U. S. Navy
Officer in Charge
B.S., USNA, 1928; M.S., Univ. of Calif., 1938.

ORDNANCE ENGINEERING CURRICULA

William Robinson SMITH, 3rd.
Commander, U. S. Navy
Officer in Charge
B.S., USNA, 1934.

James Emmet BRENNER, Jr.
Commander, U. S. Navy
Assistant to Officer in Charge
Ordnance Engineering Instructor
B.S., USNA, 1938.

Felix Leonard ENGLANDER
Commander, U. S. Navy
Ordnance Engineering Instructor
B.S., USNA, 1940; B.S., USNPGS, 1949; M.S., Lehigh Univ., 1950.

CIVILIAN FACULTY

Roy Stanley GLASGOW
Academic Dean (1949)*
B.S., Washington Univ., 1918; M.S., Harvard Univ., 1922; E.E., 1925.

DEPARTMENT OF AEROLOGY

William Dwight DUTHIE
Professor of Aerology; Chairman (1946)*
A.B., Univ. of Washington, 1935; M.S., 1937; Ph.D.
Princeton Univ., 1940.

George Joseph HALTINER
Associate Professor of Aerology (1946)
B.S., College of St. Thomas, 1940; Ph.M., Univ.
of Wisconsin, 1942; Ph.D., 1948.

Frank Lionel MARTIN
Associate Professor of Aerology (1947)
A.B., Univ. of British Columbia, 1936; A.M., 1938;
Ph.D., Univ. of Chicago, 1941.

Robert Joseph RENARD
Instructor in Aerology (1952)
M.S., Univ. of Chicago, 1952.

Jacob Bertram WICKHAM
Asst. Professor of Aerology and Oceanography
(1951)
B.S., Univ. of California, 1947; M.S., Scripps Insti-
tution of Oceanography, 1949.

DEPARTMENT OF AERONAUTICS

Wendell Marois COATES
Professor of Aeronautics; Chairman (1931) *
A.B., Williams College, 1919; M.S., Univ of
Michigan, 1923; D.Sc., 1929.

The year of joining the Postgraduate School faculty is indicated in parentheses.
Richard William BELL
Associate Professor of Aeronautics (1951)
A.B., Oberlin College, 1939; AeE., California Institute of Technology, 1941.

Theodore Henry Gawain
Associate Professor of Aeronautics (1951)
B.S., Univ. of Pennsylvania, 1940; D.Sc., Massachusetts Institute of Technology, 1944.

Vernon Kenneth Gunkel
Professor of Aeronautics (1952)
B.S., North Dakota Agriculture College, 1940; M.S. Texas Agriculture and Mechanical College, 1942; B.M.E. Alabama Polytechnic Institute, 1949.

Richard Moore Head
Professor of Aeronautics (1949)
B.S., California Institute of Technology, 1942; M.S., 1943; A.E., 1943; Ph.D., 1949.

George Judson Higgins
Professor of Aeronautics (1942)
B.S., Univ. of Michigan, 1923; Ae.E., 1934.

Charles Horace Kahr, Jr.
Associate Professor of Aeronautics (1947)
B.S., Univ. of Michigan, 1944; M.S., 1945.

Henry Lebrecht Kohler
Professor of Aeronautics (1943)
B.S., Univ. of Illinois, 1929; M.S., Yale Univ., 1930; M.E., 1931.

Michael Hans Vavra
Professor of Aeronautics (1947)
Dipl. Ing., Swiss Federal Institute of Technology, 1934.

Charles Van Orden Terwilliger
Professor of Electrical Engineering; Chairman (1925)

Charles Benjamin Oler
Associate Professor of Electrical Engineering (1946)
B.S., Univ. of Pennsylvania, 1927; M.S., 1930; D.Eng., Johns Hopkins Univ., 1950.

Orval Harold Polk
Professor of Electrical Engineering (1946)
B.S., Univ. of Colorado, 1927; M.S., Univ. of Arizona, 1933; E.E., Univ. of Colorado, 1940.

Charles Henry Rorthauge
Associate Professor of Electrical Engineering (1949)
B.E., Johns Hopkins Univ., 1940; D.Eng., 1949.

William Conley Smith
Associate Professor of Electrical Engineering (1946)
B.S., Ohio Univ., 1935; M.S., 1939.

William Alfred Stein
Assistant Professor of Electrical Engineering (1951)
B.S., Washington Univ., 1943; M.S., 1947; D.Sc., 1951.

George Julius Thaler
Assistant Professor of Electrical Engineering (1951)
B.E., Johns Hopkins Univ., 1940; D.Eng., 1947.

Allen Edgar Viveill
Professor of Electrical Engineering (1945)
B.E., Johns Hopkins Univ., 1927; D.Eng., 1937.

Richard Carvel Hensen Wheeler
Professor of Electrical Engineering (1929)
B.E., Johns Hopkins Univ., 1923; D.Eng., Rensselaer Polytechnic Institute, 1926.

DEPARTMENT OF ELECTRICAL ENGINEERING

Austin Rogers Frey
Professor of Physics; Chairman (1946)
B.S., Harvard Univ., 1920; M. S., 1924; Ph.D., 1929.

Neal Sample Anderson
Assistant Professor of Physics (1951)
A.B., Univ. of California at Los Angeles, 1946; A.M., 1949; Ph.D., 1951.

Robert Edmund Bauer
Assistant Professor of Electronics (1948)
B.S., Villanova College, 1947; M.S., Univ. of Pennsylvania, 1949.

William Malcolm Bauer
Professor of Electronics (1946)
B.S., Northwestern Univ., 1927; E.E., 1928; M.S., Harvard Univ., 1929; D.Sc., 1940.

Jesse Gerald Chaney
Professor of Electronics (1946)
A.B., Southwestern Univ., 1924; A.M., Univ. of Texas, 1930.

Roderick Keener Clayton
Associate Professor of Physics (1952)
B.S., California Institute of Technology, 1947; Ph.D., 1951.

Paul Eugene Cooper
Associate Professor of Electronics (1946)
B.S., Univ. of Texas, 1937; M.S., 1939.

William Peyton Cunningham
Professor of Physics (1946)
B.S., Yale Univ., 1928; Ph.D., 1932.
THE ENGINEERING SCHOOL

John James DOWNING
Instructor in Electronics (1952)
B.S., Massachusetts Institute of Technology, (1948).

George Robert GIEFT
Professor of Electronics (1925)

Earl Gascoigne GODDARD
Assistant Professor of Electronics (1948)

Robert KAHAL
Associate Professor of Electronics (1952)

Sydney Hobart KALMBACH
Assistant Professor of Physics (1947)
B.S., Marquette Univ., 1934; M.S., 1937.

Lawrence Edward KINSLER
Professor of Physics (1946)
B.S., California Institute of Technology, 1931; Ph.D., 1934.

Clarence Frederick KLAMM, Jr.
Assistant Professor of Electronics (1951)
B.S., Washington Univ., 1943; M.S., 1948.

William Warner LANG
Instructor in Physics (1951)
B.S., Iowa State College, 1946; M.S., Massachusetts Institute of Technology, 1949.

Carl Ernest MENNEKEN
Professor of Electronics (1942)
B.S., Univ. of Florida, 1932; M.S., Univ. of Michigan, 1936.

Robert Lee MILLER
Associate Professor of Electronics (1946)

Norman Lee OLESON
Professor of Physics (1948)
B.S., Univ. of Michigan, 1935; M.S., 1937; Ph.D., 1940.

William Henry ROADSTRUM
Assistant Professor of Electronics (1948)
B.S., Lehigh Univ., 1938; M.S., Carnegie Institute of Technology, 1948.

Abraham SHEINGOLD
Associate Professor of Electronics (1946)
B.S., College of the City of New York, 1936; M.S., 1937.

Donald Alan STENTZ
Assistant Professor of Electronics (1949)

Michael Satoshi WATANABE
Professor of Physics (1952)
B.S., Tokyo Univ., 1933; D.Sc., Paris Univ., 1935; D.Sc., Tokyo Univ., 1940.

DEPARTMENT OF MATHEMATICS AND MECHANICS

Warren Randolph CHURCH
Professor of Mathematics and Mechanics; Chairman (1938)
A.B., Amherst, 1926; A.M., Univ. of Pennsylvania, 1930; Ph.D., Yale Univ., 1935.

Willard Evans BLEICK
Professor of Mathematics and Mechanics (1946)
M.E., Stevens Institute of Technology, 1929; Ph.D., Johns Hopkins Univ., 1933.

Richard Crowley CAMPBELL
Associate Professor of Mathematics and Mechanics (1948)
B.S., Muhlenberg College, 1940; A.M., Univ. of Pennsylvania, 1942.

Frank David FAULKNER
Associate Professor of Mathematics and Mechanics (1950)
B.S., Kansas State Teachers College, 1940; M.S., Kansas State College, 1942.

Joseph GIARRATANA
Professor of Mathematics and Mechanics (1946)
B.S., Univ. of Montana, 1928; Ph.D., New York Univ., 1936.

Walter JENNINGS
Associate Professor of Mathematics and Mechanics (1947)
A.B., Ohio State Univ., 1932; B.S., 1934; A.M., 1934.

Brooks Javins LOCKHART
Associate Professor of Mathematics and Mechanics (1948)
A.B., Marshall College, 1937; M.S., West Virginia Univ., 1940; Ph.D., Univ. of Illinois, 1943.

Aladuke Boyd MEWBORN
Professor of Mathematics and Mechanics (1946)
B.S., Univ. of Arizona, 1927; M.S., 1933; Ph.D., California Institute of Technology, 1940.

Thomas Edmond OBERBECK
Associate Professor of Mathematics and Mechanics (1951)
A.B., Washington Univ., 1938; A.M., Univ. of Nebraska, 1940; Ph.D., California Institute of Technology, 1948.
Clay Lamont PERRY, Jr.
Associate Professor of Mathematics (1953)
A.B., Univ. of California at Los Angeles, 1942;
A.M., Univ. of Southern California, 1946; Ph.D.,
Univ. of Michigan, 1949.

John Philip PIERCE
Associate Professor of Mathematics and Mechanics
(1948)
B.S., Worcester Polytechnic Institute, 1931;
M.E.E., Polytechnic Institute of Brooklyn, 1937.

Francis McConnell PULLIAM
Associate Professor of Mathematics and Mechanics
(1949)
A.B., Univ. of Illinois, 1937; A.M., 1938; Ph.D.,
1947.

Charles Henry RAWLINS, Jr.
Professor of Mathematics and Mechanics (1922)
Ph.B., Dickinson College, 1910; A.M., 1913; Ph.D.,
Johns Hopkins Univ., 1916.

Ralph Eugene ROOT
Professor Emeritus of Mathematics (1914)
B.S., Morningside College, 1905; A.M., Univ. of
Iowa, 1909; Ph.D., Univ. of Chicago, 1911.

Charles Chapman TORRANCE
Professor of Mathematics and Mechanics (1946)
M.E., Cornell Univ., 1922; A.M., 1927; Ph.D., 1931.

DEPARTMENT OF MECHANICAL ENGINEERING

Paul James KIEFER
Senior Professor of Mechanical Engineering;
Chairman (1920)
A.B., Wittenberg College, 1908; B.S., Case Institute
of Technology, 1911; M.E., 1939; D.Sc., Wittenberg
College, 1953.

Eugene Elias DRUCKER
Assistant Professor of Mechanical Engineering
(1950)
B.S., Massachusetts Institute of Technology, 1949;
M.S., 1950.

Ernest Kenneth GATCOMBE
Professor of Mechanical Engineering (1946)
B.S., Univ. of Maine, 1931; M.S., Purdue Univ.,
1939; Ph.D., Cornell Univ., 1944.

Dennis KAVANAUGH
Professor of Mechanical Engineering (1926)
B.S., Lehigh Univ., 1914.

Cecil Dudley Gregg KING
Assistant Professor of Mechanical Engineering
(1952)
B.E., Yale Univ., 1943; M.S., Univ. of California,
1952.

Robert Eugene NEWTON
Professor of Mechanical Engineering (1951)
B.S., Washington Univ., 1938; M.S., 1939; Ph.D.,
Univ. of Michigan, 1951.

Roy Walters PROWELL
Associate Professor of Mechanical Engineering
(1946)
B.S., Lehigh Univ., 1936; M.S., Univ. of Pittsburgh,
1943.

Allen Kleiber SCHLEICHER
Assistant Professor of Mechanical Engineering
(1950)
B.S., Washington Univ., 1943; M.S., 1950.

Ivar Howard STOCKEL
Instructor in Mechanical Engineering (1950)
B.S., Massachusetts Institute of Technology, 1950;
M.S., 1950.

Harold Marshall WRIGHT
Professor of Mechanical Engineering (1945)
B.S., North Carolina State College, 1930; M.M.E.,
Rensselaer Polytechnic Institute, 1931.

DEPARTMENT OF METALLURGY AND CHEMISTRY

Frederick Leo COONAN
Professor of Metallurgy and Chemistry; Chairman
(1951)
A.B., Holy Cross College, 1922; M.S., 1924; D.Sc.,
Massachusetts Institute of Technology, 1931.

Newton Weber BUERGER
Professor of Metallurgy (1942)
B.S., Massachusetts Institute of Technology, 1933;
M.S., 1934; Ph.D., 1937.

John Robert CLARK
Professor of Metallurgy (1947)
B.S., Union College, 1935; D.Sc., Massachusetts
Institute of Technology, 1942.

Alfred GOLDBERG
Assistant Professor of Metallurgy (1953)
B.E., McGill Univ., 1946
M.S., Carnegie Institute of Technology, 1949.

William Wisner HAWES
Associate Professor of Metallurgy and Chemistry
(1962)
B.S., Purdue Univ., 1924; M.S., Brown Univ., 1927;
Ph.D., 1930.

Carl Adolph HERING
Associate Professor of Chemical Engineering
(1946)
B.S., Oregon State College, 1941; M.S., Cornell
Univ., 1944.
Gilbert Ford KINNEY
Professor of Chemical Engineering (1942)
A.B., Arkansas College, 1928; M.S., Univ. of Tennessee, 1930; Ph.D., New York Univ., 1935.

Lloyd Randall KOEING
Instructor in Chemical Engineering (1950)

George Daniel MARSHALL, Jr.
Associate Professor of Metallurgy (1946)
B.S., Yale Univ., 1930; M.S., 1932.

George Harold McFARLIN
Associate Professor of Chemistry (1948)
A.B., Indiana Univ. 1925; A.M., 1926.

Melvin Ferguson REYNOLDS
Professor of Chemistry (1946)

James Edward SINCLAIR
Assistant Professor of Chemistry (1949)
B.S., Johns Hopkins Univ., 1945

James Woodrow WILSON
Associate Professor of Chemical Engineering (1949)
A.B., Stephen F. Austin State Teachers College, 1935; B.S., Univ. of Texas, 1939; M.S., Texas Agricultural and Mechanical College, 1941.

** To be relieved in July by Capt. Paul Van Leuen, Jr., USN.
† To be relieved in August by Capt. John F. Tatom, USN.
‡ To be relieved in July by Comdr. Ralph W. Arndt, USN.

LIBRARY

George Ridgely LUCKETT
Associate Professor; Director of Libraries (1950)
B.S., Johns Hopkins Univ., 1949; M.S., Catholic Univ., 1951.

Morris HOFFMAN
Assistant Professor; Associate Librarian (1952)

Jack Benjamin GOLDMANN
Reference Librarian (1952)
A.B., Univ. of California, 1939; A.M., 1940; B.L.S., 1950; Ph.D., 1953.

Georgia Plummer LYKE
Technical Reports Cataloger (1952)
A.A., Hartnell Junior College, 1940.

Margaret H. McBRIDE
Catalog Librarian (1951)
A.B., Univ. of California, 1945; B.L.S., 1947.

Ignatius McGUIRE
Assistant Librarian (1948)

Cyril Harrison SYKES
Acquisitions Librarian (1951)
A.B., Norwich Univ., 1947; M.S., Syracuse Univ., 1949.

Marjorie Idana Vollmer THORPE
Technical Reports Librarian (1952)
A.B., Univ. of California at Los Angeles, 1942; B.S., Univ. of Southern California, 1943.
CIVILIAN FACULTY

ACADEMIC ASSOCIATES

For each group of curricula, a faculty member is designated who acts as adviser to the officer in charge of respective curricula, in academic matters pertaining to curricula, such as formulation, proposed changes, etc.

<table>
<thead>
<tr>
<th>Curriculum</th>
<th>Group Designator</th>
<th>Academic Associate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>RC</td>
<td>Professor Kinney</td>
</tr>
<tr>
<td>Mathematics</td>
<td>RM</td>
<td>Professor Church</td>
</tr>
<tr>
<td>Physics</td>
<td>RP, RX</td>
<td>Professor Frey</td>
</tr>
<tr>
<td>Aerological Engineering</td>
<td>MA, MS</td>
<td>Professor Duthie</td>
</tr>
<tr>
<td>Aeronautical Engineering</td>
<td>A, AG</td>
<td>Professor Coates</td>
</tr>
<tr>
<td>Aeronautical Engineering (Electrical)</td>
<td>AE</td>
<td>Professor Vivell</td>
</tr>
<tr>
<td>Aeronautical Engineering (Armament)</td>
<td>AR</td>
<td>Professor Bleick</td>
</tr>
<tr>
<td>Communications</td>
<td>C, CS</td>
<td>Professor Giet</td>
</tr>
<tr>
<td>Engineering Electronics</td>
<td>E, EA, EW</td>
<td>Professor Giet</td>
</tr>
<tr>
<td>Mine Warfare</td>
<td>RW</td>
<td>Professor Kinsler</td>
</tr>
<tr>
<td>Naval Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>NC</td>
<td>Professor Kinney</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>NL</td>
<td>Professor Polk</td>
</tr>
<tr>
<td>Gas Turbines</td>
<td>NJ</td>
<td>Professor Polk, Professor Vavra</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>NH, NQ</td>
<td>Professor Wright</td>
</tr>
<tr>
<td>Mechanical Engineering (Nuclear Power)</td>
<td>NN</td>
<td>(To be assigned)</td>
</tr>
<tr>
<td>Metallurgical Engineering</td>
<td>NM</td>
<td>Professor Coonan</td>
</tr>
<tr>
<td>Petroleum Engineering</td>
<td>NP</td>
<td>Professor Coonan</td>
</tr>
<tr>
<td>Nuclear Engineering (Effects)</td>
<td>RZ</td>
<td>Professor Frey</td>
</tr>
<tr>
<td>Operations Analysis</td>
<td>RO</td>
<td>Professor Cunningham</td>
</tr>
<tr>
<td>Ordnance Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aviation</td>
<td>OE</td>
<td>Professor Bleick</td>
</tr>
<tr>
<td>Explosives</td>
<td>OP</td>
<td>Professor Kinney</td>
</tr>
<tr>
<td>Fire Control</td>
<td>OF</td>
<td>Professor Bleick</td>
</tr>
<tr>
<td>General</td>
<td>O</td>
<td>Professor Bleick</td>
</tr>
<tr>
<td>Guided Missiles</td>
<td>OG</td>
<td>(To be assigned)</td>
</tr>
<tr>
<td>Jet Propulsion</td>
<td>OJ</td>
<td>Professor Bleick</td>
</tr>
<tr>
<td>Special Physics</td>
<td>OX</td>
<td>Professor Frey</td>
</tr>
</tbody>
</table>

Liaison Officials at Other Institutions, where students from the Postgraduate School are enrolled:

Boston University
California Institute of Technology
Carnegie Institute of Technology
Catholic University
Columbia University
Fordham University
Georgetown University
George Washington University
 (Comptrollership)
George Washington University (Law)
Georgia Institute of Technology
Harvard University
Iowa State College
Lehigh University
Massachusetts Institute of Technology

*P.N.S., Harvard University
P.N.S., Univ. of So. Calif.
Assoc. Prof. J. W. Ludewig,
 Dept. of Metallurgical Eng.
Office of the Judge Advocate General
P.N.S.
P.N.S., Columbia Univ.
Office of the Judge Advocate General
Prof. A. R. Johnson
Office of the Judge Advocate General
P.N.S.
P.N.S.
P.N.S.
Dean Harvey A. Neville, Graduate School
CO, Naval Administrative Unit
THE ENGINEERING SCHOOL

Oak Ridge School of Reactor Technology
Ohio State University
Princeton University
Purdue University
Rensselaer Polytechnic Institute
Rochester Institute of Technology
Royal Naval College, Greenwich, England
Scripps Institute of Oceanography
Stanford University
Stevens Institute of Technology
Swiss Federal Institute, Zurich, Switzerland
Union Theological Seminary
University of California
University of Illinois
University of Michigan
University of Minnesota
University of Pittsburgh
University of Southern California
Webb Institute of Naval Architecture

Yale University

*P.N.S. signifies Professor of Naval Science.

FUNCTION OF THE SCHOOL

The Engineering School of the U. S. Naval Postgraduate School is established for the purpose of maintaining courses of instruction for the advanced education and training of commissioned officers in such general or technical subjects as the Secretary of the Navy may prescribe.

This institution is not in competition with the various civilian colleges of the country. On the contrary, the postgraduate program utilizes the best available sources of learning in each field. The curricula are thus seen to include varying proportions at outside institutions, some being conducted entirely at a civilian college.

At the Engineering School, instruction is given in basic sciences and in the application of these sciences to naval uses. The basic sciences (mathematics, physics, chemistry) are the same whether studied at this school or at a civilian college; the application of the sciences to naval machinery and equipment, however, can be learned best at a naval school, where the important teaching experience is developed over the years. Thus, in the fields of mechanical engineering, electrical engineering, electronics, ordnance and aeronautical engineering, all of great importance in the Navy, most curricula are given entirely at Monterey. Even in these, however, a civilian college is utilized in some cases for the final year of advanced instruction in particular fields such as Gas Turbines, Explosives, Metallurgical Engineering, and Petroleum Engineering.

Conducted entirely at civilian colleges are the following curricula, in which no instruction or facilities are available at the Engineering School:

(a) Civil Engineering
(b) Naval Architecture
(c) Advanced study in pure science
(d) Business Administration
(e) Textile Engineering
(f) Law
(g) Religion, and a few other highly specialized programs.

Close and cordial relations are maintained with many of the leading universities, including some foreign institutions.

The selection of officers applying for postgraduate instruction is made by boards appointed by the Chief of Naval Personnel. The courses available, the conditions of eligibility and other pertinent data are published annually in Bureau of Naval Personnel directives.
ADMINISTRATION

Responsibility for administration of the Engineering School rests in the Director. Under the Director are the Naval Staff and the Civilian Faculty.

The Naval Staff consists of the officers in charge of curricula, with their respective officer assistants, some of whom are also instructors in naval professional subjects.

The Civilian Faculty is organized into academic departments, each with a chairman who is responsible for the instruction given in his department.

Academic departments are listed as follows:
- Department of Aerology
- Department of Aeronautics
- Department of Electrical Engineering
- Department of Electronics and Physics
- Department of Mathematics and Mechanics
- Department of Mechanical Engineering
- Department of Metallurgy and Chemistry

The Civilian Faculty members of the Engineering School are under the over-all supervision and administration of the Academic Dean, insofar as their academic work and performance are concerned. The Dean represents the Superintendent and the Director, with many of the functions usually resting in the Dean of a civilian college. The faculty members are civil service personnel, with "excepted" status.

The officer students of the Engineering School are under the military supervision of the respective officers in charge of curricula, who represent the Director, Engineering School. The officer in charge of the student's curricula group conducts the usual naval administration, such as fitness reports and muster.

In addition to the task of military supervision of the officer students, the officer in charge of a curricula group is responsible for planning and composing the curricula assigned to him, selecting courses which will fill the needs of the Navy. The officer in charge keeps the curricula flexible, affording instruction in new applications of engineering and science, as well as in the basic sciences. In this work, he maintains close liaison with the sponsoring material bureaus and offices of the Navy.

In carrying out his duties, the officer in charge of a curricula group is assisted by the Academic Associate, a faculty member assigned to a designated group of curricula.

In the Engineering School, there are six curricular officers:

- Officer in Charge, Aerological Engineering Curricula
- Officer in Charge, Aeronautical Engineering Curricula
- Officer in Charge, Communications Curricula
- Officer in Charge, Engineering Electronics Curricula
- Officer in Charge, Naval Engineering Curricula
- Officer in Charge, Ordnance Engineering Curricula

Each curriculum is assigned to one of these officers, as indicated in the Tabulation of Curricula at Monterey and at other institutions.

Each curriculum at a civilian institution is supervised by one of the officers in charge of curricula, who plans the curriculum in accordance with the Navy's needs and the institution's requirements. If a degree is to be sought at the civilian institution, the requirements of the institution must be further considered.

REGULATIONS GOVERNING THE AWARD OF DEGREES

In accordance with Public Law 363 of the 79th Congress, with the Regulations prescribed by the Secretary of the Navy, and with accreditation by the Engineers' Council for Professional Development, the Superintendent is authorized to confer the degree of Bachelor of Science in the Mechanical Engineering, the Electrical Engineering, the Engineering Electronics and the Aeronautical Engineering curricula. The recipients of such degrees must be found qualified by the Academic Council in accordance with certain academic standards.

The Superintendent is further authorized to confer Masters and Doctors degrees in engineering or related fields, upon the recommendation by the faculty, based upon satisfactory completion of a program of advanced study approved by the Academic Council.

The following paragraphs set forth the requirements for the degrees:—

(1) Requirements for the Bachelor of Science Degree:

(a) The Bachelor's degree in engineering or other scientific fields may be awarded for successful completion of a curriculum which serves the needs of the Navy and has the approval of the Academic Council as meriting a degree. Such a curriculum shall conform to current practice in accredited engineering institutions and shall contain a well-defined major, with appropriate cognate minors.

(b) Admission with suitable advanced standing and a minimum of two academic years of residence at the Naval Postgraduate School are normally re-
required. With the approval of the Academic Council, this residence requirement may be reduced to not less than one academic year in the case of particular students who have had sufficient prior preparation at other institutions.

(c) To be eligible for the degree, the student must attain a minimum average quality point rating of 1.0 in all the courses of his curriculum. In very exceptional cases, small deficiencies from this figure may be waived at the discretion of the Academic Council.

(d) With due regard for the above requirements, the Academic Council will decide whether or not to recommend the candidate to the Superintendent of the Naval Postgraduate School for the award of the Bachelor's degree.

(2) Requirements for the Master of Science Degree:

(a) The Master's degree in engineering and related fields is awarded for the successful completion of a curriculum which complements the basic scientific education of a student and which has been approved by the Academic Council as meriting a degree, provided the student exhibits superior scholarship, attains scientific proficiency, and meets additional requirements as stated in the following paragraphs.

(b) Since curricula serving the needs of the Navy ordinarily contain undergraduate as well as graduate courses, a minimum of two academic years of residence at the Naval Postgraduate School is normally required. With the approval of the Academic Council, the time of residence may be reduced in the case of particular students who have successfully pursued graduate study at other educational institutions. In no case will the degree be granted for less than one academic year of residence at the Naval Postgraduate School.

(c) A curriculum leading to a Master's degree shall comprise not less than 48 term hours (32 semester hours) of work that is clearly of graduate level, and shall contain a well-supported major, together with cognate minors. At least six of the term hours shall be in advanced mathematics. The proposed program shall be submitted to the cognizant department chairman for review and approval. If the program is satisfactory to the department chairman, it shall be forwarded by him to the Academic Council for final action.

(d) To become a candidate for the Master's degree the student shall have completed at least three quarters of the graduate credit courses of his curriculum with a quality point rating in them of not less than 1.75 as defined in the section on scholarship.

(e) To be eligible for the Master's degree, the student must attain a minimum average quality point rating of 2.0 in all graduate credit courses; 1.5 in all of his other courses. In special cases, under very extenuating circumstances, small deficiencies from the figures noted in paragraphs (d) and (e) may be waived at the discretion of the Academic Council.

(f) A reasonable proportion of the graduate work leading to the Master's degree shall be composed of research and a thesis reporting the results obtained. The thesis topic may be selected by the student, subject to the approval of the cognizant department chairman. The completed thesis must indicate ability to perform independent work and to report on it in a scholarly fashion. The thesis, in final form, will be submitted to the cognizant department chairman for review and evaluation. Upon final approval of the thesis by the department chairman, the student shall be certified as eligible for final examination.

(g) If the thesis is accepted, the candidate for the degree shall take a final oral examination, the duration of which will be approximately one hour. An additional comprehensive written examination may be required at the discretion of the cognizant department chairman. Not more than one half of the oral examination shall be devoted to questions directly related to the candidate's thesis topic; the remainder to the candidate's major and related areas of study.

(h) With due regard for the above requirements, the Academic Council will decide whether or not to recommend the candidate to the Superintendent of the Naval Postgraduate School for the award of the Master's degree.

(3) Requirements for the Doctor's Degree:

(a) The Doctor's degree in engineering and related fields is awarded as a result of very meritorious and scholarly achievement in a particular field of study which has been approved by the Academic Council as within the purview of the Naval Postgraduate School. A candidate must exhibit faithful and scholarly application to all prescribed courses of study, achieve a high level of scientific advancement and establish his ability for independent investigation, research, and analysis. He shall further meet the requirements described in the following paragraphs.

(b) Any program as leading to the Doctor's degree shall require the equivalent of at least three academic years of study beyond the undergraduate level, and shall meet the needs of the Navy for advanced study in the particular area of investigation. At least one academic year of the doctorate work shall be spent at the Naval Postgraduate School.
(c) A student seeking to become a candidate for the doctorate shall hold a Bachelor's degree from a college or university, based on a curriculum that included the prerequisites for full graduate status in the department of his major study, or he shall have pursued successfully an equivalent course of study. The student shall submit his previous record to the Academic Council, via the Academic Dean, for final determination of the adequacy of his preparation.

(d) Upon favorable action by the Academic Council, the student will be notified that he may request the chairman of the department of his major subject to form a Doctorate Committee. This chairman will specify one or more minor subjects and, with the chairmen of the corresponding departments, will nominate a Doctorate Committee consisting of five or more members, at least three of whom are under different departments. The chairman of the department of the major subject will submit to the Academic Council for its approval the choice of minor fields and the names of the faculty members nominated for the Doctorate Committee.

(e) After a sufficient period of study in his major and minor fields, the student shall submit to qualifying examinations, including tests of his reading knowledge of foreign languages. The selection of these languages depends on the field of study. The minimum is a reading knowledge of German and a second language to be suggested by his Doctorate Committee and approved by the Academic Council. The language examinations will be conducted by a committee especially appointed by the Academic Council. The other qualifying examinations will cover material previously studied in his major and minor fields; they will be written and oral and will be conducted by the Doctorate Committee. The members of the Academic Council or their delegates may be present at the oral examinations. The Doctorate Committee will report the results of the qualifying examinations to the Academic Council for consideration, and, upon approval, the student becomes a candidate for the Doctorate. The qualifying examinations are not given, ordinarily, before the completion of the first year of residence at the Naval Postgraduate School; they must be passed successfully at least two years before the degree is granted.

(f) Upon successful qualification as a candidate, the student will be given a further program of study by the Doctorate Committee. This program must be approved by the Academic Council.

(g) The distinct requirement of the doctorate is the successful completion of an original, significant, and scholarly investigation in the candidate's major area of study. The results of the investigation, in the form of a publishable dissertation, must be submitted to the Academic Council at least two months before the time at which it is hoped the degree will be granted. The Academic Council will select two or more referees, who will make individual written reports on the dissertation. Lastly, the Academic Council will vote upon the acceptance of the dissertation.

(h) After the approval of the dissertation, and not later than two weeks prior to the award of the degree, the candidate will be subject to written and oral examination in his major and minor subjects. Written examinations will be conducted by the department having cognizance of the particular subject. The occasion and scope of each examination will be arranged by the Doctorate Committee, after consultation with the departments concerned and the members of the Academic Council. The Doctorate Committee will notify the Academic Council of the time of the oral examination and will invite their attendance, or that of their delegates. The Committee will also invite the attendance of such other interested persons as it may deem desirable. In this oral examination, approximately one half of the allotted time will be devoted to the major subject and one half to the minor subjects. The Doctorate Committee will submit the results of all examinations to the Academic Council for their approval.

(i) With due regard for all of the above requirements, the Academic Council will decide whether to recommend the candidate to the Superintendent of the Naval Postgraduate School for the award of the doctorate.

SCHOLARSHIP AND GRADING SYSTEM

For each course conducted in the Engineering School, a grade is assigned to the student at the completion of the term, in accordance with the following table:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Quality Point Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Excellent</td>
</tr>
<tr>
<td>B</td>
<td>Good</td>
</tr>
<tr>
<td>C</td>
<td>Fair</td>
</tr>
<tr>
<td>D</td>
<td>Barely Passing</td>
</tr>
<tr>
<td>X</td>
<td>Failure</td>
</tr>
</tbody>
</table>

In addition to the grade, a quality point number, in accordance with the table in the preceding paragraph, is assigned for each course completed. The product of this number times the credit-hours allowed for the course gives the quality points for that course.

For each ten-week term, the quality points for all courses completed are added to form a total. This total divided by the number of credit-hours for the entire term, gives a quotient called the "Quality
Point Rating” (QPR). The QPR is recorded for each term and for the entire curriculum to date, the latter figure forming the basis for degree qualification.

Thus, if a person earns all “A’s” his QPR will be 3.0, the maximum; if he earns all “B’s,” the QPR is 2.0, etc.

One term credit-hour is given for each hour per week of lecture or recitation and half of this amount for each hour per week of laboratory or practical work, in a completed course. A term credit-hour is equivalent to two-thirds of the conventional college semester credit-hour. Example:—ME412(A) Hydro-mechanics, 4-2; this course results in four plus (2 ÷ 2), or five term credit-hours.

The grades and quality points are recorded and filed, to be shown to the student concerned on request. After leaving the Postgraduate School, an officer may request a transcript of his work at the School by submitting appropriate letter to the Superintendent.

LABORATORY FACILITIES AND EQUIPMENT OF THE ENGINEERING SCHOOL

Extensive laboratory experimentation is carried on at the Engineering School in connection with the instructional and research programs of the various departments. In the present interim establishment, the laboratory facilities are housed in eight Butler-type buildings and in several other buildings on the school grounds. These facilities will be expanded substantially when they are moved early in 1954 to their permanent locations in the new buildings of the Engineering School.

The Physics laboratories are equipped to carry on experimental and research work in acoustics, atomic physics, electricity, nuclear physics and geometrical and physical optics. A bio-physics laboratory is planned for the near future.

The work in the acoustics laboratory is particularly directed toward underwater sound applications. Hence, a large proportion of the laboratory space is devoted to sonar equipment, test tanks and instrumentation for investigations in underwater sound.

The equipment of the optics laboratory is soon to be supplemented by a Mach-Zehnder interferometer and a large-grating spectrograph having a resolving power of 170,000. Both instruments are now under construction. Also, a completely automatic infrared spectrograph is soon to be acquired.

In the new Engineering School building, the Physics Department will have additional equipment and space for staff and student experimentation and research. A two-million-volt Van de Graaff nuclear accelerator will be available in the nuclear physics laboratory; the acoustics laboratory facilities will include a medium-sized Anechoic (echo-free) chamber, a small Reverberation chamber, and a multi-unit acoustics laboratory for student experimentation in airborne acoustics; and additional facilities will be available for work in atomic physics, bio-physics, gaseous discharges and infra-red spectrometry.

The Aeronautical laboratories contain facilities for experimentation and research in aerodynamics, structural and stress analysis, aero-thermodynamics and propulsion problems.

Facilities for the study of subsonic technical aero-dynamics are centered about a 32” × 45” subsonic wind tunnel, having a speed range extending from approximately 10 to 185 knots. The Structural Test Laboratory contains a testing machine of 200,-000 pounds capacity, used in structural and stress analysis of aircraft components. The facilities of the Compressibility Laboratory include a transonic wind tunnel having a 4” × 16” test section and operating in the Mach number range from 0.4 to 1.4, and a supersonic wind tunnel having a 4” × 4” test section and operating in the Mach number range from 1.4 to 4. Instruments associated with these wind tunnels include a 9” Mach-Zehnder interferometer and a 9” and two 5” Schlieren systems for flow observations. The Propulsion Laboratory contains a single test block and facilities for measurement of thrust, fuel flow, temperature, pressures and other parameters of engine operation. Present engine equipment consists of a 9½” Westinghouse Turbo-Jet and three pulse jet engines. A small flame tube, especially equipped for the study of flame propagation, is also available.

The Chemical laboratories are well equipped for instructional purposes at both the graduate and undergraduate level. Noteworthy among the available facilities are a Beckman spectrophotometer, an advanced-design Adiabatic fractionating column, a plastics laboratory unit where experimental plastics may be prepared, photo-elastic equipment for studies of tensile and compressive strain effects on transparent plastics, a drop-weight apparatus for explosives testing and equipment for radioactivity studies, as well as precision equipment for studies in analytical and physical chemistry and a well-equipped fuel and lubricant laboratory.

In the new Engineering School building, additional facilities will be available for making, fabricating and testing plastics. The fabricating facilities will include an injection molding press, several 12-ton compression molding presses and two 30-ton compression molding presses.
The two-million-volt Van de Graaff nuclear accelerator, part of the physics laboratory equipment.

(By courtesy of High Voltage Engineering Corporation)
Metallurgy equipment, including hardness testers, rolling mill, furnaces and tension testing machine.

Part of the plastic laboratory, Department of Metallurgy and Chemistry.
Part of a chemistry laboratory. Currently in former hotel bedrooms, the chemistry equipment will be moved in 1954, to the permanent Engineering School buildings.
A class in metallurgy. Modern equipment and techniques assist in teaching the metallurgy courses, of great importance to engineers.
A testing machine, in the Mechanical Engineering Department Laboratory.

A laboratory session, Materials Testing Laboratory course, Mechanical Engineering Department.
DEPARTMENT OF AERONAUTICS

The jet engine pit, Aeronautical Engineering Laboratory.

A wind tunnel, used by Aeronautical Engineering students.
The Electronics laboratories are well equipped for carrying on a comprehensive program of experimental work in the various branches of the field. Facilities are available for investigating the operational characteristics of radio and electronic circuits at frequencies ranging from d-c to the microwave region. For precision measurements and accurate calibration of instruments, standard frequency sources and standardizing equipment are available.

To illustrate modern communications practices, representative systems are available covering a wide range of operating frequencies, power outputs and methods of modulation. These include systems for transmitting manual and automatic telegraphy, voice and video signals. Additional systems include electronic countermeasures equipment, radio aids to navigation and a broad selection of Navy radar systems.

Improved facilities are being provided for the study of telemetering systems, computing systems, modern radar systems, antenna radiation characteristics and microwave phenomena, as well as for conducting more advanced work in circuit measurements. Additional space will also be available for conducting individual research and project work.

The laboratory facilities of the Department of Metallurgy include heat treatment and materials fabricating and testing laboratories, a metallography laboratory and a crystallographic laboratory. The heat treatment equipment includes induction heating units and heat treating furnaces. The testing equipment includes three universal testing machines, Rockwell hardness testers and a microhardness machine. The materials fabricating equipment include a rolling mill and a swaging machine. Equipment used in crystal structure studies includes various types of powder cameras, heating cameras for obtaining diffraction patterns at controlled elevated temperatures, Weissenberg x-ray goniometers and a precision recording photodensitometer. Also available are several x-ray diffraction units, a Geiger counter spectrometer and radiographic equipment. In the metallography laboratory are bench-type microscopes and research type metallographs with completely equipped photomicrography facilities.

In the Electrical Engineering laboratories, facilities are provided for instruction and research in servomechanisms, electronics, electrical machinery and circuits. The laboratories are equipped with many duplicate sets of equipment for performing all standard experiments. Additional items of special equipment include a five-unit harmonic set, a high-voltage set, a Schering Bridge, an analog computer (shared with the Mathematics and Aeronautics departments), BTA motors, wave analysers, sound meters, special servo analysers, oscillographs, industrial analysers, Brush recorders, dynamometers, synchroscopes, amplidynes and rototrols.

When the current construction program is completed early in 1954, the Electrical Engineering laboratories will be housed in a specially designed two-story steel, concrete and glass building (132' x 132') adjacent to the main engineering building. The ground floor will house the machinery and high voltage laboratories, and the second floor will be devoted to electronics, control, servomechanisms and measurements. Both floors will be provided with switchboards able to distribute a wide range of DC, AC 60-cycle or 400-cycle power to any location. The ground floor will have a completely equipped darkroom and the upper floor an excellent standards laboratory.

The Mechanical Engineering laboratories provide facilities for instruction and research in elastic-body mechanics and dynamics, in hydromechanics and in heat-power and related fields. Noteworthy equipment in the heat-power laboratories include a forced-circulation boiler, 3500 psi and 1000°F; a gas or oil-fired boiler, 250psi and 8000 lb./hr., fully automatic controls; a 150-HP Boeing turbo-prop gas turbine installation, dynamometer loaded; a two-dimensional supersonic air nozzle with schlieren equipment for analysis of shock-wise flows; a vapor-compression still and a solo-shell dual-effect evaporator. Facilities of the Elastic-body Mechanics and Dynamics laboratories include a Universal Fatigue Tester, for testing in tension, compression, bending or torsion, a Chapman Polariscope for stress determination by photo-elastic method; vibration inducer units and associated equipment for inducing vibrations in mechanical systems with controlled amplitudes and frequencies from 20 to 20,000 cycles per second; Gisholt and Olsen dynamic balancing machines; and a linear accelerometer and calibrator unit.

The procuring of additional special equipment for the Hydro-mechanics Laboratory is being deferred until completion of new laboratory space. This laboratory will then include such items as a small circulating water tunnel and channel and a towing tank.

The laboratory facilities in Aerology include all instruments in present-day use for measuring the current physical and dynamic state of the atmosphere, as well as teletype and facsimile communications equipment for the rapid reception and dissemination of weather data in coded and analyzed form for the entire northern hemisphere.

The instruments for gathering weather data include rawinsonde equipment, which provides a continuous recording of temperature, pressure, humidity and wind directions and velocities at designated levels from the surface; rasonde equipment whereby pressure, temperature and humidity information is transmitted to ground via radio signals.
from heights that may extend above 100,000 feet; a wiresonde that measures air temperature and humidity conditions in the lower strata of the atmosphere, an inversion meter designed for remote recordings of atmospheric temperature at designated heights in the boundary layer; and a bathythermograph for recording sea temperature gradients.

The equipment of the Mathematics and Mechanics Department includes comprehensive computation facilities for use in the instruction and research program of the Engineering School. Computing equipment now available includes an electronic differential analyzer used to find the solution to a large class of differential equations; a specially modified accounting machine, used in finite difference computations; and a variety of planimeter-type instruments, including a large precision moment integrator, a Stieltjes integrator and a harmonic analyzer. In addition, a modern general-purpose automatically sequenced digital computer will be installed during this academic year. This instrument contains provision for the storage of 1,000 numbers or instructions on a drum rotating at 40 r.p.s. and 100,000 numbers or instructions on a magnetic tape. It will be useful in the solution of a great variety of problems.

RESEARCH PROJECTS

From time to time, research projects, sponsored by a material bureau or other government activity, are undertaken by members of the faculty, utilizing laboratory equipment and specialized skills. The policy of the School is to encourage such work when done without interference with routine teaching. Some outside interests are usually of benefit to the individual and also, indirectly, to the School; moreover, occasionally significant contributions to the supply of knowledge result.

Sponsored research projects are, of course, entirely separate from the normal thesis research, mandatory for the graduate degrees, conducted by the officer students or by junior faculty members.

THE CURRICULA AT MONTEREY

All instruction is conducted at the School, Monterey, California, except where otherwise indicated.

For each course, the short title, the academic level, the descriptive name, the classroom and laboratory hours per week are set forth.

Example: Ma-101(C) Introduction to Engineering Mathematics 4-0

The academic year at Monterey consists of four ten-week terms, with the usual holidays, intersessional periods between terms, etc. About two weeks are allowed in December, for leave, and about the same period for students is provided in the summer.

In the summer in addition to the leave period, a practical work period or field trip, lasting normally about six weeks, is scheduled. The officers in charge of curricula arrange for and schedule trips to industrial establishments, shipyards, or other places as appropriate and practicable.

The faculty members normally are free during the entire summer intersessional period of about two months.

Tabulation of Curricula Conducted Entirely or in Part at the Engineering School, Monterey, California

<table>
<thead>
<tr>
<th>Curriculum</th>
<th>Group Designator</th>
<th>Length</th>
<th>Cognizant Curricular Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>RC</td>
<td>3 yrs.</td>
<td>Engineering Electronics</td>
</tr>
<tr>
<td>Mathematics</td>
<td>RM</td>
<td>3 yrs.</td>
<td>Engineering Electronics</td>
</tr>
<tr>
<td>Physics (General)</td>
<td>RP</td>
<td>3 yrs.</td>
<td>Engineering Electronics</td>
</tr>
<tr>
<td>Physics (Nuclear)</td>
<td>RX</td>
<td>3 yrs.</td>
<td>Engineering Electronics</td>
</tr>
<tr>
<td>Aerological Engineering</td>
<td>MA</td>
<td>18 mos.</td>
<td>Aerological Engineering</td>
</tr>
<tr>
<td>Advanced Aerological Engineering</td>
<td>MS</td>
<td>18 mos.</td>
<td>Aerological Engineering</td>
</tr>
<tr>
<td>Aerology</td>
<td>M</td>
<td>1 yr.</td>
<td>Aerological Engineering</td>
</tr>
<tr>
<td>Aeronautical Engineering</td>
<td>A,AG</td>
<td>2 yrs.</td>
<td>Aeronautical Engineering</td>
</tr>
<tr>
<td>Armament</td>
<td>AR</td>
<td>3 yrs.</td>
<td>Aeronautical Engineering</td>
</tr>
<tr>
<td>Compressible Flow</td>
<td>AC3</td>
<td>3 yrs.</td>
<td>Aeronautical Engineering</td>
</tr>
<tr>
<td>Electrical</td>
<td>AE</td>
<td>3 yrs.</td>
<td>Aeronautical Engineering</td>
</tr>
<tr>
<td>Flight Performance</td>
<td>AF3</td>
<td>3 yrs.</td>
<td>Aeronautical Engineering</td>
</tr>
<tr>
<td>Gas Turbines</td>
<td>AT3</td>
<td>3 yrs.</td>
<td>Aeronautical Engineering</td>
</tr>
<tr>
<td>General</td>
<td>A3</td>
<td>3 yrs.</td>
<td>Aeronautical Engineering</td>
</tr>
<tr>
<td>Jet Propulsion</td>
<td>AJ3</td>
<td>3 yrs.</td>
<td>Aeronautical Engineering</td>
</tr>
<tr>
<td>Nuclear Propulsion</td>
<td>AN3</td>
<td>3 yrs.</td>
<td>Aeronautical Engineering</td>
</tr>
<tr>
<td>Propulsion Systems</td>
<td>AP3</td>
<td>3 yrs.</td>
<td>Aeronautical Engineering</td>
</tr>
<tr>
<td>Scaplane Hydrodynamics</td>
<td>AH3</td>
<td>3 yrs.</td>
<td>Aeronautical Engineering</td>
</tr>
<tr>
<td>Structures</td>
<td>AS3</td>
<td>3 yrs.</td>
<td>Aeronautical Engineering</td>
</tr>
</tbody>
</table>
CURRICULA

Communications
Communications (Short Course) C 1 yr. Communications
Engineering Electronics CS 12 wks. Communications
Engineering Electronics EE,EA2 2 yrs. Engineering Electronics
Engineering Electronics EE,EW3 3 yrs. Engineering Electronics
Engineering Electronics (Sonar) EW 2 yrs. Engineering Electronics
Mine Warfare RW 2½ yrs. Ordnance Engineering

Naval Engineering
Chemical Engineering NC 3 yrs. Naval Engineering
Electrical Engineering NL,YLA 2 yrs., 3 yrs. Naval Engineering
Gas Turbines NJ 3 yrs. Naval Engineering
Mechanical Engineering NH,NHA 2 yrs., 3 yrs. Naval Engineering
Mechanical Engineering (Equalization) NQ 2 yrs. Naval Engineering
Mechanical Engineering (Nuclear Power) NN 3 yrs. Naval Engineering
Metallurgical Engineering (in alternate years) NM 1 yr. Naval Engineering
Petroleum Engineering NP 3 yrs. Naval Engineering
Nuclear Engineering (Effects) RZ 2 yrs. Ordnance Engineering
Operations Analysis RO 2 yrs. Ordnance Engineering
Ordnance Engineering

Aviation OE 3 yrs. Ordnance Engineering
Explosives OP 3 yrs. Ordnance Engineering
Fire Control OF 3 yrs. Ordnance Engineering
General O,02 2 yrs. Ordnance Engineering
Guided Missiles OG 3 yrs. Ordnance Engineering
Industrial Engineering O,02,03 3 yrs. Ordnance Engineering
Jet Propulsion OJ 3 yrs. Ordnance Engineering
Special Physics OX 3 yrs. Ordnance Engineering

ADVANCED SCIENCE

Chemistry (RC), Applied Mathematics (RM),
General Physics (RP) and
Nuclear Physics (RX) Groups

OBJECTIVE

To prepare selected officers to deal with the problems of fundamental research in the separate natural sciences of chemistry, applied mathematics, general physics and nuclear physics. The basic education given is "fundamental" rather than "engineering" in character.

CURRICULA

The Advanced Science Curricula are sponsored by the Office of Naval Research and are under the cognizance of the Officer in Charge, Engineering Electronics Curricula. The chairman of the departments of Chemistry and Metallurgy, Mathematics and Mechanics, and Electronics and Physics are the Academic Associates.

Officers nominated for the Advanced Science Curricula are selected from among the first-year students enrolled in the Engineering School of the U. S. Naval Postgraduate School who apply for these curricula. Applicants are carefully screened and only those having a very good academic background and who appear to have an excellent chance of succeeding in their chosen field are nominated.

Officers in the Advanced Science Curricula complete the first year of their curriculum in the Engineering School at the U. S. Naval Postgraduate School. The second and third years are spent at a civilian university selected by each of the officers with the advice of the appropriate academic associate at the U. S. Naval Postgraduate School and representatives of the Office of Naval Research. These officers spend the summer prior to entering the civilian universities on duty at the Office of Naval Research, Washington, D. C., familiarizing themselves with the work of the Office of Naval Research in the basic natural sciences, and preparing themselves for graduate school language requirements.

The curriculum at the civilian university for each officer is arranged by the student officer with the advice of his faculty advisor at the university, subject to approval by the Officer in Charge, Advanced Science Curricula. The courses are selected to suit the needs of the Navy, to develop the capabilities of the individual student and to meet the ultimate objective of his specialty.

The Advanced Science Curricula normally lead to the Master of Science degree for those officers meeting the requirements of the civilian universities for that degree and may, in exceptional cases for especially qualified officers, lead to a Doctor's degree.
AEROGICAL ENGINEERING

OBJECTIVE

To prepare officers to become qualified aerologists, with a working knowledge of oceanography as applied to naval operations.

FIRST YEAR (MA)

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST</td>
<td>Ma-161(C)</td>
<td>Algebra, Trigonometry, and Analytic Geometry</td>
<td>5-0</td>
</tr>
<tr>
<td></td>
<td>Mr-200(C)</td>
<td>Introduction to Synoptic Meteorology</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Mr-201(C)</td>
<td>Weather Maps and Codes</td>
<td>2-12</td>
</tr>
<tr>
<td></td>
<td>Ph-190(C)</td>
<td>Surveys of Physics I</td>
<td>3-0</td>
</tr>
<tr>
<td>SECOND</td>
<td>Ma-162(C)</td>
<td>Introduction to Calculus</td>
<td>5-0</td>
</tr>
<tr>
<td></td>
<td>Mr-202(C)</td>
<td>Surface Weather Map Analysis</td>
<td>2-12</td>
</tr>
<tr>
<td></td>
<td>Oc-101(C)</td>
<td>Introduction to Oceanography</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Ph-191(C)</td>
<td>Survey of Physics II</td>
<td>3-0</td>
</tr>
<tr>
<td>THIRD</td>
<td>Ma-163(C)</td>
<td>Calculus and Vector Analysis</td>
<td>5-0</td>
</tr>
<tr>
<td></td>
<td>Mr-203(C)</td>
<td>Weather Analysis and Forecasting</td>
<td>2-12</td>
</tr>
<tr>
<td></td>
<td>Mr-301(C)</td>
<td>Synoptic Meteorology I</td>
<td>4-0</td>
</tr>
<tr>
<td></td>
<td>Mr-402(C)</td>
<td>Meteorological Charts and Diagrams</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>*SL-101</td>
<td>New Weapons Development I</td>
<td>0-1</td>
</tr>
<tr>
<td>FOURTH</td>
<td>Ma-381(C)</td>
<td>Elementary Probability and Statistics</td>
<td>4-0</td>
</tr>
<tr>
<td></td>
<td>Mr-204(C)</td>
<td>Upper Air Analysis and Forecasting</td>
<td>2-0</td>
</tr>
<tr>
<td></td>
<td>Mr-302(C)</td>
<td>Synoptic Meteorology II</td>
<td>4-0</td>
</tr>
<tr>
<td></td>
<td>Mr-510(C)</td>
<td>Climatology</td>
<td>2-0</td>
</tr>
<tr>
<td></td>
<td>Oc-201(C)</td>
<td>Physical Oceanography</td>
<td>2-0</td>
</tr>
<tr>
<td></td>
<td>*SL-102</td>
<td>New Weapons Development II</td>
<td>0-1</td>
</tr>
<tr>
<td>FIELD</td>
<td></td>
<td>Field Trip during Intersessional Period</td>
<td></td>
</tr>
</tbody>
</table>

SECOND YEAR (MA2)

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST</td>
<td>Mr-215(B)</td>
<td>Advanced Weather Analysis and Forecasting</td>
<td>0-12</td>
</tr>
<tr>
<td></td>
<td>Mr-303(C)</td>
<td>Synoptic Meteorology III</td>
<td>4-0</td>
</tr>
<tr>
<td></td>
<td>Mr-403(C)</td>
<td>Introduction to Physical Meteorology</td>
<td>4-0</td>
</tr>
<tr>
<td></td>
<td>Mr-410(C)</td>
<td>Meteorological Instruments</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>Mr-610(C)</td>
<td>Sea and Swell Forecasting</td>
<td>2-2</td>
</tr>
<tr>
<td>SECOND</td>
<td>Mr-110(C)</td>
<td>Radiological Defense</td>
<td>2-0</td>
</tr>
<tr>
<td></td>
<td>Mr-216(B)</td>
<td>Advanced Weather Analysis and Forecasting</td>
<td>2-12</td>
</tr>
<tr>
<td></td>
<td>Mr-217(B)</td>
<td>Upper Air Analysis and Forecasting</td>
<td>0-8</td>
</tr>
<tr>
<td></td>
<td>Oc-203(C)</td>
<td>Amphibious Oceanography</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Oc-301(C)</td>
<td>Military Oceanography</td>
<td>2-1</td>
</tr>
<tr>
<td>YEAR</td>
<td></td>
<td></td>
<td>8-22</td>
</tr>
</tbody>
</table>

* Lecture course—no academic credit.
Successful completion of the above curriculum may lead to the award of the Bachelor of Science degree.

AEROLOGY

OBJECTIVE

To prepare selected junior officers to become qualified for limited aerological duties.

FIRST YEAR (M)

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST</td>
<td>Ma-162(C)</td>
<td>Introduction to Calculus</td>
<td>5-0</td>
</tr>
<tr>
<td></td>
<td>Mr-402(B)</td>
<td>Meteorological Charts and Diagrams</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Mr-200(C)</td>
<td>Introduction to Synoptic Meteorology</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Mr-211(C)</td>
<td>Weather Codes, Maps and Elementary Surface Analysis</td>
<td>2-12</td>
</tr>
<tr>
<td>SECOND</td>
<td>Ma-163(C)</td>
<td>Calculus and Vector Analysis</td>
<td>5-0</td>
</tr>
<tr>
<td></td>
<td>Mr-212(C)</td>
<td>Surface Weather Map Analysis</td>
<td>2-12</td>
</tr>
<tr>
<td></td>
<td>Mr-311(B)</td>
<td>Synoptic Meteorology Ia</td>
<td>5-0</td>
</tr>
<tr>
<td></td>
<td>Mr-510(C)</td>
<td>Climatology</td>
<td>2-0</td>
</tr>
<tr>
<td>YEAR</td>
<td></td>
<td></td>
<td>14-12</td>
</tr>
</tbody>
</table>
AEROLOGICAL ENGINEERING

THIRD TERM

Ma-361(C) Statistics 4-2
Mr-213(B) Weather Analysis and Forecasting 2-12
Mr-312(B) Synoptic Meteorology Ii 5-0
Mr-403(B) Physical Meteorology 4-0

15-14

FOURTH TERM

Mr-110(C) Radiological Defense 2-0
Mr-410(C) Meteorological Instruments 2-3
Mr-216(B) Advanced Weather Analysis and Forecasting 2-12
Mr-217(B) Upper-air Analysis and Forecasting 0-3
Mr-610(C) Sea and Swell Forecasting 2-2

8-25

ADVANCED AEROLOGICAL ENGINEERING

OBJECTIVE

To supplement by advanced studies the previous technical education of selected aerological officers, prepare them for individual investigations in the field of research and development, and educate them in the latest aerological and oceanographic techniques which are applicable to naval problems and operations.

FIRST YEAR (MS)

FIRST TERM

Ma-131(C) Algebraic Equations and Series 3-0
Ma-132(C) Topics in Engineering Mathematics 5-0
Oc-111(B) General Oceanography 3-1
Ph-196(C) Review of General Physics 5-0

16-1

SECOND TERM

Ma-103(B) Functions of Several Variables and Vector Analysis 5-0
Mr-411(B) Thermodynamics of Meteorology 5-2
Mr-412(A) Physical Meteorology 3-0
Oc-311(C) Oceanographic Factors in Underwater Sound 2-1

15-3

THIRD TERM

Ma-134(B) Vector Mechanics and Introduction to Statistics 5-0
Mr-226(B) Advanced Weather Analysis and Forecasting 2-9
Mr-228(B) Southern Hemisphere and Tropical Meteorology 2-0
Mr-321(A) Dynamic Meteorology I 3-0
Mr-620(B) Sea and Swell Forecasting 2-2
*SL-101 New Weapons Development I (Lecture) 0-1

14-12

Field Trip during Intersessional Period.

FOURTH TERM

Ma-331(A) Statistics 4-2
Mr-227(B) Upper Air Analysis and Forecasting 2-9
Mr-322(A) Dynamic Meteorology II 3-0
Mr-323(A) Dynamic Meteorology III (Turbulence and Diffusion) 3-2
Mr-229(B) Selected Topics in Meteorology 2-0
*SL-102 New Weapons Development II (Lecture) 0-1

14-12

SECOND YEAR (MS2)

FIRST TERM

Ma-135(B) Partial Differential Equations and Numerical Methods 4-1
Mr-422(A) The Upper Atmosphere 5-0
Mr-520(B) Applied Climatology 2-2
Thesis I 2-6

13-9

SECOND TERM

Mr-110(C) Radiological Defense 2-0
Oc-213(C) Littoral Oceanography 2-2
Mr-230(A) Operational Forecasting 0-10
Mr-810(A) Seminar 2-0
Thesis II 4-0

10-12

*Lecture course—no academic credit.
Successful completion of the above curriculum normally leads to the award of the Master of Science degree.
THE ENGINEERING SCHOOL

AERONAUTICAL ENGINEERING

OBJECTIVE

To provide officers with advanced aeronautical engineering knowledge to meet the technical requirements of the Navy in this field. Specifically, these curricula are designed to cover the fundamental and advanced theories of mathematics, mechanics, metallurgy, structural analysis, aerodynamics, dynamics, and aircraft propulsion, electricity and electronics as they concern the particular curriculum.

AERONAUTICAL ENGINEERING, GENERAL

These curricula consist of two years of study at the Naval Postgraduate School, the last year of which includes a performance and flight test program. Qualified volunteers will be selected at the end of the fifth term to take the three-year curricula, the last year of which is spent at a civilian engineering school. Curricula for the third year at the various civilian institutions are arranged to provide emphasis on such fields as aircraft structural analysis, aircraft propulsion systems, compressibility, hydrodynamics and seaplane design, pilotless aircraft, aircraft performance, and nuclear engineering as well as general aeronautical engineering. Satisfactory completion of any three-year curriculum normally leads to the award of a graduate degree in aeronautical engineering.

FIRST YEAR (A) GROUPS

<table>
<thead>
<tr>
<th>FIRST TERM</th>
<th></th>
<th>SECOND TERM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-100(C) Vector Algebra and Geometry</td>
<td>2-1</td>
<td>Ma-112(B) Differential Equations and Boundary Value Problems</td>
<td>4-0</td>
</tr>
<tr>
<td>Ma-111(C) Introduction to Engineering Mathematics</td>
<td>3-1</td>
<td>Mc-102(C) Engineering Mechanics II</td>
<td>2-2</td>
</tr>
<tr>
<td>Me-101(C) Engineering Mechanics I</td>
<td>3-0</td>
<td>Ae-211(C) Stress Analysis I</td>
<td>4-0</td>
</tr>
<tr>
<td>Ae-200(C) Rigid Body Statics of Aircraft</td>
<td>3-2</td>
<td>Ae-100(C) Basic Aerodynamics</td>
<td>3-4</td>
</tr>
<tr>
<td>Ch-121(B) General and Petroleum Chemistry</td>
<td></td>
<td>Mt-202(C) Ferrous Metals</td>
<td>3-2</td>
</tr>
<tr>
<td>Mt-201(C) Introductory Physical Metallurgy</td>
<td>3-2</td>
<td>Mc-601(C) Materials Testing Laboratory</td>
<td>0-2</td>
</tr>
</tbody>
</table>

THIRD TERM

Ma-113(B) Vector Analysis and Introduction to Partial Differential Equations	3-0
Ae-212(C) Stress Analysis II	4-2
Ae-121(C) Technical Aerodynamics	3-2
Mt-203(B) Physical Metallurgy	2-2
Ma-201(C) Graphical and Mechanical Computations	0-2
EE-111(C) Fundamentals of Electrical Engineering	3-2
*SL-101 New Weapons Development I (Lecture)	0-1

FOURTH TERM

Ma-114(A) Partial Differential Equations and Functions of a Complex Variable	3-0
Ae-213(B) Stress Analysis III	4-2
Ae-131(C) Aerodynamics Performance	4-2
ME-131(C) Engineering Thermodynamics	4-2
EE-351(C) DC Machinery	2-2
*SL-102 New Weapons Development II (Lecture)	0-1

* Lecture course—no academic credit.

Note: Approximately six weeks of June and July 1954, Intersessional Period, will be spent in the field at aviation activities.

SECOND YEAR (AG2) GROUP

<table>
<thead>
<tr>
<th>FIRST TERM</th>
<th></th>
<th>SECOND TERM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-311(C) Airplane Design I</td>
<td>2-4</td>
<td>Ae-141(A) Aircraft Dynamics I</td>
<td>3-4</td>
</tr>
<tr>
<td>Ae-312(B) Flight Analysis</td>
<td>3-2</td>
<td>Ae-151(B) Flight Testing and Evaluation I</td>
<td>2-0</td>
</tr>
<tr>
<td>Ae-410(B) Thermodynamics (Aeronautical)</td>
<td>3-2</td>
<td>Ae-161(B) Flight Testing and Evaluation Laboratory I</td>
<td>0-4</td>
</tr>
<tr>
<td>Ae-501(A) Hydro-Aero Mechanics I</td>
<td>4-0</td>
<td>Ae-411(B) Aircraft Engines</td>
<td>4-2</td>
</tr>
<tr>
<td>EE-241(C) AC Circuits</td>
<td>3-2</td>
<td>Ae-502(A) Hydro-Aero Mechanics II</td>
<td>4-0</td>
</tr>
<tr>
<td>*IE-101(C) Principles of Industrial Organization (Lecture)</td>
<td>0-1</td>
<td>*Ae-001 Aeronautical Lecture</td>
<td>0-1</td>
</tr>
</tbody>
</table>

15-11

13-11
Third Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-142(A)</td>
<td>Aircraft Dynamics II</td>
<td>3-4</td>
</tr>
<tr>
<td>Ae-152(B)</td>
<td>Flight Testing and Evaluation II</td>
<td>2-0</td>
</tr>
<tr>
<td>Ae-162(B)</td>
<td>Flight Testing and Evaluation Laboratory II</td>
<td>0-4</td>
</tr>
<tr>
<td>Ae-421(B)</td>
<td>Aircraft Propulsion</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-611(B)</td>
<td>Servomechanisms</td>
<td>3-4</td>
</tr>
<tr>
<td>*SL-101</td>
<td>New Weapons Development I (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td>*IE-103(C)</td>
<td>Applied Industrial Organization (Lecture)</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Total Credits: 11-16

* Lecture course—no academic credit.

If practicable, a summer period will be spent in a civilian institution summer course in industrial engineering before reporting to a new duty station.

Fourth Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-153(B)</td>
<td>Flight Testing and Evaluation III</td>
<td>2-0</td>
</tr>
<tr>
<td>Ae-163(B)</td>
<td>Flight Testing and Evaluation Laboratory III</td>
<td>0-8</td>
</tr>
<tr>
<td>Ae-508(A)</td>
<td>Compressibility</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-711(C)</td>
<td>Electronics</td>
<td>3-2</td>
</tr>
</tbody>
</table>

Total Credits: 8-12

Second Year (A2) Groups

Second Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-141(A)</td>
<td>Aircraft Dynamics I</td>
<td>3-4</td>
</tr>
<tr>
<td>Ae-411(B)</td>
<td>Aircraft Engines</td>
<td>4-2</td>
</tr>
<tr>
<td>Ae-502(A)</td>
<td>Hydro-Aero Mechanics II</td>
<td>4-0</td>
</tr>
<tr>
<td>Ae-214(A)</td>
<td>Stress Analysis IV</td>
<td>3-0</td>
</tr>
<tr>
<td>Ae-312(B)</td>
<td>Airplane Design II</td>
<td>1-4</td>
</tr>
<tr>
<td>*Ae-001</td>
<td>Aeronautical Lecture</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Total Credits: 15-11

Third Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-142(A)</td>
<td>Aircraft Dynamics II</td>
<td>3-4</td>
</tr>
<tr>
<td>Ae-421(B)</td>
<td>Aircraft Propulsion</td>
<td>3-2</td>
</tr>
<tr>
<td>Ae-503(A)</td>
<td>Compressibility I</td>
<td>4-0</td>
</tr>
<tr>
<td>**Ch-521(A)</td>
<td>Chemistry of Plastics</td>
<td>3-2</td>
</tr>
<tr>
<td>Ma-116(A)</td>
<td>Matrices and Numerical Methods</td>
<td>4-0</td>
</tr>
<tr>
<td>*SL-101</td>
<td>New Weapons Development I (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td>*IE-103(C)</td>
<td>Applied Industrial Organization (Lecture)</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Total Credits: 17-10

* Lecture Course—no academic credit.

Propulsion group takes Ch-561(A) Physical Chemistry (3-2) and Flight Performance group takes Ma-118(A) in place of ME-622(B) 4th term.

Fourth Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-431(A)</td>
<td>Internal Flow in Aircraft Engines</td>
<td>4-0</td>
</tr>
<tr>
<td>Ae-215(A)</td>
<td>Advanced Stress Analysis</td>
<td>4-0</td>
</tr>
<tr>
<td>Ae-504(A)</td>
<td>Compressibility II</td>
<td>3-2</td>
</tr>
<tr>
<td>Mc-311(A)</td>
<td>Vibrations</td>
<td>3-2</td>
</tr>
<tr>
<td>**ME-622(B)</td>
<td>Experimental Stress Analysis</td>
<td>2-2</td>
</tr>
<tr>
<td>*IE-104(C)</td>
<td>Technical Lectures</td>
<td>0-1</td>
</tr>
<tr>
<td>*SL-102</td>
<td>New Weapons Development II (Lecture)</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Total Credits: 16-8

Nuclear Engineering group takes Atomic Physics, Ph-640(B) (3-3) in place of ME-622(B) 4th term, and Quantitative Analysis, Ch-231(C) (2-4) in place of Ch-521(A) 3rd term.
THE ENGINEERING SCHOOL

THIRD YEAR CURRICULA

Aeronautical Engineering, General

THIRD YEAR (A3) AT THE UNIVERSITY OF MICHIGAN

<table>
<thead>
<tr>
<th>FALL TERM</th>
<th>SPRING TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-116 Advanced Fluid Dynamics</td>
<td>*Ae-102 Advanced Design</td>
</tr>
<tr>
<td>Ae-172 Instrumentation and Research</td>
<td>Ae-160-2 Symposium—Propulsion</td>
</tr>
<tr>
<td>*Ae-118 Experimental Aerodynamics</td>
<td>Ae-162 Thesis</td>
</tr>
<tr>
<td>*Ae-174 Atomic Physics</td>
<td>*Ae-165 Aircraft Propulsion I</td>
</tr>
<tr>
<td>*Ae-105 Dynamic Stability</td>
<td>*Ae-171 Aircraft Servo Control Systems</td>
</tr>
<tr>
<td>*EM-123 Theory of Strength</td>
<td>*Ae-202 Dynamics of Compressible Fluids</td>
</tr>
<tr>
<td>*MA-152 Mathematics—Fourier Series</td>
<td>*Ae-203 Dynamics of Perfect Fluids</td>
</tr>
<tr>
<td>*Ae-133 Advanced Airplane Structures</td>
<td>*Ae-204 Aircraft Propulsion II</td>
</tr>
<tr>
<td>*Ae-250 Theory of Non-linear Oscillations</td>
<td>*EM-129 Plasticity</td>
</tr>
<tr>
<td>Ae-162 Thesis</td>
<td>*Elective Courses</td>
</tr>
<tr>
<td>*Elective Courses</td>
<td></td>
</tr>
</tbody>
</table>

SECOND AND THIRD YEAR (A2 and A3)

AT THE COLLEGE OF AERONAUTICS, CRANFIELD, ENGLAND

At the end of the first year of work in the A curriculum at the Postgraduate School certain students may be selected for study at the College of Aeronautics. Students selected may choose a curriculum from the following options:

- Aerodynamics
- Aircraft Design
- Aircraft Propulsion
- Aircraft Economics and Production
- Aircraft Electronics

Aeronautical Engineering, Aerodynamics

THIRD YEAR (AC3) CALIFORNIA INSTITUTE OF TECHNOLOGY

<table>
<thead>
<tr>
<th>FALL TERM</th>
<th>SPRING TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-260 Research</td>
<td>Ae-271 Exper. Methods in Aeronautics</td>
</tr>
<tr>
<td>Ae-261 Hydrodynamics of Compressible Fluids</td>
<td>Ae-269 Seminar in Fluid Mechanics</td>
</tr>
<tr>
<td>Ae-266 Real and Perfect Fluids</td>
<td>Ae-290 Aeronautical Seminar</td>
</tr>
<tr>
<td>Ae-265 Adv. Problems in Aerodynamics</td>
<td></td>
</tr>
</tbody>
</table>

THIRD YEAR (AC3) AT UNIVERSITY OF MINNESOTA

<table>
<thead>
<tr>
<th>FALL TERM</th>
<th>SPRING TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Ae-116 Advanced Airplane Stresses</td>
<td>*Candidates who have taken Ae-213(B), Stress Analysis, at the U. S. Naval Postgraduate School, and received a grade of B or better, may apply for transfer credit.</td>
</tr>
<tr>
<td>**Ae-201 Aerodynamics of Compressible Flow</td>
<td>**Candidates who have taken Ae-503(A), Compressibility, at the U. S. Naval Postgraduate School, and received a grade of B or better, may apply for transfer credit.</td>
</tr>
<tr>
<td>Ae-220 High Speed Performance and Design</td>
<td>In case transfer credit is granted for either or both of these subjects, they will not be taken and course Ae-204, Supersonic Aerodynamics Laboratory, will be taken in the Fall Term in order to leave the Spring Term more free for thesis work.</td>
</tr>
<tr>
<td>Ae-280 Thesis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WINTER TERM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-117 Advanced Airplane Stresses</td>
<td></td>
</tr>
<tr>
<td>Ae-202 Compressible Fluids</td>
<td></td>
</tr>
<tr>
<td>Ae-203 High Speed Performance and Design</td>
<td></td>
</tr>
<tr>
<td>Ae-280 Thesis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRING TERM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-119 Structural Test of Aircraft</td>
<td></td>
</tr>
<tr>
<td>Ae-204 Supersonic Aerodynamics Laboratory</td>
<td></td>
</tr>
<tr>
<td>ME-253 Advanced Gas Turbines</td>
<td></td>
</tr>
<tr>
<td>Ae-280 Thesis</td>
<td></td>
</tr>
</tbody>
</table>
AERONAUTICAL ENGINEERING

Aeronautical Engineering, Flight Performance

THIRD YEAR (AF3) AT PRINCETON UNIVERSITY

** FALL TERM **
EE-316(a) Electronics
AE-565 Airplane Dynamics
AE-567 Helicopter Analysis
AE-583 Advanced Airplane Performance Thesis

** SPRING TERM **
AE-566 Airplane Dynamics
AE-568 Helicopter Analysis
EE-523 Servomechanisms Thesis
Plus one elective

Aeronautical Engineering, Seaplane Hydrodynamics

THIRD YEAR (CH3) AT STEVENS INSTITUTE OF TECHNOLOGY AND NEW YORK UNIVERSITY

** FALL TERM **
FD-203 Mechanics of Fluid Resistance
FD-204 Hydrodynamic Theory
FD-215 Seaplane Design I
*FD-217 Marine and Aircraft Propulsion I
*FD-213 Special Problems, Fluid Dynamics I
*MA-517 Ordinary and Partial Differential Equations
*MA-519 Advanced Calculus I
*AE-206 Applied Elasticity
AE-209 Advanced Stress Analysis Thesis

** SPRING TERM **
FD-210 Experimental Mathematics in Hydrodynamics
FD-211 Mechanics of Bodies in Fluids
FD-216 Seaplane Design II
*FD-218 Marine and Aircraft Propulsion II
*FD-214 Special Problems, Fluid Dynamics II
*MA-520 Advanced Calculus II
*AE-117 Aircraft Structural Laboratory
AE-210 Aircraft Stress Analysis Thesis
*Elective courses

Aeronautical Engineering, Industrial

THIRD YEAR (AI3) AT PURDUE UNIVERSITY

** FALL TERM **
GE-128 Motion and Time Study
GE-183 Production Planning
GE-184 Tool Design
GE-117 Industrial Relations
GE-91 Elements of Accounting
Psych-173 Personal Psychology

** SPRING TERM **
Psych-173 Personal Psychology
GE-185 Production Control
GE-186 Plant Layout
GE-229 Thesis
Psych-175 Psychology of Industrial Training

Aeronautical Engineering, Jet Propulsion

THIRD YEAR (AJ3) AT CALIFORNIA INSTITUTE OF TECHNOLOGY

Ae-261 Hydrodynamics of Compressible Fluids
Ae-271 Experimental Methods in Aeronautics
JP-121 Rockets
JP-130 Thermal Jets

** FALL TERM **
*AE-116 Advanced Airplane Stresses
**AE-201 Aerodynamics of Compressible Fluids
ME-252 Advanced Reciprocating Engines Thesis

** WINTER TERM **
AE-117 Advanced Airplane Stresses
AE-202 Compressible Fluids
ME-253 Advanced Gas Turbines Thesis

** SPRING TERM **
AE-119 Structural Test of Aircraft
AE-204 Supersonic Aerodynamics Laboratory
ME-255 Thermal Jets and Rockets Thesis

THIRD YEAR (AJ3) AT UNIVERSITY OF MINNESOTA

*Candidates who have taken Ae-213(B), Stress Analysis, at the U. S. Naval Postgraduate School, and received a grade of B or better, may apply for transfer credit.

**Candidates who have taken Ae-503(A), Compressibility, at the U. S. Naval Postgraduate School, and received a grade of B or better, May apply for transfer credit.

In case transfer credit is granted for either or both of these subjects they will not be taken and course Ae-204, Supersonic Aerodynamics Laboratory, will be taken in the Fall Term in order to leave the Spring Term more free for thesis work.
THE ENGINEERING SCHOOL

THIRD YEAR (AJ3) AT PRINCETON UNIVERSITY

FALL TERM
AE-563 Jet Propulsion
AE-581 Gas Dynamics
AE-587 Rockets
AE-589 Fluid Friction and Heat Transfer
Thesis

SPRING TERM
AE-564 Jet Propulsion
AE-582 Gas Dynamics
AE-589 Fluid Friction and Heat Transfer
AE-586 Combustion Problems in Jet Propulsion, or,
Mechanical Aspects of Jet Engines
Thesis

Aeronautical Engineering, Nuclear Engineering

THIRD YEAR (AN3) AT IOWA STATE COLLEGE

FALL TERM
Engg.-501 Elements of Nuclear Engineering
Engg.-620 Seminar
Lib.-614 Bibliographical Research
Phys.-435 Nuclear Physics for Engineers
*ME-325 Heat Transfer
Chem.-529 Radiochemistry
Engg.-600 Research

SPRING TERM
Engg.-503 Reactor Fuels and Wastes
Engg.-504 Reactor Design
Engg.-600 Research

*Technical elective to be substituted if candidate has
credit in ME-325.

**Physics-422 (Quantum Mechanics) may be substi-
tuted for 3 credits of Engg.-600.

THIRD YEAR (AN3) AT OAK RIDGE SCHOOL OF REACTOR TECHNOLOGY

Reactor Chemistry 36 hours
Nuclear Physics 36 or 72 hours
Reactor Theory 186 hours
Experimental Reactor Physics 90 hours
Metallurgy and Ceramics 72 hours

THIRD YEAR (AP3) AT MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FALL TERM
2.213 Gas Turbines
2.79T Internal Combustion Engines, Advanced
10.70 Combustible Principles
16.105 Applied Aerodynamics
Thesis

SPRING TERM
2.212 Advanced Mechanics
2.798T Internal Combustion Engines, Advanced
16.56 Jet Propulsion Engines
Thesis

Aeronautical Engineering, Structures

THIRD YEAR (AS3) AT CALIFORNIA INSTITUTE OF TECHNOLOGY

Ae-260 Research
Ae-270 Elasticity Applied to Aeronautics
Ae-271 Experimental Methods in Aeronautics
Ae-274 Aeroelasticity

Ae-275 Seminar in Solid Mechanics
Ae-290 Aeronautics Seminar
AM-150 Vibration and Flutter
AERONAUTICAL ENGINEERING

THIRD YEAR (AS3) AT UNIVERSITY OF MINNESOTA

FALL TERM
*Ae-116 Advanced Airplane Stresses
**Ae-201 Aerodynamics of Compressible Fluids
Ae-240 Dynamics of Airplane Structures
Ae-280 Thesis

WINTER TERM
Ae-117 Advanced Airplane Stresses
Ae-202 Compressible Fluids
Ae-241 Dynamics of Aircraft
Ae-280 Thesis

SPRING TERM
Ae-118 Stresses in Aircraft Structures
Ae-204 Supersonic Aerodynamics Laboratory
Ae-119 Structural Test of Aircraft
Ae-280 Thesis

Candidates who have taken Ae-213(B), Stress Analysis, at the U. S. Naval Postgraduate School, and received a grade of B or better, may apply for transfer credit.

Candidates who have taken Ae-503(A), Compressibility, at the U. S. Naval Postgraduate School, and received a grade of B or better, may apply for transfer credit.

In case transfer credit is granted for either or both of these subjects, they will not be taken, and course Ae-204, Supersonic Aerodynamics Laboratory, will be taken in the Fall Term in order to leave the Spring Term more free for thesis work.

AERONAUTICAL ENGINEERING, ARMAMENT

This curriculum consists of two years of study at the Postgraduate School. Selected students will continue for a third year of study at the Massachusetts Institute of Technology. Satisfactory completion of the three-year curriculum normally leads to the award of a graduate degree. This curriculum is designed to cover electrical, aeronautical, and mechanical engineering subjects and related mathematics, metallurgy, electronics, and ordnance courses. The third year at Massachusetts Institute of Technology majors in guided missile electronics controls and fire control systems.

FIRST YEAR (AR) GROUP

<table>
<thead>
<tr>
<th>FIRST TERM</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-151(C)</td>
<td>DC Circuits and Fields</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Ma-100(C)</td>
<td>Vector Algebra and Geometry</td>
<td>2-1</td>
<td></td>
</tr>
<tr>
<td>Ma-111(C)</td>
<td>Introduction to Engineering Mathematics</td>
<td>3-1</td>
<td></td>
</tr>
<tr>
<td>Mc-101(C)</td>
<td>Engineering Mechanics I</td>
<td>3-0</td>
<td></td>
</tr>
<tr>
<td>Ae-200(C)</td>
<td>Rigid Body Statics of Aircraft</td>
<td>3-2</td>
<td></td>
</tr>
<tr>
<td>Ch-101(C)</td>
<td>General Inorganic Chemistry</td>
<td>3-2</td>
<td></td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THIRD TERM</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-451(C)</td>
<td>Transformers and Synchros</td>
<td>2-2</td>
<td></td>
</tr>
<tr>
<td>Ma-113(B)</td>
<td>Vector Analysis and Introduction to Partial Differential Equations</td>
<td>3-0</td>
<td></td>
</tr>
<tr>
<td>Mt-201(C)</td>
<td>Introductory Physical Metallurgy</td>
<td>3-2</td>
<td></td>
</tr>
<tr>
<td>Ae-212(C)</td>
<td>Stress Analysis II</td>
<td>4-2</td>
<td></td>
</tr>
<tr>
<td>Ae-121(C)</td>
<td>Technical Aerodynamics</td>
<td>3-2</td>
<td></td>
</tr>
<tr>
<td>Ma-201(C)</td>
<td>Graphic and Mechanical Computation</td>
<td>0-2</td>
<td></td>
</tr>
<tr>
<td>*SL-101</td>
<td>New Weapons Development I (Lecture)</td>
<td>0-1</td>
<td></td>
</tr>
</tbody>
</table>

**			
**			
**			
**			

**			
**			
**			
**			

**			
**			
**			
**			

*Lecture course—no academic credit.
Six weeks intersessional period in the field.

SECOND TERM

<table>
<thead>
<tr>
<th>SECOND TERM</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-251(C)</td>
<td>AC Circuits</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Ma-112(B)</td>
<td>Differential Equations and Boundary Value Problems</td>
<td>4-0</td>
<td></td>
</tr>
<tr>
<td>Mc-102(C)</td>
<td>Engineering Mechanics II</td>
<td>2-2</td>
<td></td>
</tr>
<tr>
<td>Ae-211(C)</td>
<td>Stress Analysis I</td>
<td>4-0</td>
<td></td>
</tr>
<tr>
<td>Ae-100(C)</td>
<td>Basic Aerodynamics</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>*Ae-001</td>
<td>Aeronautical Lecture</td>
<td>0-1</td>
<td></td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**			
**			
**			
**			

FOURTH TERM

<table>
<thead>
<tr>
<th>FOURTH TERM</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-455(C)</td>
<td>Asynchronous Motors</td>
<td>2-2</td>
<td></td>
</tr>
<tr>
<td>Ma-114(A)</td>
<td>Partial Differential Equations and Functions of a Complex Variable</td>
<td>3-0</td>
<td></td>
</tr>
<tr>
<td>Mt-202(C)</td>
<td>Ferrous Physical Metallurgy</td>
<td>3-2</td>
<td></td>
</tr>
<tr>
<td>Ae-213(B)</td>
<td>Stress Analysis III</td>
<td>4-2</td>
<td></td>
</tr>
<tr>
<td>Ae-106(B)</td>
<td>Aircraft Performance</td>
<td>3-2</td>
<td></td>
</tr>
<tr>
<td>*SL-102</td>
<td>New Weapons Development II (Lecture)</td>
<td>0-1</td>
<td></td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**			
**			
**			
**			

29
THE ENGINEERING SCHOOL

SECOND YEAR (AR2) GROUP

<table>
<thead>
<tr>
<th>FIRST TERM</th>
<th>Problems</th>
<th>4-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-105(A) Fourier Series and Boundary Value Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ae-501(A) Hydro-Aero Mechanics I</td>
<td>4-0</td>
<td></td>
</tr>
<tr>
<td>Ae-311(C) Aircraft Design</td>
<td>2-4</td>
<td></td>
</tr>
<tr>
<td>EE-551(B) Transmission Lines and Filters</td>
<td>3-2</td>
<td></td>
</tr>
<tr>
<td>EE-751(C) Electronics</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>*IE-101(C) Principles of Industrial Organization (Lecture)</td>
<td></td>
<td>0-1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16-11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THIRD TERM</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-671(A) Transients</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Mc-401(A) Exterior Ballistics</td>
<td>3-0</td>
<td></td>
</tr>
<tr>
<td>Or-141(C) Guided Missiles Guidance</td>
<td>2-0</td>
<td></td>
</tr>
<tr>
<td>Ae-508(A) Compressibility</td>
<td>3-2</td>
<td></td>
</tr>
<tr>
<td>Ae-146(C) Aircraft Dynamics</td>
<td>3-2</td>
<td></td>
</tr>
<tr>
<td>*SL-101 New Weapons Development I (Lecture)</td>
<td></td>
<td>0-1</td>
</tr>
<tr>
<td>*IE-103(C) Applied Industrial Organization (Lecture)</td>
<td></td>
<td>.0-1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14-10</td>
<td></td>
</tr>
</tbody>
</table>

* Lecture course—no academic credit.

FOURTH TERM

EE-672(A) Servomechanisms	3-3	
Es-456(C) Introduction to Radar (Airborne)		
Ma-401(A) Mechanical Computers	2-2	
Mt-203(B) Physical Metallurgy	2-2	
Or-142(C) Guided Missiles Guidance	2-0	
*IE-104(C) Technical Lectures		0-1
*SL-102 New Weapons Development II (Lecture)		.0-1
TOTAL	**11-11**	

Summer period will be spent in a civilian institution summer course in industrial engineering.

THIRD YEAR (AR3) AT MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FALL TERM

- 16.47 Projectiles, Missiles and Rockets
- 13.39T Vector Kinematics and Gyroscopic Instrument Theory
- 16.15 Advanced Stability and Control of Aircraft
- 16.41 Fire Control Principles
- 16.43 Fire Control Instrument Laboratory

SPRING TERM

- 16.42 Fire Control Systems
- 16.44T Advanced Fire Control Instruments Laboratory
- 16.40T Automatic Control Equipment for Aircraft Thesis

AERONAUTICAL ENGINEERING, ELECTRICAL

This curriculum consists of two years of study at the Naval Postgraduate School. Selected students will continue for a third year of study at the Naval Postgraduate School. Satisfactory completion of the three-year curriculum normally leads to the award of a graduate degree in electrical engineering. This curriculum is designed to provide major emphasis on electricity and is supported by aeronautics, mathematics, metallurgy, electronics, and mechanics. The objective of this curriculum is to provide electrical engineers who will have a good understanding of aeronautical engineering.

FIRST YEAR (AE) GROUP

<table>
<thead>
<tr>
<th>FIRST TERM</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-100(C) Vector Algebra and Geometry</td>
<td>2-1</td>
<td></td>
</tr>
<tr>
<td>Ma-111(C) Introduction to Engineering Mathematics</td>
<td>3-1</td>
<td></td>
</tr>
<tr>
<td>EE-171(C) Electric Circuits and Fields</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Mc-101(C) Engineering Mechanics I</td>
<td>3-0</td>
<td></td>
</tr>
<tr>
<td>Ae-200(C) Rigid Body Statics of Aircraft</td>
<td>3-2</td>
<td></td>
</tr>
<tr>
<td>Ch-101(C) General Inorganic Chemistry</td>
<td>3-2</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>17-10</td>
<td></td>
</tr>
</tbody>
</table>

SECOND TERM

Ma-112(B) Differential Equations and Boundary Value Problems	4-0	
EE-271(C) AC Circuits	3-2	
Mc-102(C) Engineering Mechanics II	2-2	
Ae-211(C) Stress Analysis I	4-0	
Ae-100(C) Basic Aerodynamics	3-4	
*Ae-001 Aeronautical Lecture	0-1	
TOTAL	**16-9**	

30
Third Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-113(B)</td>
<td>Vector Analysis and Introduction to Partial Differential Equations</td>
<td>3-0</td>
</tr>
<tr>
<td>EE-272(B)</td>
<td>AC Circuits</td>
<td>2-2</td>
</tr>
<tr>
<td>Mt-201(C)</td>
<td>Introductory Physical Metallurgy</td>
<td>3-2</td>
</tr>
<tr>
<td>Ae-212(C)</td>
<td>Stress Analysis II</td>
<td>4-2</td>
</tr>
<tr>
<td>Ae-121(C)</td>
<td>Technical Aerodynamics I</td>
<td>3-2</td>
</tr>
<tr>
<td>Ma-201(C)</td>
<td>Graphical and Mechanical Computation</td>
<td>0-2</td>
</tr>
<tr>
<td>*SL-101</td>
<td>New Weapons Development I (Lecture)</td>
<td>0-1</td>
</tr>
</tbody>
</table>

*Lecture course—no academic credit.

Fourth Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-114(A)</td>
<td>Partial Differential Equations and Functions of a Complex Variable</td>
<td>3-0</td>
</tr>
<tr>
<td>EE-371(C)</td>
<td>DC Machinery</td>
<td>3-2</td>
</tr>
<tr>
<td>Mt-202(C)</td>
<td>Ferrous Physical Metallurgy</td>
<td>3-2</td>
</tr>
<tr>
<td>Ae-213(B)</td>
<td>Aircraft Performance</td>
<td>4-2</td>
</tr>
<tr>
<td>*SL-102</td>
<td>New Weapons Development II (Lecture)</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Six weeks intersessional period in the field at an aviation test activity.

Second Year (AE2) Group

First Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-105(A)</td>
<td>Fourier Series and Boundary Value Problems</td>
<td>4-0</td>
</tr>
<tr>
<td>EE-471(C)</td>
<td>Transformers and Asynchronous Machines</td>
<td>3-4</td>
</tr>
<tr>
<td>Ae-311(C)</td>
<td>Aircraft Design</td>
<td>2-4</td>
</tr>
<tr>
<td>Ae-501(A)</td>
<td>Hydro-Aero Mechanics I</td>
<td>4-0</td>
</tr>
<tr>
<td>*IE-101(C)</td>
<td>Principles of Industrial Organization (Lecture)</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Third Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-508(A)</td>
<td>Compressibility</td>
<td>3-2</td>
</tr>
<tr>
<td>Ae-146(A)</td>
<td>Aircraft Dynamics</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-571(B)</td>
<td>Transmission Lines and Filters</td>
<td>3-4</td>
</tr>
<tr>
<td>EE-771(B)</td>
<td>Electronics</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-971(A)</td>
<td>Seminar</td>
<td>1-0</td>
</tr>
<tr>
<td>*SL-101</td>
<td>New Weapons Development I (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td>*IE-103</td>
<td>Applied Industrial Organization (Lecture)</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Second Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-106(A)</td>
<td>Complex Variable and Laplace Transform</td>
<td>4-0</td>
</tr>
<tr>
<td>EE-472(C)</td>
<td>Synchronous Machines and Synchros</td>
<td>3-4</td>
</tr>
<tr>
<td>EE-971(A)</td>
<td>Seminar</td>
<td>1-0</td>
</tr>
<tr>
<td>Mc-201(A)</td>
<td>Methods in Dynamics</td>
<td>2-2</td>
</tr>
<tr>
<td>Ae-502(A)</td>
<td>Hydro-Aero Mechanics II</td>
<td>4-0</td>
</tr>
<tr>
<td>*SL-102</td>
<td>New Weapons Development II (Lecture)</td>
<td>0-1</td>
</tr>
</tbody>
</table>

*Lecture course—no academic credit.

Third Year (AE3) Group

First Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-672(A)</td>
<td>Servomechanisms</td>
<td>3-3</td>
</tr>
<tr>
<td>EE-871(A)</td>
<td>Electrical Machine Design</td>
<td>4-0</td>
</tr>
<tr>
<td>Es-326(A)</td>
<td>Radio Systems</td>
<td>3-3</td>
</tr>
<tr>
<td>Es-227(B)</td>
<td>Ultra-High Frequency Tubes</td>
<td>3-2</td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td>0-3</td>
</tr>
</tbody>
</table>

Third Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-873(A)</td>
<td>Electrical Machine Design</td>
<td>4-0</td>
</tr>
<tr>
<td>EE-971(A)</td>
<td>Seminar</td>
<td>1-0</td>
</tr>
<tr>
<td>Es-422(B)</td>
<td>Radar System Engineering</td>
<td>3-3</td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td>0-10</td>
</tr>
</tbody>
</table>

Fourth Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-874(A)</td>
<td>Electrical Machine Design</td>
<td>4-0</td>
</tr>
<tr>
<td>EE-971(A)</td>
<td>Seminar</td>
<td>1-0</td>
</tr>
<tr>
<td>Es-423(B)</td>
<td>Radar System Engineering</td>
<td>3-6</td>
</tr>
<tr>
<td>Es-536(B)</td>
<td>Counter Measures</td>
<td>2-3</td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td>0-6</td>
</tr>
</tbody>
</table>

*Lecture course—no academic credit.
THE ENGINEERING SCHOOL

COMMUNICATIONS

OBJECTIVE

To prepare officers for communications, operations and staff duties, and to fit them better for command duties. This curriculum majors in practical communications, operations, tactics and electronics. Students are required to enroll in Naval War College correspondence course in Strategy and Tactics, and to complete the first four assignments prior to graduation.

C-GROUP

<table>
<thead>
<tr>
<th>FIRST TERM</th>
<th>SECOND TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-101(C) Typing and Radiotelegraph Code</td>
<td>Co-102(C) Radiotelegraph Code and Procedure</td>
</tr>
<tr>
<td>Co-111(C) Radiotelegraph and Visual Procedure</td>
<td>Co-112(C) Tape Relay and Toll Traffic Procedure</td>
</tr>
<tr>
<td>Co-121(C) Security of Classified Matter and Registered Publication Handling</td>
<td>Co-122(C) Communication Planning and Tactics</td>
</tr>
<tr>
<td>Co-131(C) Tactics</td>
<td>Co-132(C) Tactics</td>
</tr>
<tr>
<td>Co-135(C) Correspondence Course in Strategy and Tactics</td>
<td>Co-135(C) Correspondence Course in Strategy and Tactics</td>
</tr>
<tr>
<td>Es-186(C) Fundamentals of Radio Communications</td>
<td>Es-282(C) Vacuum Tube Circuits</td>
</tr>
<tr>
<td>Es-281(C) Electronics Fundamentals</td>
<td>Es-786(C) RF Energy Transmission</td>
</tr>
<tr>
<td>12-15</td>
<td>13-13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THIRD TERM</th>
<th>FOURTH TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-103(C) Visual and Radiotelephone Procedure</td>
<td>Co-104(C) Military Communication Organizations</td>
</tr>
<tr>
<td>Co-113(C) International and Commercial Communications</td>
<td>Co-114(C) Correspondence and Mail</td>
</tr>
<tr>
<td>Co-123(C) Communication Planning</td>
<td>Co-115(C) Cryptosystems</td>
</tr>
<tr>
<td>Co-133(C) Tactics</td>
<td>Co-124(C) Communication Planning</td>
</tr>
<tr>
<td>Co-135(C) Correspondence Course in Strategy and Tactics</td>
<td>Co-134(C) Tactics</td>
</tr>
<tr>
<td>Es-283(C) Vacuum Tube Circuits</td>
<td>Co-135(C) Correspondence Course in Strategy and Tactics</td>
</tr>
<tr>
<td>Es-286(C) Fusing and High Frequency Circuits</td>
<td>Es-386(C) Transmitters and Receivers</td>
</tr>
<tr>
<td>*SL-101 New Weapons Development I (Lecture)</td>
<td>Es-586(C) Special Systems</td>
</tr>
<tr>
<td>13-14</td>
<td>11-16</td>
</tr>
</tbody>
</table>

*Lecture course—no academic credit.

COMMUNICATION OFFICERS SHORT COURSE CURRICULUM

OBJECTIVE

To educate officers in the operational aspects of communications and to qualify them for positions of responsibility in the communication organization afloat. Graduates are qualified to serve as communication officers of auxiliary types and destroyers or as assistant communication officers of large ships and staffs.

This curriculum extends over a period of twelve academic weeks. Sections will convene during fiscal 1954 on the following dates:

6 July 1953	26 October 1953
3 August 1953	11 January 1954
31 August 1953	8 February 1954
8 March 1954	7 June 1954
5 April 1954	28 June 1954
3 May 1954	

CS-Group

Co-150(C) Communication Procedures	68 hours
Co-151(C) Security	32 hours
Co-152(C) Cryptography	38 hours
Co-153(C) Communication Plans	56 hours
Co-154(C) Miscellaneous Communication Subjects	24 hours

| Co-155(C) Typing, Radiotelephone Code, and Radiotelephone Operating | 32 hours |
| Co-160(C) Tactics | 74 hours |

Total Classroom Hours 324 hours
ENGINEERING ELECTRONICS CURRICULA

OBJECTIVE
To give the student a thorough practical and theoretical training in engineering electronics in preparation for future duties involving the development and use of electronics equipment and systems in the Naval Establishment.

THREE-YEAR CURRICULUM
(Presented at graduate level)

FIRST YEAR (E)

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST TERM</td>
<td>Es-111(C)</td>
<td>DC and AC Electric Circuits</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>Es-616(C)</td>
<td>Electric and Magnetic Fields</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>Ma-100(C)</td>
<td>Vector Algebra and Geometry</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Ma-101(C)</td>
<td>Introduction to Engineering Mathematics</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Ph-211(C)</td>
<td>Optics</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>*IE-101(C)</td>
<td>Principles of Industrial Organization</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14-9</td>
</tr>
<tr>
<td>THIRD TERM</td>
<td>Es-113(C)</td>
<td>Circuit Analysis and Measurements</td>
<td>3-3</td>
</tr>
<tr>
<td></td>
<td>Es-213(C)</td>
<td>Electron Tubes and Circuits</td>
<td>4-3</td>
</tr>
<tr>
<td></td>
<td>Ma-103(B)</td>
<td>Functions of Several Variables and Vector Analysis</td>
<td>5-0</td>
</tr>
<tr>
<td></td>
<td>Ph-113(B)</td>
<td>Dynamics</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>*IE-103(C)</td>
<td>Applied Industrial Organization (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td>*SL-101</td>
<td>New Weapons Development I (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15-8</td>
</tr>
</tbody>
</table>

*Lecture course—no academic credit.

SECOND TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es-112(C)</td>
<td>AC Electricity</td>
<td>2-0</td>
</tr>
<tr>
<td>Es-212(C)</td>
<td>Electron Tubes and Circuits</td>
<td>4-6</td>
</tr>
<tr>
<td>Ma-102(C)</td>
<td>Differential Equations and Series</td>
<td>5-0</td>
</tr>
<tr>
<td>Ph-212(B)</td>
<td>Physical Optics and Introductory Dynamics</td>
<td>3-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14-9</td>
</tr>
</tbody>
</table>

SECOND YEAR (E2)

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST TERM</td>
<td>Es-225(A)</td>
<td>Electron Tubes</td>
<td>3-6</td>
</tr>
<tr>
<td></td>
<td>Es-621(A)</td>
<td>Electromagnetics</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>EE-314(C)</td>
<td>D and AC Machinery</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>Ph-421(A)</td>
<td>Fundamental Acoustics</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12-10</td>
</tr>
<tr>
<td>THIRD TERM</td>
<td>Es-122(A)</td>
<td>Advanced Circuit Theory</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>Es-321(B)</td>
<td>Radio Systems</td>
<td>3-3</td>
</tr>
<tr>
<td></td>
<td>Es-623(A)</td>
<td>Electromagnetics</td>
<td>4-0</td>
</tr>
<tr>
<td></td>
<td>Ph-423(A)</td>
<td>Underwater Acoustics</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12-8</td>
</tr>
</tbody>
</table>

Intersessional Field Trip; summer leave period.

FOURTH TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es-114(C)</td>
<td>Circuit Analysis and Measurements</td>
<td>3-3</td>
</tr>
<tr>
<td>Es-214(C)</td>
<td>Electron Tubes and Circuits</td>
<td>4-3</td>
</tr>
<tr>
<td>Ma-104(A)</td>
<td>Partial Differential Equations and Related Topics</td>
<td>5-0</td>
</tr>
<tr>
<td>Ph-311(B)</td>
<td>Electrostatics and Magnetostatics</td>
<td>3-0</td>
</tr>
<tr>
<td>*IE-104(C)</td>
<td>Technical Lectures</td>
<td>0-1</td>
</tr>
<tr>
<td>*SL-102</td>
<td>New Weapons Development II (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-8</td>
</tr>
</tbody>
</table>

Intersessional Field Trip; summer leave period.

The B.S. degree in Engineering Electronics is normally awarded at the end of the second year of this curriculum to students meeting the requirements for that degree.
THIRD YEAR (E3)

FIRST TERM
Es-134(A) Advanced Circuit Theory 3-0
Es-333(B) Radio Systems 2-3
Es-431(B) Radar System Engineering 3-3
Es-736(B) Antennas, Transmission Lines 3-3

SECOND TERM
Es-432(B) Radar System Engineering 3-6
Es-531(B) Special Systems 3-3
EE-672(A) Servomechanisms 3-3
Thesis 2-0

THIRD TERM
This term is spent in an industrial electronics laboratory, such as Bell Telephone Laboratories, R.C.A., or General Electric Company. During this period the student works as a junior engineer or physicist on a selected project which forms part of, or is related to his thesis.

Es-036(C) Es-333(B) Es-431(B) Es-736(B)
Es-432(B) Es-531(B) Ph-631(B) Thesis

FOURTH TERM
Es-036(C) Electronics Administration 2-0
Es-532(B) Special Systems 3-3
Es-836(A) Project Seminar 1-0
Ph-631(B) Atomic Physics 4-0
Thesis 4-0

The M.S. degree in Engineering Electronics is normally awarded at the end of the third year of this curriculum to students meeting the requirements for that degree.

TWO-YEAR CURRICULUM
(Presented at undergraduate level)

FIRST YEAR (E)
Follow first year (E) of three-year curriculum.

SECOND YEAR (EA2)

FIRST TERM
Es-227(C) Ultra-High-Frequency
Techniques 3-2
Es-326(B) Radio Systems 3-3
EE-314(C) DC and AC Machinery 3-4
Ph-427(B) Fundamental and Applied
Acoustics 4-0

13-9

SECOND TERM
Es-126(C) Radio Frequency Measurements .. 2-6
Es-327(B) Radio Systems 4-3
Es-421(B) Pulse Techniques 2-3
Ph-428(B) Underwater Acoustics 2-3

10-15

THIRD TERM
Es-328(B) Radio Systems 2-3
Es-422(B) Radar System Engineering 3-3
Es-521(B) Special Systems 3-3
Es-721(B) Antennas and Wave
Propagation 3-3

11-12

FOURTH TERM
Es-036(C) Electronics Administration 2-0
Es-423(B) Radar System Engineering 3-6
Es-522(B) Special Systems 3-3
Es-722(B) Antennas and Wave
Propagation 3-3

11-12

The B.S. degree in Engineering Electronics is normally awarded at the end of the second year of this curriculum to students meeting the requirements for that degree.

ENGINEERING ELECTRONICS (SONAR)

OBJECTIVE
To give the student a thorough practical and theoretical training in engineering electronics and acoustics in preparation for future duties involving the development and use of underwater electronics equipment and systems in the Naval Establishment.

FIRST YEAR (E)
Follow first year (E) of three-year curriculum.
MINE WARFARE CURRICULUM

SECOND YEAR (E2)

Follow second year (E2) of three-year curriculum except substitute Ph-424(A) Sonar Systems and Developments for Es-322(B) Radio Systems. A Bachelor of Science degree in Engineering Electronics is normally awarded at the end of the second year to students meeting the requirements for that degree.

THIRD YEAR (EW3) AT UNIVERSITY OF CALIFORNIA AT LOS ANGELES

FALL SEMESTER

Phys 114C Acoustics Laboratory
Phys 124 Nuclear Physics
Phys 214 Advanced Acoustics
Phys 220A Theoretical Mechanics

SPRING SEMESTER

Phys 112 Heat
Phys 264 Advanced Acoustics Seminar
Phys 266 Propagation of Waves in Fluids
Phys 284 Experimental Techniques in Acoustics
Phys 290 Acoustics Research
X-141 ABC Principles of Transducer Design and Evaluation

The degree of Master of Science (Applied Physics) is normally awarded by UCLA to students meeting the requirements for that degree.

MINE WARFARE CURRICULUM

OBJECTIVE

To train officers in the various phases of mine warfare in order that they may have a basic knowledge of mines and mine countermeasures; assist in the development of mines and mine countermeasures; advise commanders afloat in matters concerning mining and mine countermeasures.

FIRST YEAR (RW)

FIRST TERM

Ch-101(C) General Inorganic Chemistry ___ 3-2
Es-141(C) DC Electricity _____________________ 4-4
Ma-100(C) Vector Algebra and Geometry ___ 2-1
Ma-111(C) Introduction to Engineering
Mathematics _____________________________ 3-1
Mc-101(C) Engineering Mechanics I ________ 2-2

14-10

THIRD TERM

Es-261(C) Electronic Tubes and Circuits ___ 3-2
Ma-113(B) Vector Analysis and Partial
Differential Equations _____________ 3-0
Mt-301(C) Introduction to Physical
Metallurgy ___________________________ 3-2
Oc-101(C) Introduction to Oceanography ___ 2-1
Or-191(C) Mines and Mine Mechanisms ______ 2-0
Ph-610(B) Atomic Physics _______________ 3-0
*IE-103(C) Applied Industrial Organization ___ 0-1

16-6

SECOND TERM

Es-142(C) AC Electricity ___________________ 4-3
Ma-112(B) Differential Equations and
Boundary Value Problems ______ 4-0
Mc-102(C) Engineering Mechanics II ______ 2-2
ME-500(C) Strength of Materials __________ 3-0
ME-601(C) Materials Testing Lab __________ 0-2

13-7

FOURTH TERM

Es-262(C) Electronic Tubes and Circuits ___ 3-2
Ma-114(A) Partial Differential Equations
and Complex Variables _____________ 3-0
Mt-202(C) Ferrous Physical Metallurgy ______ 3-2
Or-104(C) Ordnance IV _________________ 2-1
Or-192(C) Mining Operations ____________ 2-0
Ph-311(B) Electrostatics and
Magnetostatics _________________________ 3-0
*IE-104(C) Technical Lectures ____________ 0-1

16-6

*Lecture course—no academic credit.
Summer course in Industrial Administration at Stanford University.
NAVAL ENGINEERING CURRICULA

The Naval Engineering curricula include the following:

Chemical Engineering
- General Chemistry
- Electric Circuits and Fields
- Vector Algebra and Geometry
- Introduction to Engineering Mathematics
- Engineering Mechanics

Electrical Engineering
- Electric Circuits and Fields
- Vector Algebra and Geometry

Gas Turbines
- Engineering Mechanics

Mechanical Engineering
- General Chemistry
- Electric Circuits and Fields
- Vector Algebra and Geometry
- Introduction to Engineering Mathematics
- Engineering Mechanics

Mechanical Engineering (Equalization)
- General Chemistry
- Electric Circuits and Fields
- Vector Algebra and Geometry
- Introduction to Engineering Mathematics
- Engineering Mechanics

Mechanical Engineering (Nuclear Power)
- General Chemistry
- Electric Circuits and Fields
- Vector Algebra and Geometry
- Introduction to Engineering Mathematics
- Engineering Mechanics

Metallurgical Engineering
- General Chemistry
- Electric Circuits and Fields
- Vector Algebra and Geometry
- Introduction to Engineering Mathematics
- Engineering Mechanics

Petroleum Engineering
- General Chemistry
- Electric Circuits and Fields
- Vector Algebra and Geometry
- Introduction to Engineering Mathematics
- Engineering Mechanics

CHEMICAL ENGINEERING

OBJECTIVE

To educate a small group of officers in the fundamentals of applied chemistry and chemical engineering processes so that they will be qualified for duties involving: research, development and use of naval materials other than metals; liaison with civilian chemical industry; preparation of material specifications; supervision of naval activities involving chemical processes.

FIRST YEAR (NC)

FIRST TERM
- Ch-101(C) General Chemistry
- EE-171(C) Electric Circuits and Fields
- Ma-100(C) Vector Algebra and Geometry
- Ma-111(C) Introduction to Eng. Mathematics
- Mc-101(C) Engineering Mechanics I

SECOND TERM
- Ch-221(C) Qualitative Analysis
- EE-251(C) AC Circuits
- Ge-101(C) Physical Geology
- Ge-241(C) Geology of Petroleum
- Ma-112(B) Differential Equations and Boundary Value Problems

TOTAL

FIRST YEAR (NC)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-101(C)</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-171(C)</td>
<td>3-4</td>
</tr>
<tr>
<td>Ma-100(C)</td>
<td>2-1</td>
</tr>
<tr>
<td>Ma-111(C)</td>
<td>3-1</td>
</tr>
<tr>
<td>Mc-101(C)</td>
<td>2-2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13-10</td>
</tr>
</tbody>
</table>

SECOND YEAR (RW2)

FIRST TERM
- Ch-561(A) Physical Chemistry
- Mt-203(B) Physical Metallurgy (Special Topics)
- Oc-401(C) Naval Applications of Oceanography
- Or-291(C) Mine Countermeasures
- Ph-421(A) Fundamental Acoustics
- *IE-101(C) Principles of Industrial Organization

SECOND TERM
- Ae-100(C) Basic Aerodynamics
- Ch-521(A) Plastics
- Ma-381(B) Probability
- Or-292(C) Mine Countermeasures
- Ph-425(A) Underwater Acoustics

TOTAL

SECOND YEAR (RW2)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-561(A)</td>
<td>3-2</td>
</tr>
<tr>
<td>Mt-203(B)</td>
<td>2-2</td>
</tr>
<tr>
<td>Oc-401(C)</td>
<td>3-0</td>
</tr>
<tr>
<td>Or-291(C)</td>
<td>3-0</td>
</tr>
<tr>
<td>Ph-421(A)</td>
<td>3-0</td>
</tr>
<tr>
<td>*IE-101(C)</td>
<td>0-1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17-5</td>
</tr>
</tbody>
</table>

FIRST TERM
- Ch-591(A) Blast and Shock Effects
- Ma-401(A) Probability and Statistics
- Oa-152(C) Measures of Effectiveness
- Or-295(A) Thesis I
- *SL-101(C) New Weapons Development I

SECOND TERM
- Ma-382(A) Probability and Statistics
- Oa-153(B) Measures of Effectiveness
- Or-294(A) Thesis II
- Ph-424(A) Shock Waves and Sonar Developments
- *SL-102(C) New Weapons Development II

TOTAL

FIRST TERM

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-591(A)</td>
<td>3-0</td>
</tr>
<tr>
<td>Ma-401(A)</td>
<td>2-0</td>
</tr>
<tr>
<td>Oa-152(C)</td>
<td>3-0</td>
</tr>
<tr>
<td>Or-294(A)</td>
<td>2-9</td>
</tr>
<tr>
<td>*SL-101(C)</td>
<td>0-1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10-10</td>
</tr>
</tbody>
</table>

SECOND TERM

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-382(A)</td>
<td>2-0</td>
</tr>
<tr>
<td>Oa-153(B)</td>
<td>2-6</td>
</tr>
<tr>
<td>Or-296(A)</td>
<td>2-9</td>
</tr>
<tr>
<td>Ph-424(A)</td>
<td>3-3</td>
</tr>
<tr>
<td>*SL-102(C)</td>
<td>0-1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12-12</td>
</tr>
</tbody>
</table>

*Lecture course—no academic credit.
Six months practical work at various mine warfare installations.
THIRD TERM

Ch-231(C) Quantitative Analysis 2-3
Ch-311(C) Organic Chemistry 3-2
Ch-411(C) Physical Chemistry 3-2
Cr-311(B) Crystallography and Mineralogy 3-2
Ma-113(B) Vector Analysis and
 Introduction to Partial
 Differential Equations 3-0
Mt-201(C) Introductory Physical
 Metallurgy 3-2

17-11

FOURTH TERM

Ch-312(C) Organic Chemistry 3-2
Ch-412(C) Physical Chemistry 3-2
Ch-521(A) Plastics 3-2
Ch-611(C) Thermodynamics 3-2
Ge-302(C) Determinative Mineralogy 1-4

Intersessional Field Trip; summer leave period.

SECOND YEAR (NC2)

FIRST TERM

Ch-541(A) Reaction Motors 2-2
Ch-612(C) Thermodynamics 3-2
ME-500(C) Strength of Materials 3-0
ME-601(C) Materials Testing Laboratory 0-2
Mt-202(C) Ferrous Physical Metallurgy 3-2
*IE-101(C) Principles of Industrial
 Organization (Lecture) 0-1

11-9

THIRD TERM

Ch-321(A) Organic Qualitative Analysis 2-2
Ch-323(A) Chemistry of High Polymers 3-0
Ch-701(C) Chemical Engineering
 Calculations 3-2
Ch-721(C) Unit Operations 3-0
ME-422(B) Hydromechanics 2-2
Ph-610(B) Atomic Physics 3-0
*IE-103(C) Applied Industrial Organization
 (Lecture) 0-1
*SL-101 New Weapons Development I
 (Lecture) 0-1

16-8

*Lecture course—no academic credit.

FOURTH TERM

Ch-322(A) Organic Chemistry Advanced 3-2
Ch-722(C) Unit Operations 3-0
Ch-800(A) Chemistry Seminar 2-0
Ma-301(B) Statistics 3-2
ME-310(B) Heat Transfer 3-2
Mt-301(A) High Temperature Materials 3-0
*IE-104(C) Technical Lectures 0-1
*SL-102 New Weapons Development II
 (Lecture) 0-1

17-8

Summer leave period.

THIRD YEAR (NC3)

At Lehigh University

SUMMER

Supervised study of Unit Operations and allied subjects.

FALL SEMESTER

Chem.440 Adv. Physical Chemistry
Chem.Eng.480 Industrial Chemistry and Chemical
 Engineering Research
Chem.Eng.484 Chemical Engineering
Chem.Eng.300 Chemical Engineering
 Thermodynamics
*Chem.Eng.302 Chemical Engineering Kinetics

*Or additional mathematics, mechanical engineering,
 or physics.

This curriculum normally leads to the degree of
Master of Science, conferred by the civilian univer-

SPRING SEMESTER

Chem.441 Adv. Physical Chemistry
Chem.Eng.481 Industrial Chemistry and Chemical
 Eng.- Research
Chem.Eng.485 Chemical Engineering
Chem.Eng.486 Chemical Engineering Process
 Control
Chem.Eng.301 Process Design

Note: This curriculum will be discontinued after
graduation of the presently enrolled students in
June 1954.
THE ENGINEERING SCHOOL

ELECTRICAL ENGINEERING

OBJECTIVE
To prepare officers in advanced electrical engineering for technical and administrative duties ashore and afloat, involving research, development, design and inspection of naval machinery and engineering plants.

BASIC CURRICULUM (TWO YEARS)
Designed to supply, to maximum extent possible in two years, broad coverage in a variety of subjects essential to understanding of modern naval engineering, with emphasis on electrical engineering.

FIRST YEAR (NL)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-100(C)</td>
<td>Vector Algebra and Geometry</td>
<td>2-1</td>
</tr>
<tr>
<td>Ma-101(C)</td>
<td>Introduction to Engineering</td>
<td>3-0</td>
</tr>
<tr>
<td>Mc-101(C)</td>
<td>Engineering Mechanics I</td>
<td>2-2</td>
</tr>
<tr>
<td>Ch-101(C)</td>
<td>General Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-171(C)</td>
<td>Electric Circuits and Fields</td>
<td>3-4</td>
</tr>
<tr>
<td>Ph-610(B)</td>
<td>Atomic Physics</td>
<td>3-0</td>
</tr>
<tr>
<td>Ma-103(B)</td>
<td>Functions of Several Variables and Vector Analysis</td>
<td>5-0</td>
</tr>
<tr>
<td>Mc-201(A)</td>
<td>Methods in Dynamics</td>
<td>2-2</td>
</tr>
<tr>
<td>Mt-201(C)</td>
<td>Introductory Physical Metallurgy</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-272(B)</td>
<td>AC Circuits</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>13-9</td>
</tr>
</tbody>
</table>

SECOND YEAR (NL2)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-471(C)</td>
<td>Transformers and Asynchronous Machines</td>
<td>3-4</td>
</tr>
<tr>
<td>ME-122(C)</td>
<td>Engineering Thermodynamics</td>
<td>3-2</td>
</tr>
<tr>
<td>Mt-203(B)</td>
<td>Physical Metallurgy (Special Topics)</td>
<td>2-2</td>
</tr>
<tr>
<td>EE-273(C)</td>
<td>Electrical Measurements I</td>
<td>2-3</td>
</tr>
<tr>
<td>*IE-101(C)</td>
<td>Principles of Industrial Organization (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10-12</td>
</tr>
</tbody>
</table>

THIRD TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-571(B)</td>
<td>Transmission Lines and Filters</td>
<td>3-4</td>
</tr>
<tr>
<td>EE-771(B)</td>
<td>Electronics</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-971(A)</td>
<td>Seminar</td>
<td>1-0</td>
</tr>
<tr>
<td>ME-222(C)</td>
<td>Marine Power Plant Equipment</td>
<td>3-4</td>
</tr>
<tr>
<td>*IE-103(C)</td>
<td>Applied Industrial Organization (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td>*SL-101</td>
<td>New Weapons Development I (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10-12</td>
</tr>
</tbody>
</table>

FOURTH TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-472(C)</td>
<td>Synchronous Machines and Synchros</td>
<td>3-4</td>
</tr>
<tr>
<td>EE-971(A)</td>
<td>Seminar</td>
<td>1-0</td>
</tr>
<tr>
<td>Mt-301(B)</td>
<td>High Temperature Materials</td>
<td>3-0</td>
</tr>
<tr>
<td>ME-221(C)</td>
<td>Marine Power Plant Equipment</td>
<td>3-2</td>
</tr>
<tr>
<td>ME-421(C)</td>
<td>Hydromechanics</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>13-8</td>
</tr>
</tbody>
</table>

* *Syllabus to be announced for the academic year 1953-54.

This curriculum normally leads to the degree of Bachelor of Science in Electrical Engineering for students who attain the required quality point rating.
ELECTRICAL ENGINEERING

ADVANCED CURRICULUM (THREE YEARS)

Designed for students, selected from the NL group at the end of the first year, whose performance and records qualify them for advanced study.

FIRST YEAR

Same as basic curriculum.

SECOND YEAR (NLA2)

FIRST TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-471(C)</td>
<td>Transformers, Asynchronous Machines and Synchrons</td>
<td>3-4</td>
</tr>
<tr>
<td>EE-273(C)</td>
<td>Electrical Measurements I</td>
<td>2-3</td>
</tr>
<tr>
<td>ME-122(C)</td>
<td>Engineering Thermodynamics</td>
<td>3-2</td>
</tr>
<tr>
<td>Mt-203(B)</td>
<td>Physical Metallurgy (Special Topics)</td>
<td>2-2</td>
</tr>
<tr>
<td>*IE-101(C)</td>
<td>Principles of Industrial Organization (Lecture)</td>
<td>0-1</td>
</tr>
</tbody>
</table>

| Total | | 10-12 |

THIRD TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-571(B)</td>
<td>Transmission Lines and Filters</td>
<td>3-4</td>
</tr>
<tr>
<td>EE-771(B)</td>
<td>Electronics</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-971(A)</td>
<td>Seminar</td>
<td>1-0</td>
</tr>
<tr>
<td>ME-222(C)</td>
<td>Marine Power Plant Equipment</td>
<td>3-4</td>
</tr>
<tr>
<td>*IE-103(C)</td>
<td>Applied Industrial Organization (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td>*SL-101</td>
<td>New Weapons Development I (Lecture)</td>
<td>0-1</td>
</tr>
</tbody>
</table>

| Total | | 10-12 |

SECOND TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-106(A)</td>
<td>Complex Variables and Laplace Transform</td>
<td>4-0</td>
</tr>
<tr>
<td>EE-472(C)</td>
<td>Synchronous Machines</td>
<td>3-4</td>
</tr>
<tr>
<td>EE-971(A)</td>
<td>Seminar</td>
<td>1-0</td>
</tr>
<tr>
<td>ME-221(C)</td>
<td>Marine Power Plant Equipment</td>
<td>3-2</td>
</tr>
<tr>
<td>ME-421(C)</td>
<td>Hydromechanics</td>
<td>3-2</td>
</tr>
</tbody>
</table>

| Total | | 14-8 |

FOURTH TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-671(A)</td>
<td>Transients</td>
<td>3-4</td>
</tr>
<tr>
<td>EE-772(B)</td>
<td>Electronics</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-971(A)</td>
<td>Seminar</td>
<td>1-0</td>
</tr>
<tr>
<td>ME-310(B)</td>
<td>Heat Transfer</td>
<td>3-2</td>
</tr>
<tr>
<td>ME-223(B)</td>
<td>Marine Power Plant Analysis</td>
<td>2-4</td>
</tr>
<tr>
<td>*IE-104(C)</td>
<td>Technical Lectures</td>
<td>0-1</td>
</tr>
<tr>
<td>*SL-102</td>
<td>New Weapons Development II (Lecture)</td>
<td>0-1</td>
</tr>
</tbody>
</table>

| Total | | 12-14 |

THIRD YEAR (NLA3)

(For Classes Graduating in 1954 and Subsequent Years.)

FIRST TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-105(A)</td>
<td>Fourier Series and Boundary Value Problems</td>
<td>4-0</td>
</tr>
<tr>
<td>EE-871(A)</td>
<td>Electrical Machine Design</td>
<td>4-0</td>
</tr>
<tr>
<td>Ph-361(A)</td>
<td>Electromagnetism</td>
<td>3-0</td>
</tr>
<tr>
<td>NE-101(C)</td>
<td>Main Propulsion Plants</td>
<td>3-0</td>
</tr>
<tr>
<td>EE-672(A)</td>
<td>Servomechanisms</td>
<td>3-3</td>
</tr>
</tbody>
</table>

| Total | | 17-3 |

THIRD TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-873(A)</td>
<td>Electrical Machine Design</td>
<td>4-0</td>
</tr>
<tr>
<td>EE-971(A)</td>
<td>Seminar</td>
<td>1-0</td>
</tr>
<tr>
<td>EE-972(A)</td>
<td>Thesis</td>
<td>2-12</td>
</tr>
<tr>
<td>NE-102(C)</td>
<td>Auxiliary Machinery</td>
<td>3-0</td>
</tr>
</tbody>
</table>

| Total | | 10-12 |

SECOND TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-872(A)</td>
<td>Electrical Machine Design</td>
<td>4-0</td>
</tr>
<tr>
<td>EE-971(A)</td>
<td>Seminar</td>
<td>1-0</td>
</tr>
<tr>
<td>EE-274(B)</td>
<td>Electrical Measurements II</td>
<td>2-3</td>
</tr>
<tr>
<td>Ph-362(A)</td>
<td>Electromagnetic Waves</td>
<td>3-0</td>
</tr>
<tr>
<td>EE-972(A)</td>
<td>Thesis</td>
<td>2-6</td>
</tr>
</tbody>
</table>

| Total | | 12-9 |

FOURTH TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-874(A)</td>
<td>Electrical Machine Design</td>
<td>4-0</td>
</tr>
<tr>
<td>EE-971(A)</td>
<td>Seminar</td>
<td>1-0</td>
</tr>
<tr>
<td>NE-103(C)</td>
<td>Engineering Department Administration</td>
<td>2-0</td>
</tr>
<tr>
<td>EE-972(A)</td>
<td>Thesis</td>
<td>2-8</td>
</tr>
<tr>
<td>Ma-301(B)</td>
<td>Statistics</td>
<td>3-2</td>
</tr>
</tbody>
</table>

| Total | | 12-10 |

This curriculum normally leads to the degree of Master of Science in Electrical Engineering for those who attain the required point rating and complete a satisfactory thesis.
GAS TURBINES

OBJECTIVE

To qualify the officer for duties involving evaluation of future trends in gas turbines and jet propulsion, research and development in these as applied to naval vessel propulsion, and liaison with civilian establishments producing gas turbines and jet propulsion engines for the Navy.

The students for the gas turbines program are normally selected, after the end of the first term, from the mechanical engineering (NH) group. Volunteers for this specialized program must have excellent previous academic records, and high grades for the first term. Mathematics and mechanics are particularly important as prerequisites.

FIRST YEAR (NJ)

<table>
<thead>
<tr>
<th>FIRST TERM</th>
<th>SECOND TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-101(C) General Chemistry</td>
<td>Ae-100(C) Basic Aerodynamics</td>
</tr>
<tr>
<td>EE-171(C) Electric Circuits and Fields</td>
<td>EE-251(C) AC Circuits</td>
</tr>
<tr>
<td>Ma-100(C) Vector Algebra and Geometry</td>
<td>Ma-102(C) Differential Equations and</td>
</tr>
<tr>
<td>Ma-101(C) Introduction to Engineering</td>
<td>Series</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Mc-102(C) Engineering Mechanics II</td>
</tr>
<tr>
<td>Ma-201(C) Graphical and Mechanical Computation</td>
<td></td>
</tr>
<tr>
<td>Mc-101(C) Engineering Mechanics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13-10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CH-412(C) Physical Chemistry</td>
<td>CH-412(C) Physical Chemistry</td>
</tr>
<tr>
<td>EE-451(C) Transformers and Synchronos</td>
<td>CH-611(C) Thermodynamics</td>
</tr>
<tr>
<td>Ma-103(B) Functions of Several Variables and</td>
<td>EE-452(C) Polyphase Transformers,</td>
</tr>
<tr>
<td>Vector Analysis</td>
<td>Synchronous Machines, and</td>
</tr>
<tr>
<td>Mc-201(A) Methods in Dynamics</td>
<td>Induction Motors</td>
</tr>
<tr>
<td>Mt-201(C) Introductory Physical Metallurgy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersessional Field Trip; summer leave period</td>
<td></td>
</tr>
</tbody>
</table>

SECOND YEAR (NJ2)

<table>
<thead>
<tr>
<th>FIRST TERM</th>
<th>SECOND TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-501(A) Hydro-Aero Mechanics I</td>
<td>Ae-502(A) Hydro-Aero Mechanics II</td>
</tr>
<tr>
<td>Ch-541(A) Reaction Motors</td>
<td>Ch-111(A) Fuel and Oil Chemistry</td>
</tr>
<tr>
<td>Ch-612(C) Thermodynamics</td>
<td>Ma-106(A) Complex Variables and Laplace</td>
</tr>
<tr>
<td>Ma-105(A) Fourier Series and Boundary</td>
<td>Transform</td>
</tr>
<tr>
<td>ME-511(C) Strength of Materials</td>
<td>ME-611(C) Materials Testing Laboratory</td>
</tr>
<tr>
<td>*IE-101(C) Principles of Industrial Organization (Lecture)</td>
<td>Mt-202(C) Ferrous Physical Metallurgy</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>18-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>THIRD TERM</td>
<td>FOURTH TERM</td>
</tr>
<tr>
<td>Ae-451(C) Gas Turbines I</td>
<td>Ae-431(A) Internal Flow in Aircraft Engines</td>
</tr>
<tr>
<td>Ae-503(A) Compressibility I</td>
<td>Ae-452(C) Gas Turbines II</td>
</tr>
<tr>
<td>Ch-701(C) Chemical Engineering</td>
<td>EE-751(C) Electronics</td>
</tr>
<tr>
<td>Calculations</td>
<td>ME-310(B) Heat Transfer</td>
</tr>
<tr>
<td>ME-622(B) Experimental Stress Analysis</td>
<td>Mt-301(A) High Temperature Materials</td>
</tr>
<tr>
<td>Mt-203(B) Physical Metallurgy (Special Topics)</td>
<td></td>
</tr>
<tr>
<td>*IE-103(C) Applied Industrial Organization</td>
<td>*IE-104(C) Technical Lectures</td>
</tr>
<tr>
<td>(Lecture)</td>
<td></td>
</tr>
<tr>
<td>*SL-101 New Weapons Development I (Lecture)</td>
<td>*SL-102 New Weapons Development II</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-8</td>
</tr>
</tbody>
</table>

* Lecture course—no academic credit.

NOTE: The curriculum for the first two years is now under revision. The above-listed courses were taken by the group now at M.I.T.
MECHANICAL ENGINEERING

THIRD YEAR (NJ3)
At Massachusetts Institute of Technology

FALL SEMESTER
2.49 Fluid Mechanics, Advanced
2.213 Gas Turbines
2.521 Heat Transfer, Advanced
Thesis

SPRING SEMESTER
2.491 Compressible Fluid Mechanics
2.28 Fluid Machinery
16.56 Jet Propulsion Engines
Thesis

This curriculum leads to the degree of Master of Science, conferred by the civilian institution.

MECHANICAL ENGINEERING

OBJECTIVE
To prepare officers in advanced mechanical engineering, for technical and administrative duties ashore and afloat, involving research, development, design, and inspection of naval machinery and engineering plants.

BASIC CURRICULUM (TWO YEARS)
Designed to supply broad coverage in a variety of subjects which are essential to understanding of modern naval engineering.

FIRST YEAR (NH)

FIRST TERM
Ch-101(C) General Chemistry ________ 3-2
EE-171(C) Electric Circuits and Fields _____ 3-4
Ma-100(C) Vector Algebra and Geometry ____ 2-1
Ma-101(C) Introduction to Engineering Mathematics __________________ 3-0
Ma-201(C) Graphical and Mechanical Computation ___________ 0-2
Mc-101(C) Engineering Mechanics I _______ 2-2

13-11

THIRD TERM
EE-351(C) DC Machinery ________________ 2-2
EE-451(C) Transformers and Synchros ______ 2-2
Ma-103(B) Functions of Several Variables and Vector Analysis ____________ 5-0
Ma-201(A) Methods in Dynamics _________ 2-2
Mt-201(C) Introductory Physical Metallurgy _____________ 3-2

14-8

Intersessional Field Trip; summer leave period.

SECOND YEAR (NH2)

FIRST TERM
ME-122(C) Engineering Thermodynamics ___ 3-2
ME-421(C) Hydromechanics _______________ 3-2
ME-522(C) Strength of Materials ___________ 4-0
ME-611(C) Materials Testing Laboratory ______ 2-2
Mt-203(B) Physical Metallurgy (Special Topics) _____________ 2-2
*IE-101(C) Principles of Industrial Organization (Lecture) _______ 0-1

14-9

SECOND TERM
ME-221(C) Marine Power Plant Equipment___ 3-2
ME-422(B) Hydromechanics _______________ 2-2
ME-622(B) Experimental Stress Analysis ____ 2-2
ME-711(B) Mechanics of Machinery ___________ 3-2
Mt-301(A) High Temperature Materials _______ 3-0

13-8

41
THIRD TERM
- **ME-217(C)** Internal Combustion Engines (Diesel) __________ 3-2
- **ME-222(C)** Marine Power Plant Equipment __________ 3-4
- **ME-712(A)** Dynamics of Machinery __________ 3-2
- **NE-102(C)** Auxiliary Machinery __________ 3-0
- **IE-103(C)** Applied Industrial Organization (Lecture) __________ 0-1
- **SL-101** New Weapons Development I (Lecture) __________ 0-1

\[12-10\]

*Lecture course—no academic credit.

This curriculum normally leads to the degree of Bachelor of Science in Mechanical Engineering, for students who attain the required quality point rating.

ADVANCED CURRICULUM (THREE YEARS)

Designed for students, chosen from the NH Group at the end of the first year, whose performance and records qualify them for advanced study.

FIRST YEAR

Same as basic curriculum.

SECOND YEAR (NHA2)

FIRST TERM
- **ME-112(B)** Thermodynamics __________ 4-2
- **ME-512(A)** Strength of Materials __________ 5-0
- **ME-611(C)** Materials Testing Laboratory __________ 2-2
- **Mt-203(B)** Physical Metallurgy (Special Topics) __________ 2-2
- **NE-101(C)** Main Propulsion Plants __________ 3-0
- **IE-101(C)** Principles of Industrial Organization (Lecture) __________ 0-1

\[16-7\]

THIRD TERM
- **ME-212(C)** Marine Power Plant Equipment __________ 3-4
- **ME-513(A)** Theory of Elasticity __________ 3-0
- **ME-412(A)** Hydromechanics __________ 4-2
- **ME-712(A)** Dynamics of Machinery __________ 3-2
- **IE-103(C)** Applied Industrial Organization (Lecture) __________ 0-1
- **SL-101** New Weapons Development I (Lecture) __________ 0-1

\[13-10\]

*Lecture course—no academic credit.

Intersessional Field Trip; summer leave period.

SECOND TERM
- **Ma-104(A)** Partial Differential Equations and Related Topics __________ 5-0
- **ME-211(C)** Marine Power Plant Equipment __________ 3-2
- **ME-411(C)** Hydromechanics __________ 3-2
- **ME-711(B)** Mechanics of Machinery __________ 3-2

\[14-6\]

FOURTH TERM
- **Ae-431(A)** Internal Flow in Aircraft Engines __________ 4-0
- **Ma-301(B)** Statistics __________ 3-2
- **ME-217(C)** Internal Combustion Engines (Diesel) __________ 3-2
- **ME-310(B)** Heat Transfer __________ 3-2
- **IE-104(C)** Technical Lectures __________ 0-1
- **SL-102** New Weapons Development II (Lecture) __________ 0-1

\[13-8\]
MECHANICAL ENGINEERING

THIRD YEAR (NHA3)

FIRST TERM

Ch-561(A) Physical Chemistry 3-2
ME-215(A) Marine Power Plant Analysis and Design 2-4
ME-612(A) Experimental Stress Analysis 3-2
ME-811(C) Machine Design 3-2
Mt-301(A) High Temperature Materials 3-0

14-10

THIRD TERM

Ch-521(A) Plastics 3-2
NE-102(C) Auxiliary Machinery 3-0
Thesis 2-14

8-16

SECOND TERM

EE-751(C) Electronics 3-4
ME-216(A) Marine Power Plant Analysis and Design 2-4
ME-812(B) Machine Design 3-4
Thesis 0-4

8-16

FOURTH TERM

EE-651(B) Transients and Servos 3-4
NE-103(C) Engineering Department Administration 2-0
Ph-450(B) Underwater Acoustics 3-2
Thesis 2-8

10-14

This curriculum normally leads to the degree of Master of Science in Mechanical Engineering for those who attain the required quality point rating and complete a satisfactory thesis.

MECHANICAL ENGINEERING (EQUALIZATION)

OBJECTIVE

To supplement previous technical education of certain engineering duty officers, and to prepare these officers for engineering assignments under cognizance of the Bureau of Ships, involving inspection, installation, operation, maintenance and repair of naval machinery and equipment.

FIRST YEAR (NQ)

FIRST TERM

Ch-101(C) General Inorganic Chemistry 3-2
EE-151(C) DC Circuits and Fields 3-4
Ma-100(C) Vector Algebra and Geometry 2-1
Ma-140(C) Survey of Calculus 3-0
Ma-201(C) Graphical and Mechanical Computation 0-2

11-9

THIRD TERM

EE-351(C) DC Machinery 2-2
Ma-172(C) Special Topics in Calculus II 3-0
Me-102(C) Engineering Mechanics II 2-2
ME-500(C) Strength of Materials 3-0
ME-601(C) Materials Testing Laboratory 0-2
Mt-201(C) Introductory Physical Metallurgy 3-2

13-8

Intersessional Field Trip; summer leave period.
SECOND YEAR (NQ2)

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST TERM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EE-452(C)</td>
<td>Polyphase Transformers, Synchronous Machines, and Induction Motors</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>Ma-174(B)</td>
<td>Special Topics in Calculus IV</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>ME-122(C)</td>
<td>Engineering Thermodynamics</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>Mt-301(A)</td>
<td>High Temperature Materials</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>NE-101(C)</td>
<td>Main Propulsion Plants</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>*IE-101(C)</td>
<td>Principles of Industrial Organization (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15-7</td>
</tr>
<tr>
<td>THIRD TERM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ME-222(C)</td>
<td>Marine Power Plant Equipment</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>ME-422(B)</td>
<td>Hydromechanics</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>Mt-203(B)</td>
<td>Physical Metallurgy (Special Topics)</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>NE-102(C)</td>
<td>Auxiliary Machinery</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Ph-610(B)</td>
<td>Atomic Physics</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>*IE-103(C)</td>
<td>Applied Industrial Organization (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td>*SL-101</td>
<td>New Weapons Development I (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13-10</td>
</tr>
<tr>
<td>FOURTH TERM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ME-217(C)</td>
<td>Internal Combustion Engines (Diesel)</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>ME-223(B)</td>
<td>Marine Power Plant Analysis</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td>ME-830(C)</td>
<td>Machine Design</td>
<td>4-2</td>
</tr>
<tr>
<td></td>
<td>NE-103(C)</td>
<td>Engineering Department Administration</td>
<td>2-0</td>
</tr>
<tr>
<td></td>
<td>*IE-104(C)</td>
<td>Technical Lectures</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td>*SL-102</td>
<td>New Weapons Development II (Lecture)</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11-10</td>
</tr>
</tbody>
</table>

*Lecture course—no academic credit.

This curriculum normally leads to the degree of Bachelor of Science in Mechanical Engineering, for students who attain the required quality point rating.

MECHANICAL ENGINEERING (NUCLEAR POWER)

OBJECTIVE

To prepare a small group of officers in marine engineering, for technical and administrative duties ashore and afloat, involving employment of naval machinery and engineering plants, including installations powered by nuclear energy.

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST YEAR (NN)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ch-101(C)</td>
<td>General Inorganic Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>EE-171(C)</td>
<td>Electric Circuits and Fields</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>Ma-100(C)</td>
<td>Vector Algebra and Geometry</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Ma-101(C)</td>
<td>Introduction to Eng. Mathematics</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Ma-201(C)</td>
<td>Graphical and Mechanical Computation</td>
<td>0-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13-11</td>
</tr>
<tr>
<td>THIRD TERM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EE-351(C)</td>
<td>DC Machinery</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>EE-451(C)</td>
<td>Transformers and Synchros</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>Ma-103(B)</td>
<td>Functions of Several Variables; Vector Analysis</td>
<td>5-0</td>
</tr>
<tr>
<td></td>
<td>Mc-201(A)</td>
<td>Methods in Dynamics</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>Mt-201(C)</td>
<td>Introductory Physical Metallurgy</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14-8</td>
</tr>
</tbody>
</table>

Intersessional Field Trip; summer leave period.

A small input to this curriculum is chosen at end of first year, from students in the NH curriculum.
METALLURGICAL ENGINEERING

SECOND YEAR (NN2)

FIRST TERM

ME-112(B) Eng. Thermodynamics 4-2
ME-512(A) Strength of Materials 5-0
Mt-203(B) Physical Metallurgy
(Special Topics) 2-2
NE-101(C) Main Propulsion 3-0
Elective ... 3-0
*IE-101(C) Principles of Industrial
Organization 0-1

THIRD TERM

Ch-411(C) Physical Chemistry 3-2
ME-212(C) Marine Power Plant Equipment 3-2
ME-412(C) Hydromechanics 3-2
Ph-361(A) Electromagnetism 3-0
Elective ... 3-0

*Lecture course—no academic credit.

SECOND TERM

ME-211(C) Marine Power Plant Equipment 3-2
ME-411(C) Hydromechanics 3-2
Ma-104(A) Partial Differential Equations
and related topics 5-0
ME-611(C) Materials Testing Laboratory 2-2
ME-711(B) Mechanics of Machinery 3-2

FOURTH TERM

Ch-412(C) Physical Chemistry 3-2
EE-751(C) Electronics 3-4
ME-360(B) Heat Transfer 4-2
Ph-642(A) Nuclear Physics 3-0
*IE-104(C) Technical Lectures 0-1
*SL-102(C) New Weapons Development 0-1

Intersessional Field Trip at an A.E.C. Installation.
Summer leave period.

THIRD YEAR (NN3)

FIRST TERM

Ch-551(A) Radiochemistry 2-2
EE-671(A) Transients 3-4
ME-215(A) Marine Power Plant Analysis
and Design .. 2-4
Mt-301(A) High Temperature Materials 3-0
Ph-643(A) Nuclear Physics Lab. 0-3

Third term total: 10-13

SECOND TERM

EE-672(A) Servomechanisms 3-3
ME-811(C) Machine Design 3-2
*Ph-(A) Reactor Technology 3-3
*Ph-(A) Biological Effects of Radiation 3-0
Elective ... 3-0

Fourth term total: 15-8

FOURTH TERM

*ME-(A) Nuclear Power Plants 3-0
Mt-402(A) Effects of Radiation on
Materials .. 3-0
NE-103(C) Eng. Department
Administration 2-0
Thesis (A) .. 4-8

Total: 12-8

*This course to be established.

This curriculum normally leads to the degree of Master of Science for those who attain the required quality point rating and complete a satisfactory thesis.

METALLURGICAL ENGINEERING

OBJECTIVE

To prepare a small group of officers in advanced metallurgical engineering for technical and administrative duties involving research in metals and alloys, development of metals and metallurgy to meet naval needs and uses of metals and alloys in naval equipment.

FIRST YEAR (NM)

FIRST TERM

Ch-101(C) General Chemistry 3-2
EE-171(C) Electric Circuits and Fields 3-4
Ma-100(C) Vector Algebra and Geometry 2-1
Ma-111(C) Introduction to Engineering
Mathematics 3-1
Ma-201(C) Graphical and Mechanical
Computations 0-2
Mc-101(C) Engineering Mechanics I 2-2

13-12

SECOND TERM

Ch-221(C) Qualitative Analysis 3-2
EE-251(C) AC Circuits 3-4
Ma-112(B) Differential Equations and
Boundary Value Problems 4-0
Me-102(C) Engineering Mechanics II 2-2
ME-500(C) Strength of Materials 3-0
ME-601(C) Materials Testing Laboratory 0-2

Total: 15-10
THE ENGINEERING SCHOOL

THIRD TERM

Ch-231(C) Quantitative Analysis ...
Ch-411(C) Physical Chemistry ...
Ma-113(B) Vector Analysis and Introduction to Partial Differential Equations ...
Mt-201(C) Introductory Physical Metallurgy ...
Ph-610(B) Atomic Physics ...

14-7

Intersessional Field Trip; summer leave period.

SECOND YEAR (NM2)

FIRST TERM

Ch-612(C) Thermodynamics ...
Cr-271(B) Crystallography and X-ray Techics ...
EE-314(C) DC and AC Machinery ...
Mt-102(C) Production of Steel ...
Mt-301(A) High Temperature Materials ...
*IE-101(C) Principles of Industrial Organization (Lecture) ...

15-9

THIRD TERM

Ch-521(A) Plastics ...
ME-422(B) Hydromechanics ...
ME-622(B) Experimental Stress Analysis ...
Mt-103(A) Production of Non-Ferrous Metals ...
Mt-302(A) Alloy Steels ...
*IE-103(C) Applied Industrial Organization (Lecture) ...
*SL-101 New Weapons Development I (Lecture) ...

14-10

*Lecture course—no academic credit.
Intersessional Field Trip for students selected for a third year; summer leave period.

THIRD YEAR (NM3)

At Carnegie Institute of Technology

FALL TERM

S291 Statistical Quality Control
GE 655a Metallurgical Problems
GE 657a Alloy Steels
GE 674a Graduate Seminar
E 647 Non-Ferrous Metallography
GE 664a Adv. Physical Metallurgy
E 651 Mech. Metallurgy
GS 485 Physics of Metals

This curriculum normally leads to the degree of Master of Science, conferred by the civilian institution.

SPRING TERM

S 292 Statistical Quality Control
GE 655b Metallurgical Problems
GE 657b Alloy Steels
GE 674b Graduate Seminar
GE 664b Advanced Physical Metallurgy
E 648 Non-Ferrous Metallography
GE 663 Crystallography

Note: This curriculum will be discontinued on graduation of the presently enrolled students in June 1954.
PETROLEUM ENGINEERING

PETROLEUM ENGINEERING

OBJECTIVE

To prepare a small group of officers in the technology of petroleum production, refining, and handling, for duties involving development, application, specifications, and inspection of fuels and lubricants in the Naval Establishment.

FIRST YEAR (NP)

FIRST TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-101(C)</td>
<td>General Inorganic Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-171(C)</td>
<td>Electric Circuits and Fields</td>
<td>3-4</td>
</tr>
<tr>
<td>Ma-100(C)</td>
<td>Vector Algebra and Geometry</td>
<td>2-1</td>
</tr>
<tr>
<td>Ma-111(C)</td>
<td>Introduction to Engineering Mathematics</td>
<td>3-1</td>
</tr>
<tr>
<td>Ma-201(C)</td>
<td>Graphical and Mechanical Computation</td>
<td>0-2</td>
</tr>
<tr>
<td>Ma-101(C)</td>
<td>Engineering Mechanics I</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13-12</td>
</tr>
</tbody>
</table>

SECOND TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-221(C)</td>
<td>Qualitative Analysis</td>
<td>3-2</td>
</tr>
<tr>
<td>Ge-101(C)</td>
<td>Physical Geology</td>
<td>3-0</td>
</tr>
<tr>
<td>Cr-301(B)</td>
<td>Crystallography and Mineralogy</td>
<td>3-4</td>
</tr>
<tr>
<td>Ma-112(B)</td>
<td>Differential Equations and Boundary Value Problems</td>
<td>4-0</td>
</tr>
<tr>
<td>ME-500(C)</td>
<td>Strength of Materials</td>
<td>3-0</td>
</tr>
<tr>
<td>ME-601(C)</td>
<td>Materials Testing Laboratory</td>
<td>0-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-8</td>
</tr>
</tbody>
</table>

THIRD TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-231(C)</td>
<td>Quantitative Analysis</td>
<td>2-3</td>
</tr>
<tr>
<td>Ch-301(C)</td>
<td>Organic Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>Ch-411(C)</td>
<td>Physical Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>Ge-241(C)</td>
<td>Geology of Petroleum</td>
<td>2-2</td>
</tr>
<tr>
<td>Mt-201(C)</td>
<td>Introductory Physical Metallurgy</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13-11</td>
</tr>
</tbody>
</table>

Fourth Term: Intersessional Field Trip; summer leave period.

SECOND YEAR (NP2)

At University of California

FALL TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 8</td>
<td>Short survey of Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>Chem. 143</td>
<td>Introduction to Chemical Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPRING TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 130E</td>
<td>Statistical inference for Engineers</td>
<td></td>
</tr>
<tr>
<td>Chem. 146A</td>
<td>Chemical Engineering Unit Operations</td>
<td></td>
</tr>
<tr>
<td>Pet.Eng. 125</td>
<td>Petroleum Production Economics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THIRD YEAR (NP3)

At University of California

FALL TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 146B</td>
<td>Chemical Engineering Unit Operations</td>
<td></td>
</tr>
<tr>
<td>Mech.Eng. 164</td>
<td>Instrumentation and Automatic Control</td>
<td></td>
</tr>
<tr>
<td>Pet.Eng. 298A</td>
<td>Group study</td>
<td></td>
</tr>
<tr>
<td>Pet.Eng. 299A</td>
<td>Individual study or research</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPRING TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 264</td>
<td>Statistical problems of Mass Production and Quality Control</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pet.Eng. 298B</td>
<td>Group study</td>
<td></td>
</tr>
<tr>
<td>Pet.Eng. 299B</td>
<td>Individual study or research</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comprehensive examination</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective to be chosen by student, subject to approval of University of California Faculty and Superintendent, U.S. Naval Postgraduate School; technical subjects such as Atomic Physics or Chemical Engineering Thermodynamics.

This curriculum normally leads to the degree of Master of Engineering for students who qualify in accordance with University Graduate School requirements.

47
THE ENGINEERING SCHOOL

NUCLEAR ENGINEERING (EFFECTS)

OBJECTIVE

To educate officers in the fundamental sciences, particularly those associated with nuclear physics, in order that they may understand atomic processes and the effects of atomic weapons.

This curriculum has been established as a joint curriculum for selected officers of the Army, Navy, Air Force, Marine Corps and Coast Guard.

FIRST YEAR (RZ)

<table>
<thead>
<tr>
<th>FIRST TERM</th>
<th>SECOND TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-100(C) Vector Algebra and Geometry ... 2-1</td>
<td>Ch-102(C) General Inorganic Chemistry ... 4-2</td>
</tr>
<tr>
<td>Ma-181(C) Directional Derivatives and Locus Integrals ... 3-1</td>
<td>Es-271(C) Electronics I ... 3-3</td>
</tr>
<tr>
<td>Mc-101(C) Engineering Mechanics I ... 2-2</td>
<td>Ma-182(B) Differential Equations and Vector Analysis ... 5-0</td>
</tr>
<tr>
<td>Mr-101(C) Fundamentals of Atmospheric Circulation ... 3-0</td>
<td>Mc-102(C) Engineering Mechanics II ... 2-2</td>
</tr>
<tr>
<td>Ph-250(C) Geometrical and Physical Optics ... 3-2</td>
<td>TOTAL 14-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THIRD TERM</th>
<th>FOURTH TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-213(C) Quantitative Analysis ... 3-2</td>
<td>Ch-315(C) Organic Chemistry ... 3-0</td>
</tr>
<tr>
<td>Es-272(C) Electronics II ... 2-2</td>
<td>Ma-184(A) Laplace Transforms and Matrices ... 3-0</td>
</tr>
<tr>
<td>Ge-101(C) Physical Geology ... 3-0</td>
<td>Mc-311(A) Vibrations ... 3-2</td>
</tr>
<tr>
<td>Ma-183(B) Complex Variables and the Differential Equations of Theoretical Physics ... 5-0</td>
<td>Ph-351(B) Electricity and Magnetism ... 5-0</td>
</tr>
<tr>
<td>Ph-143(A) Analytical Mechanics ... 3-0</td>
<td>Ph-441(A) Longitudinal Waves in Fluids ... 4-0</td>
</tr>
<tr>
<td>TOTAL 17-4</td>
<td>TOTAL 18-2</td>
</tr>
</tbody>
</table>

Summer field trip to installations connected with the atomic weapons program.

SECOND YEAR (RZ2)

<table>
<thead>
<tr>
<th>FIRST TERM</th>
<th>SECOND TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-442(C) Physical Chemistry ... 4-2</td>
<td>Biology I ... 6-0</td>
</tr>
<tr>
<td>Ma-301(B) Statistics ... 3-2</td>
<td>Ch-551(A) Radiochemistry ... 2-2</td>
</tr>
<tr>
<td>ME-150(C) Thermodynamics ... 4-2</td>
<td>ME-350(C) Heat Transfer ... 2-2</td>
</tr>
<tr>
<td>Ph-641(B) Atomic Physics ... 3-3</td>
<td>Ph-541(B) Kinetic Theory and Statistical Mechanics ... 4-0</td>
</tr>
<tr>
<td>TOTAL 14-9</td>
<td>Ph-740(A) Introduction to Quantum Mechanics ... 3-0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THIRD TERM</th>
<th>FOURTH TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology II ... 6-0</td>
<td>Biology III ... 6-0</td>
</tr>
<tr>
<td>Ch-591(A) Blast and Shock Effects ... 3-0</td>
<td>Ph-643(A) Nuclear Physics Lab. ... 6-0</td>
</tr>
<tr>
<td>ME-550(B) Elastic Body Mechanics ... 5-0</td>
<td>*SL-102(C) New Weapons Development II ... 0-1</td>
</tr>
<tr>
<td>Ph-642(A) Nuclear Physics ... 3-0</td>
<td>TOTAL 6-29</td>
</tr>
<tr>
<td>*SL-101(C) New Weapons Development I ... 0-1</td>
<td>Thesis ... 0-25</td>
</tr>
<tr>
<td>Thesis ... 0-5</td>
<td>TOTAL 6-29</td>
</tr>
</tbody>
</table>

17-6

* Lecture course—no academic credit.

**Biology courses to be taught at Monterey by the University of California Extension.

Note: The Radiological Defense curriculum, the precursor of the above course, is now in its final year at the University of California (Berkeley). Graduation of the present RZ3 group in June 1954 will terminate the course at the University of California (Berkeley).
OPERATIONS ANALYSIS

OBJECTIVE

To educate officers in the basic sciences and to provide a thorough grounding in the theory and methods of operational analysis in order that they may direct the analytical approach to complex naval problems.

FIRST YEAR (RO)

<table>
<thead>
<tr>
<th>FIRST TERM</th>
<th>SECOND TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-103(C) Elementary Physical Chemistry ______</td>
<td>Ma-192(C) Ordinary Differential Equations</td>
</tr>
<tr>
<td>Ma-100(C) Vector Algebra and Geometry _______</td>
<td>and Vector Analysis ___________ 5-0</td>
</tr>
<tr>
<td>Ma-191(C) Basic Concepts and Interpretations</td>
<td>Ma-381(C) Elementary Probability</td>
</tr>
<tr>
<td>of Mathematical Analysis ___________ 5-2</td>
<td>and Statistics ____________ 4-2</td>
</tr>
<tr>
<td>Ph-240(C) Refraction, Interference and</td>
<td>Ph-141(B) Analytical Mechanics _______</td>
</tr>
<tr>
<td>Diffraction ________________ 3-3</td>
<td>Ph-341(C) Electricity and Magnetism __</td>
</tr>
<tr>
<td>*IE-101(C) Principles of Industrial</td>
<td></td>
</tr>
<tr>
<td>Organization ________________ 0-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17-4</td>
</tr>
<tr>
<td>THIRD TERM</td>
<td></td>
</tr>
<tr>
<td>Ma-193(B) Partial Differential Equations _____</td>
<td>Es-466(C) Introduction to Radar ______</td>
</tr>
<tr>
<td>Ma-382(A) Probability ________________ 3-0</td>
<td>Ma-195(A) Matrix Theory and Integration</td>
</tr>
<tr>
<td>Oa-191(C) Introduction to Operations</td>
<td>Theory ____________ 5-0</td>
</tr>
<tr>
<td>Analysis ____________ 3-0</td>
<td>Ma-383(A) Statistics ________________ 3-2</td>
</tr>
<tr>
<td>Ph-142(B) Analytical Mechanics ______________</td>
<td>Oa-192(B) Theory of Search __________</td>
</tr>
<tr>
<td>Ph-361(A) Electromagnetism _________________</td>
<td>Ph-362(A) Electromagnetic Waves _____</td>
</tr>
<tr>
<td>*IE-103(C) Applied Industrial Organization __</td>
<td>*IE-104(C) Technical Lectures __________</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18-1</td>
</tr>
</tbody>
</table>

*Lecture course—no academic credit.

Summer period is devoted to operations analysis work at various plants and naval installations.

SECOND YEAR (RO2)

<table>
<thead>
<tr>
<th>FIRST TERM</th>
<th>SECOND TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-496(A) High Speed Computing Machines __________</td>
<td>Ae-104(C) Aircraft Performance Evaluation __________</td>
</tr>
<tr>
<td>Ma-501(A) Theory of Games ________________ 3-2</td>
<td></td>
</tr>
<tr>
<td>Oa-193(B) Effectiveness of Weapons ____________ 4-0</td>
<td></td>
</tr>
<tr>
<td>Ph-421(A) Acoustics ________________ 3-0</td>
<td></td>
</tr>
<tr>
<td>Ph-541(B) Kinetic Theory and Statistical Mechanics __________</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17-4</td>
</tr>
<tr>
<td>THIRD TERM</td>
<td></td>
</tr>
<tr>
<td>Mr-120(C) Operational Aspects of Meteorology __________</td>
<td></td>
</tr>
<tr>
<td>Oa-195(A) Optimal Weapons Systems II ____________</td>
<td></td>
</tr>
<tr>
<td>Oa-202(A) Econometrics ________________ 3-0</td>
<td></td>
</tr>
<tr>
<td>Ph-642(A) Nuclear Physics ________________ 3-0</td>
<td></td>
</tr>
<tr>
<td>Ph-643(A) Nuclear Physics Lab ________________ 0-3</td>
<td></td>
</tr>
<tr>
<td>*SL-101(C) New Weapons Development I ____________</td>
<td></td>
</tr>
<tr>
<td>Oa-901(A) Thesis ________________ 0-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-10</td>
</tr>
</tbody>
</table>

*Lecture course—no academic credit.
To educate officers in the basic sciences and technical fields related to ordnance in order to better equip them to handle ordnance problems ashore and afloat. The knowledge acquired will be generally applied through the medium of the Bureau of Ordnance Establishment to the end that the best and most advanced ordnance is available to the fleet.

ORDNANCE ENGINEERING (General)

OBJECTIVE

To further the aims of the basic objective by giving the officer students a fundamental course in ordnance in order that intelligent understanding of the various fields of ordnance may be obtained.

FIRST YEAR (O)

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term</td>
<td>Ch-101(C)</td>
<td>General Inorganic Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>EE-151(C)</td>
<td>DC Circuits and Fields</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>Ma-100(C)</td>
<td>Vector Algebra and Geometry</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Ma-111(C)</td>
<td>Introduction to Engineering Mathematics</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Mc-101(C)</td>
<td>Engineering Mechanics I</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>Or-101(C)</td>
<td>Ordnance I</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Term</td>
<td>Ch-631(A)</td>
<td>Thermodynamics</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>EE-461(C)</td>
<td>Transformers and Synchros</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>Ma-113(B)</td>
<td>Vector Analysis and Introduction to Partial Differential Equations</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Mc-401(A)</td>
<td>Exterior Ballistics</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Or-103(C)</td>
<td>Ordnance III</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>Ph-610(B)</td>
<td>Atomic Physics</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>*IE-103(C)</td>
<td>Applied Industrial Organization</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td>*SL-101(C)</td>
<td>New Weapons Development I</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15-8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Term</td>
<td>Ch-401(A)</td>
<td>Physical Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>EE-462(B)</td>
<td>Asynchronous Motors and Special Machines</td>
<td>4-2</td>
</tr>
<tr>
<td></td>
<td>Ma-114(A)</td>
<td>Partial Differential Equations and Functions of Complex Variables</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Or-104(C)</td>
<td>Ordnance IV</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Ph-450(B)</td>
<td>Underwater Acoustics</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>*IE-104(C)</td>
<td>Technical Lectures</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td>*SL-102(C)</td>
<td>New Weapons Development II</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15-9</td>
</tr>
</tbody>
</table>

*Lecture course—no academic credit.

Summer field trip to representative ordnance installations.

SECOND YEAR (O2)

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term</td>
<td>Ch-541(A)</td>
<td>Reaction Motors</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>EE-751(C)</td>
<td>Electronics</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>Ma-115(A)</td>
<td>Differential Equations for Automatic Control</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>ME-500(C)</td>
<td>Strength of Materials</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>ME-601(C)</td>
<td>Materials Testing Lab</td>
<td>0-2</td>
</tr>
<tr>
<td></td>
<td>Mt-201(C)</td>
<td>Introduction to Physical Metallurgy</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>*IE-101(C)</td>
<td>Principles of Industrial Organization</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Term</td>
<td>Ch-521(A)</td>
<td>Plastics</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>EE-665(B)</td>
<td>Lines, Filters and Transients</td>
<td>4-2</td>
</tr>
<tr>
<td></td>
<td>Mc-402(A)</td>
<td>Dynamics of Missiles and Gyros</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Mt-202(C)</td>
<td>Ferrous Physical Metallurgy</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>Ph-250(C)</td>
<td>Geometric and Physical Optics</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16-8</td>
</tr>
</tbody>
</table>
ORDNANCE ENGINEERING (Aviation)

THIRD TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-745(A)</td>
<td>Electronic Control and Measurement</td>
<td>3-3</td>
</tr>
<tr>
<td>Es-446(C)</td>
<td>Introduction to Radar</td>
<td>2-2</td>
</tr>
<tr>
<td>Ma-301(B)</td>
<td>Statistics</td>
<td>3-2</td>
</tr>
<tr>
<td>Mc-431(B)</td>
<td>Strength of Guns</td>
<td>3-0</td>
</tr>
<tr>
<td>Mt-203(B)</td>
<td>Physical Metallurgy (Special Topics)</td>
<td>2-2</td>
</tr>
<tr>
<td>*SL-101(C)</td>
<td>New Weapons Development I</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Total: 13-10

*Lecture course—no academic credit.

Summer course in Industrial Administration at Stanford University.

ORDNANCE ENGINEERING (Aviation)

OBJECTIVE

To further the aims of the basic objective by emphasizing the aviation aspects of ordnance, including the limitations and peculiar advantages that are inherent in the aviation field.

FIRST YEAR (OE)

FIRST TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-101(C)</td>
<td>General Inorganic Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-151(C)</td>
<td>DC Circuits and Fields</td>
<td>3-4</td>
</tr>
<tr>
<td>Ma-100(C)</td>
<td>Vector Algebra and Geometry</td>
<td>2-1</td>
</tr>
<tr>
<td>Ma-111(C)</td>
<td>Introduction to Engineering Mathematics</td>
<td>3-1</td>
</tr>
<tr>
<td>Mc-101(C)</td>
<td>Engineering Mechanics I</td>
<td>2-2</td>
</tr>
<tr>
<td>Or-101(C)</td>
<td>Ordnance I</td>
<td>2-1</td>
</tr>
</tbody>
</table>

Total: 15-11

SECOND TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-121(C)</td>
<td>Technical Aerodynamics</td>
<td>3-2</td>
</tr>
<tr>
<td>Ch-631(A)</td>
<td>Thermodynamics</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-461(C)</td>
<td>Transformers and Synchros</td>
<td>3-2</td>
</tr>
<tr>
<td>Ma-113(B)</td>
<td>Vector Analysis and Introduction to Partial Differential Equations</td>
<td>3-0</td>
</tr>
<tr>
<td>Mc-401(A)</td>
<td>Exterior Ballistics</td>
<td>3-0</td>
</tr>
<tr>
<td>*SL-101(C)</td>
<td>New Weapons Development I</td>
<td>0-1</td>
</tr>
<tr>
<td>*IE-103(C)</td>
<td>Applied Industrial Organization</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Total: 15-8

*Lecture course—no academic credit.

Summer field trip to representative ordnance installations.

SECOND YEAR (OE2)

FIRST TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-501(A)</td>
<td>Hydro-Aero Mechanics I</td>
<td>4-0</td>
</tr>
<tr>
<td>Ch-541(A)</td>
<td>Reaction Motors</td>
<td>2-2</td>
</tr>
<tr>
<td>EE-751(C)</td>
<td>Electronics</td>
<td>3-4</td>
</tr>
<tr>
<td>Ma-115(A)</td>
<td>Differential Equations for Automatic Controls</td>
<td>3-0</td>
</tr>
<tr>
<td>Mt-201(C)</td>
<td>Introduction to Physical Metallurgy</td>
<td>3-2</td>
</tr>
<tr>
<td>*IE-101(C)</td>
<td>Principles of Industrial Organization</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Total: 15-9

SECOND TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-502(A)</td>
<td>Hydro-Aero Mechanics II</td>
<td>4-0</td>
</tr>
<tr>
<td>EE-665(B)</td>
<td>Lines, Filters and Transients</td>
<td>4-2</td>
</tr>
<tr>
<td>Mc-402(A)</td>
<td>Dynamics of Missiles and Gyros</td>
<td>3-0</td>
</tr>
<tr>
<td>Mt-202(C)</td>
<td>Ferrous Physical Metallurgy</td>
<td>3-2</td>
</tr>
<tr>
<td>Or-102(C)</td>
<td>Ordnance II</td>
<td>3-2</td>
</tr>
<tr>
<td>*Ae-001(C)</td>
<td>Aeronautical Lecture</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Total: 17-7

*SL-101(C) New Weapons Development I
*SL-102(C) New Weapons Development II
*IE-103(C) Applied Industrial Organization
*IE-104(C) Technical Lectures
Third Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-146(C)</td>
<td>Aircraft Dynamics</td>
<td>3-2</td>
</tr>
<tr>
<td>Ae-503(A)</td>
<td>Compressibility</td>
<td>4-0</td>
</tr>
<tr>
<td>EE-745(A)</td>
<td>Electronic Control and Measurement</td>
<td>3-3</td>
</tr>
<tr>
<td>Ma-301(B)</td>
<td>Statistics</td>
<td>3-2</td>
</tr>
<tr>
<td>Or-241(C)</td>
<td>Guided Missiles I</td>
<td>2-0</td>
</tr>
<tr>
<td>*SL-101(C)</td>
<td>New Weapons Development I</td>
<td>0-1</td>
</tr>
<tr>
<td>**</td>
<td></td>
<td>15-8</td>
</tr>
</tbody>
</table>

* Lecture course—no academic credit.

Summer course in Industrial Administration at Stanford University.

Fourth Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-571(A)</td>
<td>Explosives</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-672(A)</td>
<td>Servomechanisms</td>
<td>3-3</td>
</tr>
<tr>
<td>Es-456(C)</td>
<td>Introduction to Radar (Airborne)</td>
<td></td>
</tr>
<tr>
<td>Ma-401(A)</td>
<td>Mechanical Computation by Physical Means</td>
<td>2-2</td>
</tr>
<tr>
<td>Oa-151(C)</td>
<td>Survey of Weapons Evaluation</td>
<td>3-0</td>
</tr>
<tr>
<td>Or-242(B)</td>
<td>Guided Missiles II</td>
<td>2-0</td>
</tr>
<tr>
<td>*SL-102(C)</td>
<td>New Weapons Development II</td>
<td>0-1</td>
</tr>
<tr>
<td>**</td>
<td></td>
<td>15-10</td>
</tr>
</tbody>
</table>

Summer field trip to representative ordnance installations.

Third Year (OE3)

FALL SEMESTER

At Massachusetts Institute of Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.15</td>
<td>Advanced Stability and Control of Aircraft</td>
<td></td>
</tr>
<tr>
<td>16.39</td>
<td>Vector Kinematics and Gyroscopic Instrument Theory</td>
<td></td>
</tr>
<tr>
<td>16.41</td>
<td>Fire Control Principles</td>
<td></td>
</tr>
<tr>
<td>16.43</td>
<td>Fire Control Instrument Lab</td>
<td></td>
</tr>
<tr>
<td>16.47</td>
<td>Rockets, Guided Missiles and Projectiles</td>
<td></td>
</tr>
</tbody>
</table>

SPRING SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.40</td>
<td>Automatic Control Equipment for Aircraft</td>
<td></td>
</tr>
<tr>
<td>16.42</td>
<td>Fire Control Systems</td>
<td></td>
</tr>
<tr>
<td>16.44</td>
<td>Fire Control Instruments Laboratory (Advanced)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thesis</td>
<td></td>
</tr>
</tbody>
</table>

Ordnance Engineering (Explosives)

Objective

To carry out the basic objective in the field of explosives by education in the chemical field as applied to explosives and propellants.

First Year (OP)

First Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-101(C)</td>
<td>General Inorganic Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-151(C)</td>
<td>DC Circuits and Fields</td>
<td>3-4</td>
</tr>
<tr>
<td>Ma-100(C)</td>
<td>Vector Algebra and Geometry</td>
<td>2-1</td>
</tr>
<tr>
<td>Ma-111(C)</td>
<td>Introduction to Engineering Mathematics</td>
<td>3-1</td>
</tr>
<tr>
<td>Mc-101(C)</td>
<td>Engineering Mechanics I</td>
<td>2-2</td>
</tr>
<tr>
<td>Or-101(C)</td>
<td>Ordnance I</td>
<td>2-1</td>
</tr>
<tr>
<td>**</td>
<td></td>
<td>15-11</td>
</tr>
</tbody>
</table>

Third Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-231(C)</td>
<td>Quantitative Analysis</td>
<td>2-4</td>
</tr>
<tr>
<td>Ch-311(C)</td>
<td>Organic Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>Ch-411(C)</td>
<td>Physical Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>Ma-113(B)</td>
<td>Vector Analysis and Introduction to Partial Differential Equations</td>
<td>3-0</td>
</tr>
<tr>
<td>Or-103(C)</td>
<td>Ordnance III</td>
<td>2-2</td>
</tr>
<tr>
<td>*IE-103(C)</td>
<td>Applied Industrial Organization</td>
<td>0-1</td>
</tr>
<tr>
<td>**</td>
<td></td>
<td>13-11</td>
</tr>
</tbody>
</table>

* Lecture course—no academic credit.

Second Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-221(C)</td>
<td>Qualitative Analysis</td>
<td>3-2</td>
</tr>
<tr>
<td>Ch-711(C)</td>
<td>Chemical Engineering Calculations</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-241(C)</td>
<td>AC Circuits</td>
<td>3-2</td>
</tr>
<tr>
<td>Ma-112(B)</td>
<td>Differential Equations and Boundary Value Problems</td>
<td>4-0</td>
</tr>
<tr>
<td>Or-102(C)</td>
<td>Ordnance II</td>
<td>3-2</td>
</tr>
<tr>
<td>**</td>
<td></td>
<td>16-8</td>
</tr>
</tbody>
</table>

Fourth Term

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-312(C)</td>
<td>Organic Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>Ch-412(C)</td>
<td>Physical Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>Ch-521(A)</td>
<td>Plastics</td>
<td>3-2</td>
</tr>
<tr>
<td>Ch-611(C)</td>
<td>Thermodynamics</td>
<td>3-2</td>
</tr>
<tr>
<td>Ma-114(A)</td>
<td>Partial Differential Equations and Functions of Complex Variables</td>
<td>3-0</td>
</tr>
<tr>
<td>Or-104(C)</td>
<td>Ordnance IV</td>
<td>2-1</td>
</tr>
<tr>
<td>*IE-104(C)</td>
<td>Technical Lectures</td>
<td>0-1</td>
</tr>
<tr>
<td>**</td>
<td></td>
<td>17-10</td>
</tr>
</tbody>
</table>

Summer field trip to representative ordnance installations.
ORDNANCE ENGINEERING (Fire Control)

SECOND YEAR (OP2)

FIRST TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-541(A)</td>
<td>Reaction Motors</td>
<td>2-2</td>
</tr>
<tr>
<td>Ch-612(C)</td>
<td>Thermodynamics</td>
<td>3-2</td>
</tr>
<tr>
<td>Cr-271(B)</td>
<td>Crystallography and X-ray Techniques</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-751(C)</td>
<td>Electronics</td>
<td>3-4</td>
</tr>
<tr>
<td>Mt-201(C)</td>
<td>Introduction to Physical Metallurgy</td>
<td>3-2</td>
</tr>
<tr>
<td>IE-101(C)</td>
<td>Principles of Industrial Organization</td>
<td>0-1</td>
</tr>
</tbody>
</table>

THIRD TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-111(A)</td>
<td>Fuel and Oil Chemistry</td>
<td>2-2</td>
</tr>
<tr>
<td>Ch-321(A)</td>
<td>Organic Qualitative Analysis</td>
<td>2-2</td>
</tr>
<tr>
<td>Ch-323(A)</td>
<td>Chemistry of High Polymers</td>
<td>3-0</td>
</tr>
<tr>
<td>EE-745(A)</td>
<td>Electronic Control and Measurement</td>
<td>3-3</td>
</tr>
<tr>
<td>Ma-301(B)</td>
<td>Statistics</td>
<td>3-2</td>
</tr>
<tr>
<td>*SL-101(C)</td>
<td>New Weapons Development I</td>
<td>0-1</td>
</tr>
</tbody>
</table>

* Lecture course—no academic credit.

FOURTH TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-322(A)</td>
<td>Advanced Organic Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>Ch-571(A)</td>
<td>Explosives</td>
<td>2-2</td>
</tr>
<tr>
<td>Ch-800(A)</td>
<td>Chemistry Seminar</td>
<td>2-0</td>
</tr>
<tr>
<td>Mc-421(A)</td>
<td>Interior Ballistics</td>
<td>2-0</td>
</tr>
<tr>
<td>Oa-151(B)</td>
<td>Survey of Weapons Evaluation</td>
<td>3-0</td>
</tr>
<tr>
<td>Ph-450(B)</td>
<td>Underwater Acoustics</td>
<td>3-2</td>
</tr>
<tr>
<td>*SL-102(C)</td>
<td>New Weapons Development II</td>
<td>0-1</td>
</tr>
</tbody>
</table>

Summer course in Industrial Administration at Stanford University.

THIRD YEAR (OP3)

FALL SEMESTER

At Lehigh University

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-440</td>
<td>Advanced Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Ch-357</td>
<td>Qualitative Organic Analysis</td>
<td></td>
</tr>
<tr>
<td>Ch-402</td>
<td>Advanced Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>Ch-2</td>
<td>Chemistry Research</td>
<td></td>
</tr>
</tbody>
</table>

Elective (approved advanced course in chemistry or related field)

SPRING SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-441</td>
<td>Advanced Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Ch-358</td>
<td>Advanced Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>Ch-432</td>
<td>Advanced Analytical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Ch-2</td>
<td>Chemistry Research</td>
<td></td>
</tr>
</tbody>
</table>

Elective (approved advanced course in chemistry or related field)

ORDNANCE ENGINEERING (Fire Control)

OBJECTIVE

To carry out the aims of the basic objective in the fire control field by intensive instruction in the applicable basic sciences so that a fundamental grasp of fire control theory is obtained.

FIRST YEAR (OF)

FIRST TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-101(C)</td>
<td>General Inorganic Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-151(C)</td>
<td>DC Circuits and Fields</td>
<td>3-4</td>
</tr>
<tr>
<td>Ma-100(C)</td>
<td>Vector Algebra and Geometry</td>
<td>2-1</td>
</tr>
<tr>
<td>Ma-111(C)</td>
<td>Introduction to Engineering Mathematics</td>
<td>3-1</td>
</tr>
<tr>
<td>Mc-101(C)</td>
<td>Engineering Mechanics I</td>
<td>2-2</td>
</tr>
<tr>
<td>Or-101(C)</td>
<td>Ordnance I</td>
<td>2-1</td>
</tr>
</tbody>
</table>

SECOND TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-711(C)</td>
<td>Chemical Engineering Calculations</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-241(C)</td>
<td>AC Circuits</td>
<td>3-2</td>
</tr>
<tr>
<td>Ma-112(B)</td>
<td>Differential Equations and Boundary Value Problems</td>
<td>4-0</td>
</tr>
<tr>
<td>Mc-102(C)</td>
<td>Engineering Mechanics II</td>
<td>2-2</td>
</tr>
<tr>
<td>Or-102(C)</td>
<td>Ordnance II</td>
<td>3-2</td>
</tr>
</tbody>
</table>

15-11

15-8
THIRD TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-631(A)</td>
<td>Thermodynamics</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-461(C)</td>
<td>Transformers and Synchrons</td>
<td>3-2</td>
</tr>
<tr>
<td>Ma-113(B)</td>
<td>Vector Analysis and Introduction to Partial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differential Equations</td>
<td>3-0</td>
</tr>
<tr>
<td>Mc-401(A)</td>
<td>Exterior Ballistics</td>
<td>3-0</td>
</tr>
<tr>
<td>Or-103(C)</td>
<td>Ordnance III</td>
<td>2-2</td>
</tr>
<tr>
<td>Ph-610(B)</td>
<td>Atomic Physics</td>
<td>3-0</td>
</tr>
<tr>
<td>*IE-103(C)</td>
<td>Applied Industrial Organization</td>
<td>0-1</td>
</tr>
<tr>
<td>*SL-101(C)</td>
<td>New Weapons Development I</td>
<td>0-1</td>
</tr>
</tbody>
</table>

* Lecture course—no academic credit.

Summer field trip to representative ordnance installations.

FOURTH TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-401(A)</td>
<td>Physical Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-462(B)</td>
<td>Asynchronous Motors and Special Machines</td>
<td>4-2</td>
</tr>
<tr>
<td>Ma-114(A)</td>
<td>Partial Differential Equations and Functions of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complex Variables</td>
<td>3-0</td>
</tr>
<tr>
<td>Or-104(C)</td>
<td>Ordnance IV</td>
<td>2-1</td>
</tr>
<tr>
<td>Ph-450(B)</td>
<td>Underwater Acoustics</td>
<td>3-2</td>
</tr>
<tr>
<td>*IE-104(C)</td>
<td>Technical Lectures</td>
<td>0-1</td>
</tr>
<tr>
<td>*SL-102(C)</td>
<td>New Weapons Development II</td>
<td>0-1</td>
</tr>
</tbody>
</table>

SECOND YEAR (OF2)

FIRST TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-541(A)</td>
<td>Reaction Motors</td>
<td>2-2</td>
</tr>
<tr>
<td>EE-751(C)</td>
<td>Electronics</td>
<td>3-4</td>
</tr>
<tr>
<td>Ma-115(A)</td>
<td>Differential Equations for Automatic Controls</td>
<td>3-0</td>
</tr>
<tr>
<td>ME-500(C)</td>
<td>Strength of Materials</td>
<td>3-0</td>
</tr>
<tr>
<td>ME-601(C)</td>
<td>Materials Testing Lab</td>
<td>0-2</td>
</tr>
<tr>
<td>Mt-201(C)</td>
<td>Introduction to Physical Metallurgy</td>
<td>3-2</td>
</tr>
<tr>
<td>IE-101(C)</td>
<td>Principles of Industrial Organization</td>
<td>0-1</td>
</tr>
</tbody>
</table>

THIRD TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-745(A)</td>
<td>Electronic Control and Measurement</td>
<td>3-3</td>
</tr>
<tr>
<td>Es-447(C)</td>
<td>Electronic Pulse Techniques</td>
<td>3-0</td>
</tr>
<tr>
<td>Ma-301(B)</td>
<td>Statistics</td>
<td>3-2</td>
</tr>
<tr>
<td>Mt-203(C)</td>
<td>Physical Metallurgy (Special Topics)</td>
<td>2-2</td>
</tr>
<tr>
<td>Or-241(C)</td>
<td>Guided Missiles I</td>
<td>2-0</td>
</tr>
<tr>
<td>*SL-101(C)</td>
<td>New Weapons Development I</td>
<td>0-1</td>
</tr>
</tbody>
</table>

SPRING TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-571(A)</td>
<td>Explosives</td>
<td>3-2</td>
</tr>
<tr>
<td>EE-672(A)</td>
<td>Servomechanisms</td>
<td>3-3</td>
</tr>
<tr>
<td>Ma-401(A)</td>
<td>Mechanical Computation by Physical Means</td>
<td>2-2</td>
</tr>
<tr>
<td>Mc-421(A)</td>
<td>Interior Ballistics</td>
<td>2-0</td>
</tr>
<tr>
<td>Oa-151(C)</td>
<td>Survey of Weapons Evaluation</td>
<td>2-0</td>
</tr>
<tr>
<td>Or-242(B)</td>
<td>Guided Missiles II</td>
<td>0-1</td>
</tr>
<tr>
<td>*SL-102(C)</td>
<td>New Weapons Development II</td>
<td>0-1</td>
</tr>
</tbody>
</table>

THIRD YEAR (OF3)

FALL SEMESTER

- 16.39T Vector Kinematics and Gyroscopic Instrument Theory
- 16.41 Fire Control Principles
- 16.43 Fire Control Instrument Lab
- 6.291 Principles of Radar
- 6.536 Machine Computation
- Thesis

SPRING SEMESTER

- 16.42 Fire Control Systems
- 16.44T Advanced Fire Control Instruments Lab
- 6.292 Principles of Radar
- Thesis
ORDNANCE ENGINEERING

ORDNANCE ENGINEERING (Industrial)

OBJECTIVE
To educate ordnance engineers in the principles of industrial management in order that effective direction of ordnance production activities may be obtained.

First two years are the same as the ORDNANCE ENGINEERING (General) Curriculum.

THIRD YEAR (03)
At Purdue University

FALL SEMESTER
GE 128 Motion and Time Study
GE 183 Production Planning
GE 184 Tool Design
GE 117 Industrial Personnel Relations
GE 91 Elementary Accounting
Psych 173 Personnel Psychology

SPRING SEMESTER
GE 185 Production Control
GE 186 Plant Layout
GE 299 Thesis
Psych 175 Psychology of Industrial Training

ORDNANCE ENGINEERING (Jet Propulsion)

OBJECTIVE
To educate officers in the fundamentals of jet propulsion and its applications to ordnance use.

FIRST YEAR (OJ)

FIRST TERM
Ch-101(C) General Inorganic Chemistry 3-2
EE-151(C) DC Circuits and Fields 3-4
Ma-100(C) Vector Algebra and Geometry 2-1
Ma-111(C) Introduction to Engineering Mathematics 3-1
Mc-101(C) Engineering Mechanics I 2-2
Or-101(C) Ordnance I 2-1

THIRD TERM
Ae-121(C) Technical Aerodynamics 3-2
Ch-631(A) Thermodynamics 3-2
Ma-113(B) Vector Analysis and Partial Differential Equations 3-0
Mc-401(A) Exterior Ballistics 3-0
Or-103(C) Ordnance III 2-2
*SL-101(C) New Weapons Development I 0-1
*IE-103(C) Applied Industrial Organization 0-1

SECOND TERM
Ae-100(C) Basic Aerodynamics 3-4
Ch-711(C) Chemical Engineering Calculations 3-2
EE-241(C) AC Circuits 3-2
Ma-112(B) Differential Equations and Boundary Value Problems 4-0
Mc-102(C) Engineering Mechanics II 2-2
* Ae-001(C) Aeronautical Lecture 0-1

FOURTH TERM
Ae-136(B) Aircraft Performance Flight Analysis 3-2
Ch-401(A) Physical Chemistry 3-2
Ma-114(A) Partial Differential Equations and Functions of Complex Variables 3-0
ME-500(C) Strength of Materials 3-0
ME-601(C) Materials Testing Lab 0-2
Or-104(C) Ordnance IV 2-1
*SL-102(C) New Weapons Development II 0-1
*IE-104(C) Technical Lectures 0-1

* Lecture course—no academic credit.
Summer field trip to representative ordnance installations

55
SECOND YEAR (OJ2)

FIRST TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-501(A)</td>
<td>Hydro-Aero Mechanics I</td>
<td>4-0</td>
</tr>
<tr>
<td>Ch-541(A)</td>
<td>Reaction Motors</td>
<td>2-2</td>
</tr>
<tr>
<td>EE-751(C)</td>
<td>Electronics</td>
<td>3-4</td>
</tr>
<tr>
<td>Mt-201(C)</td>
<td>Introduction to Physical Metallurgy</td>
<td>3-2</td>
</tr>
<tr>
<td>IE-101(C)</td>
<td>Principles of Industrial Organization</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-9</td>
</tr>
</tbody>
</table>

THIRD TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-146(A)</td>
<td>Dynamics</td>
<td>3-2</td>
</tr>
<tr>
<td>Ae-503(A)</td>
<td>Compressibility I</td>
<td>4-0</td>
</tr>
<tr>
<td>EE-745(A)</td>
<td>Electronic Control and Measurement</td>
<td>3-3</td>
</tr>
<tr>
<td>Ma-301(B)</td>
<td>Statistics</td>
<td>3-2</td>
</tr>
<tr>
<td>Mt-203(C)</td>
<td>Physical Metallurgy (Special Topics)</td>
<td>2-2</td>
</tr>
<tr>
<td>*SL-101(C)</td>
<td>New Weapons Development I</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-10</td>
</tr>
</tbody>
</table>

* Lecture course—no academic credit.

Summer course in Industrial Administration at Stanford University.

SECOND TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-502(A)</td>
<td>Hydro-Aero Mechanics II</td>
<td>4-0</td>
</tr>
<tr>
<td>EE-651(C)</td>
<td>Transients and Servos</td>
<td>3-4</td>
</tr>
<tr>
<td>Mc-402(A)</td>
<td>Dynamics of Missiles and Gyros</td>
<td>3-0</td>
</tr>
<tr>
<td>Mt-202(C)</td>
<td>Ferrous Physical Metallurgy</td>
<td>3-2</td>
</tr>
<tr>
<td>Or-102(C)</td>
<td>Ordnance II</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-8</td>
</tr>
</tbody>
</table>

FOURTH TERM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-301(C)</td>
<td>Organic Chemistry</td>
<td>3-2</td>
</tr>
<tr>
<td>Ch-571(A)</td>
<td>Explosives</td>
<td>3-2</td>
</tr>
<tr>
<td>Mc-421(A)</td>
<td>Interior Ballistics</td>
<td>2-0</td>
</tr>
<tr>
<td>Mt-301(A)</td>
<td>High Temperature Materials</td>
<td>3-0</td>
</tr>
<tr>
<td>Oa-151(C)</td>
<td>Survey of Weapons Evaluation</td>
<td>3-0</td>
</tr>
<tr>
<td>*SL-102(C)</td>
<td>New Weapons Development II</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14-5</td>
</tr>
</tbody>
</table>

THIRD YEAR (OJ3)

At California Institute of Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-261</td>
<td>Hydrodynamics of Compressible Fluids</td>
</tr>
<tr>
<td>Ae-271</td>
<td>Experimental Methods in Aeronautics</td>
</tr>
<tr>
<td>JP-121</td>
<td>Rockets</td>
</tr>
<tr>
<td>JP-130</td>
<td>Thermal Jets</td>
</tr>
<tr>
<td></td>
<td>JP-200 Chemistry Problems in Jet Propulsion</td>
</tr>
<tr>
<td></td>
<td>JP-280 Research in Jet Propulsion</td>
</tr>
<tr>
<td></td>
<td>Ae-290 Aeronautical Seminar</td>
</tr>
</tbody>
</table>
ORDNANCE ENGINEERING

ORDNANCE ENGINEERING (Special Physics)

OBJECTIVE

To educate officers in the fundamentals of nuclear physics in order to develop an understanding of the capabilities and limitations of atomic weapons.

FIRST YEAR (OX)

FIRST TERM

Ch-101(C) General Inorganic Chemistry ______ 3-2
Es-141(C) DC Electricity _____________________ 4-4
Ma-100(C) Vector Algebra and Geometry ______ 2-1
Ma-181(C) Directional Derivatives and Locus Integrals ___________ 3-1
Mr-101(C) Fundamentals of Atmospheric Circulation ____________ 3-0
Or-101(C) Ordnance I _________________________ 2-1

SECOND TERM

Es-142(C) AC Electricity _____________________ 4-3
Ma-182(C) Differential Equations and Vector Analysis __________ 5-0
Ph-141(B) Analytical Mechanics _______________ 4-0
Ph-250(C) Geometrical and Physical Optics _____________ 3-2

THIRD TERM

EE-451(C) Transformers and Synchros ______ 2-2
Es-113(C) Circuit Analysis and Measurements _____________ 3-3
Es-261(C) Electron Tubes and Circuits _______ 3-2
Ma-183(B) Complex Variables and the Differential Equations of Theoretical Physics ___________ 5-0
Ph-142(B) Analytical Mechanics ______________ 4-0
*SL-101(C) New Weapons Development I ______ 0-1

17-9

FOURTH TERM

EE-651(B) Transients and Servos _____________ 3-4
Es-262(C) Electron Tubes and Circuits _______ 3-2
Ma-194(A) Laplace Transforms, Matrices and Variations ________ 5-0
Ph-351(B) Electrostatics and Magnetostatics __________ 5-0
*SL-102(C) New Weapons Development II ______ 0-1

16-7

*Lecture course—no academic credit.

SECOND YEAR (OX2)

At Massachusetts Institute of Technology

SUMMER SEMESTER

6.80 Electrical Measurements Laboratory
8.08 Electronics

FALL SEMESTER

6.633 Electronic Circuit Theory
8.05 Atomic Physics
8.07 Thermodynamics and Statistical Mechanics
8.71 Introduction to Theoretical Physics I
(Mechanics)
L17 Scientific German

Summer trip to AEC installations.

SPRING SEMESTER

6.20 Electronic Control and Measurement
6.623 Pulse Circuits, Principles
8.101 Atomic Structure Laboratory
or
8.102 Electronic Devices Laboratory
8.06 Nuclear Physics
8.72 Introduction to Theoretical Physics II (Electromagnetic Theory)

THIRD YEAR (OX3)

At Massachusetts Institute of Technology

FALL SEMESTER

8.361 Quantum Theory of Matter
8.511 Nuclear Physics I
8.57 Neutron Physics
N21 Nuclear Reactor Engineering I
Thesis

SPRING SEMESTER

8.512 Nuclear Physics II
N.20 Biological Effects of Nuclear Radiations
N.22 Nuclear Reactor Engineering II
Thesis

57
THE ENGINEERING SCHOOL

CURRICULA CONDUCTED ENTIRELY AT OTHER INSTITUTIONS

The short titles and descriptive names of the courses are taken from the college catalogue concerned. Further information must be sought in such catalogue.

All of these curricula are subject to changes from year to year, due to scheduling problems at the institution, the backgrounds of individual students, sponsoring bureau requirements, etc.

Each curriculum is assigned to one of the curricular officers of the Engineering School for supervision and administration of the Postgraduate School functions, including liaison between the sponsoring bureau or office and the college, initiation of changes to the curriculum, contact with students and college faculty, etc.

<table>
<thead>
<tr>
<th>Curriculum</th>
<th>Group Designator</th>
<th>Institution</th>
<th>Cognizant P.G. School</th>
<th>Curricular Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Administration</td>
<td>ZKC</td>
<td>Columbia University</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Business Administration</td>
<td>ZKH</td>
<td>Harvard University</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Business Administration</td>
<td>ZKS</td>
<td>Stanford University</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Business Administration</td>
<td>ZCP</td>
<td>University of Southern California</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>ZGM</td>
<td>University of Michigan</td>
<td>Naval Engineering</td>
<td></td>
</tr>
<tr>
<td>Advanced (Sanitary)</td>
<td>ZGR</td>
<td>Rensselaer Polytechnic Institute</td>
<td>Naval Engineering</td>
<td></td>
</tr>
<tr>
<td>(Soil Mechanics and Foundations)</td>
<td>ZGI</td>
<td>University of Illinois</td>
<td>Naval Engineering</td>
<td></td>
</tr>
<tr>
<td>(Structures)</td>
<td>ZGP</td>
<td>Princeton University</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>(Waterfront Facilities)</td>
<td>ZG</td>
<td>Rensselaer Polytechnic Institute</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Qualification</td>
<td>ZS</td>
<td>George Washington University</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Comptrollership</td>
<td>ZV</td>
<td>Ohio State University</td>
<td>Aerological Engineering</td>
<td></td>
</tr>
<tr>
<td>Hydrographic Engineering</td>
<td>ZNF</td>
<td>Harvard University</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Journalism</td>
<td>ZHC</td>
<td>Catholic University</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Law</td>
<td>ZHG</td>
<td>Georgetown University</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Law</td>
<td>ZHH</td>
<td>Harvard University</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Law</td>
<td>ZHY</td>
<td>George Washington University</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Management and Industrial Engineering</td>
<td>ZT</td>
<td>Rensselaer Polytechnic Institute</td>
<td>Naval Engineering</td>
<td></td>
</tr>
<tr>
<td>Metallurgical Engineering</td>
<td>ZNM</td>
<td>Carnegie Institute of Technology</td>
<td>Naval Engineering</td>
<td></td>
</tr>
<tr>
<td>Naval Architecture and Marine Engineering</td>
<td>ZNB</td>
<td>Webb Institute of Naval Architecture</td>
<td>Naval Engineering</td>
<td></td>
</tr>
<tr>
<td>Naval Construction and Engineering</td>
<td>ZNB</td>
<td>Massachusetts Institute of Technology</td>
<td>Naval Engineering</td>
<td></td>
</tr>
<tr>
<td>Naval Intelligence</td>
<td>ZI</td>
<td>Naval Intelligence School</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Nuclear Engineering (Advanced)</td>
<td>ZNE</td>
<td>Massachusetts Institute of Technology</td>
<td>Naval Engineering</td>
<td></td>
</tr>
<tr>
<td>Oceanography</td>
<td>ZO</td>
<td>Scripps Institution of Oceanography</td>
<td>Aerological Engineering</td>
<td></td>
</tr>
<tr>
<td>Personnel Administration and Training</td>
<td>ZP</td>
<td>Stanford University</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Petroleum Logistics</td>
<td>ZL</td>
<td>University of Pittsburgh</td>
<td>Naval Engineering</td>
<td></td>
</tr>
<tr>
<td>Photography</td>
<td>ZCR</td>
<td>Rochester Institute of Technology</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Public Information</td>
<td>ZIB</td>
<td>Boston University</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Religion</td>
<td>ZU</td>
<td>Various Universities</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Special Mathematics</td>
<td>ZMI</td>
<td>University of Illinois</td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Textile Engineering</td>
<td>ZM</td>
<td>Georgia Institute of Technology</td>
<td>Communications</td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION

BUSINESS ADMINISTRATION (ZKC, ZKH, ZKS)

A two-year curriculum consisting generally of courses in the fields of finance, business organization, marketing, statistics, public relations, administrative practices, geography, etc. The summer between academic years is spent in individual assignments with industrial companies.

To develop the ability in officers to analyze business organization, problems and conditions, to acquire an appreciation for and an understanding of business as a whole, and to administer effectively future assignments which may require personal dealings with business and industrial concerns or utilization of business techniques.

58
CINEMATOGRAPHY (ZCP)
A twelve-month curriculum, to prepare officers for assignments to duty in connection with the production of training films and motion picture reports, conducted at the University of Southern California. Patterned to meet the needs and background of the individual student, it consists of such courses as Cinematic Effects, Laboratory Practice and Procedure, Film and Education, Sound, Filmmic Expression and Cinemra History and Criticism. Sponsored by Chief of Naval Operations.

CIVIL ENGINEERING (Qualification) (ZG)
Seventeen months of instruction at Rensselaer Polytechnic Institute to qualify officers for civil engineering duties. Successful completion of this course normally leads to appointment in the Civil Engineering Corps. At present this is the only program for transfer of line officers to the Civil Engineer Corps.

CIVIL ENGINEERING (Advanced) (ZGR, ZGM, ZGI, ZGP)
A graduate program, at the Master of Science level, covering four specialties, or options, and consisting of twelve to fifteen months at selected civilian institutions. Sponsored by the Bureau of Yards and Docks, the program includes the following specialties: (a) Soil Mechanics and Foundations, (b) Structures, (c) Sanitary, and (d) Waterfront Facilities. Students selected for this program will normally be CEC officers of the ranks of lieutenant and lieutenant (jg) who have a degree in Civil Engineering and have completed three years of commissioned service.

COMPTROLLERSHIP (ZS)
A 9½ months' course at George Washington University leading to a Master's degree in Business Administration. Formal academic courses are given in General Accounting, Industrial and Governmental Economics, Statistics and Reports Control, Managerial Accounting, Internal Control and Auditing, Governmental Budget Formulation and Execution, Advanced Management, Human Relations in Administration, Management Engineering and Seminar in Comptrollership. In addition, comptrollers from major industries and officers and civilians working at the department level present practical aspects of comptrollership.

HYDROGRAPHIC ENGINEERING (ZV)
A one-year course in Hydrographic Engineering given at Ohio State University to officers nominated by the Hydrographer. The curriculum presents a sound fundamental theoretical knowledge of geodesy, cartography and photogrammetry, particularly as applied to hydrographic surveying, and the compilation and production of charts and maps. The course majors in one of these three fields in order to enable the graduate to perform future hydrographic duties at the Hydrographic Office, on hydrographic survey expeditions or on major fleet staffs.

JOURNALISM (ZNF)
A one-year curriculum at Harvard University for qualified officers nominated by the Chief of Information and cleared by the Nieman Foundation. Normally only one such officer can be enrolled at a time; he actually attends Harvard as a postgraduate student but associates with the Nieman Fellows in their course of study. To promote and elevate the journalistic qualifications of a small, select group.

LAW (ZHC, ZHG, ZHW, ZHH, ZHY)
A three-year curriculum generally following that taken by civilian students working for a degree of Bachelor of Laws but emphasizing Admiralty Law, International Law, Legislative Drafting and Administrative Law where such courses are available. Summer employment is in the Office of Judge Advocate General and at the School of Naval Justice, Newport, R. I. This program has, in the past, been given at Georgetown, Catholic and George Washington universities; the students commencing in 1953 and subsequent years, however, will take the program at Harvard and Yale universities.

MANAGEMENT AND INDUSTRIAL ENGINEERING (ZT)
A nine-month course at Rensselaer Polytechnic Institute to prepare selected officers for managerial and executive billets in the Navy's industrial organization. The course majors in advanced production and industrial engineering as applied to managerial problems.

NAVAL CONSTRUCTION AND ENGINEERING (ZNB)
A three-year course at Massachusetts Institute of Technology or at Webb Institute of Naval Architecture to qualify officers for naval construction and engineering assignments. Successful completion of this curriculum normally leads to "Engineering Duty" designation.

NAVAL INTELLIGENCE (ZI)
Six months of instruction at the U. S. Naval School, Naval Intelligence, to train selected officers in all phases of intelligence. Following the intelligence course the students normally study a foreign language to qualify as an interpreter-translator. The length of time devoted to language study is
dependent upon the language studied and the previous linguistic training of the student.

NUCLEAR ENGINEERING (Advanced) (ZNE)
A fifteen-month program at the Massachusetts Institute of Technology covering applied Nuclear Physics, Reactor Technology, and other subjects pertaining to Nuclear Engineering. The students for this program are selected by the Bureau of Ships.

OCEANOGRAPHY (ZO)
A one-year course at Scripps Institute of Oceanography to prepare officers for assignment to billets requiring specialized knowledge in the field of oceanography. Provided the student has adequate educational background, completion of the curriculum normally leads to a Master of Science degree.

PERSONNEL ADMINISTRATION AND TRAINING (ZP)
A one-year curriculum to prepare officers for assignment in personnel administration and supervision or administration of training activities, at Stanford University. It includes instruction in Statistical Methods; General, Educational and Social Psychology; General and Educational Sociology; General School Supervision; Counselling Techniques; Guidance; Personnel Management; Administration; and Business and Professional Speaking; Personnel Test and Measurements; Record Studies.

PETROLEUM LOGISTICS (ZL)
A two-year program consisting of one full year at the University of Pittsburgh followed by a year with a major oil company. It prepares selected senior officers for assignment to Munition Board or similar high-level logistics billets.

PHOTOGRAPHY (ZCR)
A two-year curriculum to prepare selected officers for technical duties involving photography; includes basic courses in the materials, processes and technical practices of photography including general chemistry, mathematics and physics, followed by specialized courses in the various photographic fields.

This course of instruction, conducted at Rochester Institute of Technology (ZCR Group), is patterned to meet the needs and background of the individual enrolled.

PUBLIC INFORMATION (ZIB)
A twelve-month postgraduate course in public information for information-specialist naval officers conducted at Boston University. Two officers are trained per year, one for a billet designated 1100 and one for a billet designated 1300. Students enrolled will be experienced naval officers with previous education and/or experience in the fields of Public Information and Public Relations. The course leads to the degree of Master of Science in Public Relations.

RELIGION (ZU)
Each student officer enrolled in this curriculum pursues courses of instruction in such subjects as Psychology, Speech, Education, Theology, Pauline Studies and Visual Aids.

An officer selected for this curriculum will be enrolled in the University of his choice if practicable. In recent years, officers have been enrolled at Fordham University, Harvard University and Union Theological Seminary. They have been collectively designated as the ZU Group.

SPECIAL MATHEMATICS (ZMI)
A two-year curriculum at the University of Illinois, sponsored by the Chief of Naval Operations, to further the education of specially selected officers, in higher mathematics, with emphasis on mathematical logic, mathematical statistics, and the application of digital computers.

STRUCTURAL DYNAMICS (ZSD)
An eighteen-month course at the University of Illinois designated primarily to provide a type of specialized professional training at the graduate level needed by some of the officers of the U. S. Navy Civil Engineering Corps and the U. S. Army Corps of Engineers, to assist them in handling design problems created by the advent of atomic weapons. The emphasis is on subject matter intended to lead to a better understanding of the effects of dynamic loads on structures. This will end with the students graduating in winter of 1953-54, and will be replaced by Civil Engineering (Structures) (ZGI).

TEXTILE ENGINEERING (ZM)
A two-year program of study at the Georgia Institute of Technology, to prepare officers for assignments involving manufacture, procurement, receipt, storage and issue of clothing and textiles. The curriculum best suited to the individual's background and needs is determined in consultation with school authorities after his arrival. Normally includes such courses as Weaving, Fabrics Analysis, Chemical Textile Testing, Physical Textile Testing, Fabric Design, Circular Knitting, Bleaching and Dyeing, and Quality Control.
COURSE DESCRIPTIONS—CIVIL ENGINEERING

DETAILS OF CURRICULA CONDUCTED ENTIRELY AT CIVILIAN INSTITUTIONS
No details available for Cinematography (ZCP), Business Administration (ZH), Law (ZH), Personnel Administration and Training (ZP), Photography (ZCR), Religion (ZU), Special Mathematics (ZMI), and Textile Engineering (ZM).

CIVIL ENGINEERING

CIVIL ENGINEERING (Qualification)
At Rensselaer Polytechnic Institute
Refresher Period 8 weeks

11.90 Mathematics (CEC)
17.05 Mechanics and Strength of Materials
5.08 Surveying Curves and Earthwork (CEC)

SUMMER SESSION
10.11 Engineering Geology
5.78 Reinforced Concrete I
5.76 Elementary Structural Analysis

FALL TERM
5.09 Contracts and Specifications
5.05 Photogrammetry
5.15 Highways and Airports Eng. (CEC)
7.72 Utilization of Electrical Energy for Naval Establishments (CEC)
5.77 Structural Design I
5.80 Stresses in Highway and Railroad Bridges
6.55 Personnel Management and Industrial Relations (CEC)

SPRING TERM
5.32 Soil Mechanics (CEC)
5.75 Building Construction
5.79 Reinforced Concrete II
5.82 Indeterminate Structures I
12.42 Heating and Ventilation (CEC)
13.541 Metallurgy and Welding (CEC)
G5.82 Ship Repair and Shipbuilding Facilities (CEC)

SECOND SUMMER SESSION
5.59 Sanitary Engineering
7.69 Power Plants (CEC) Electrical Engineering
12.48 Power Plants (CEC) Mechanical Engineering
5.35 Foundation Engineering
5.16 Topographical Survey (Field Trip)
5.18 Route Survey (Field Trip)
Degree: BCE at end of Spring Term

CIVIL ENGINEERING (Advanced)

Four “options” or specialties are conducted at the graduate level, in accordance with the revised policy of the Bureau of Yards and Docks; these specialties supercede the former single Civil Engineering (Advanced) program.

SOIL MECHANICS AND FOUNDATIONS
Conducted at Rensselaer Polytechnic Institute

SUMMER TERM
12.48-7.69 Power Plant Theory (CEC)
G11.41 Advanced Calculus
or
G11.45 Applied Mathematics
Soil Mechanics and Foundations Refresher

FALL TERM
10.12 Advanced Geology
G5.30 Graduate Soil Mech. I
G5.32 Graduate Foundations I
G5.57 Prestressed Concrete
G5.49 Thesis

SPRING TERM
G5.31 Graduate Soil Mechanics II
G5.33 Graduate Foundations II
G5.37 Graduate Soil Mechanics III
G5.84 Planning Principles
G5.82 Shipbuilding and Ship Repair Facilities (CEC)
G5.36 Soil Mechanics Seminar
G5.49 Thesis
Degree: Master of Civil Engineering.

STRUCTURES
At University of Illinois

Objective: To provide advanced technical instruction for selected CEC officers in the field of structural design.

FIRST SUMMER
Math 343 Advanced Calculus
CE461 Structural Theory and Design
CE493 Special Problems

FALL SEMESTER
CE481 Numerical and Approx. Methods of Structural Analysis
CE486 Investigations in Reinforced Concrete Members
CE493 Special Problems
CE461 Structural Theory and Design
CE373 Int. to Soil Mechanics
TAM421 Mechanics of Materials
TAM461 Inelastic Behavior of Eng. Materials
SPRING SEMESTER
CE482 Buckling, Vibrations and Impact
CE484 Behavior of Structures under Dynamic Load
CE467 Investigations in Reinforced Concrete Members
CE493 Special Problems
CE374 Applied Soil Mechanics
TAM462 Inelastic Behavior of Eng. Materials
The student selects courses from those tabulated above to suit his background needs and to carry the normal load to five units per term.

SECOND SUMMER
CE462 Structural Theory and Design
CE491 Thesis
TAM424 Properties of Eng. Materials
Degree: Master of Science in Civil Engineering.

SANITARY ENGINEERING
At University of Michigan
Objective: To provide advanced technical instruction in the field of water supply and sewage.

SUMMER
Chem.23 Introduction to Analytical Chemistry
Selected cognate subject such as Conservation of Natural Resources, W194S.

FALL
Bact.111E Bacteriology for Engineers
E.H.225 Sanitary Chemistry (Water and Sewage)
C.E.152 Sewerage and Sewage Treatment
C.E.155 Municipal and Industrial Sanitation
One of following
C.E.140 Hydrology
or
P.H.S.200 Introd. to Public Health Statistics
or
E.H.241 Principles and Methods of Industrial Health

SPRING
Chem.61 Organic Chemistry
C.E.152 Water Purification and Treatment
C.E.157 Industrial Waste Treatment
C.E.254 Sanitary Eng. Design
C.E.250 Sanitary Eng. Research With approval, E.H.226 and either P.H.P.231 or E.H.228 may be substituted for chem. 61.
E.H.226 Water and Sewage Plant Operation
E.H.228 Radiological Health
Degree: M.S.E.

WATERFRONT FACILITIES
At Princeton University
Objective: To provide advanced technical instruction in waterfront development, including planning, design, construction, rehabilitation and maintenance of waterfront facilities.

SUMMER
Mathematics Refresher
Mechanics Refresher
Structural Theory Refresher

FALL TERM
Port and Harbor Engineering Seminar
Waterfront Structures Seminar
Eng.506 Graduate Structures
Eng.406 Soil Mechanics (audit) if no background therein.
Public Affairs 507 Problems in Administration

SPRING TERM
Waterfront Structures Seminar
Eng.502 Soil Mechanics, Foundations, and Earth Structures Problems
Politics 512 Public Administration
Thesis
Degree: Master of Science.

COMPTROLLERSHIP
At George Washington University
Objective: To develop in officers of mature judgement and a broad background of professional experience the ability to interpret and analyze operational statistics for the purpose of developing standards of performance; to provide a periodic review of operations in order to denote areas of management which are not meeting standards; to review budget estimates; and to plan programs for the improvement of management economy and efficiency through better organization, administration and procedures and better utilization of manpower, materials, facilities, funds and time. The course is designed to give graduates a working knowledge of managerial controls adequate for assignment to comptroller duties as a normal preparation for command and executive billets in the shore establishment.

This course of instruction is convened six weeks before the beginning of the academic year for a refresher period, during which the officer students are to complete basic undergraduate courses in Accounting, Statistics and Economic Theory prior to the start of graduate studies with the Fall Term.
FALL TERM
ACCTG 3 General Accounting
ACCTG 211 Managerial Accounting
ACCTG 211 Seminar in Governmental Budgeting
STAT 120 Statistics and Reports Control
BUS ADM 261 Advanced Management
BUS ADM 263 Administrative Review and Program Analysis
BUS ADM 265 Seminar in Comptrollership

SPRING TERM
ACCTG 272 Internal Control and Auditing
ACCTG 222 Seminar in Governmental Budgeting
BUS ADM 168 Management Engineering
BUS ADM 262 Advanced Management
BUS ADM 264 Administrative Review and Program Analysis
BUS ADM 266 Seminar in Comptrollership
ECON 195 Industrial and Governmental Economics

Degree: Master in Business Administration.

MANAGEMENT AND INDUSTRIAL ENGINEERING
At Rensselaer Polytechnic Institute

Objective: To prepare officers to fill managerial and executive billets in the Navy's industrial organization.

FALL TERM
6.34 Production Planning and Control
6.52 Personnel Management and Industrial Relations I
G6.02 Cost Analysis
G6.25 Economic Analysis
3.26 Personnel Tests and Measurement
G6.05 Law for Engineers

SPRING TERM
6.25 Statistical Analysis
6.54 Personnel Management and Industrial Relations II
G6.18 Production Management
6.60 Business and Government
6.62 Management Seminar

Degree: Bachelor of Management Engineering

NAVAL CONSTRUCTION AND ENGINEERING
At Massachusetts Institute of Technology

Objective: To qualify officers for naval construction and engineering assignments.
Hull Design and Construction Subspecialty (XIII-A-1)

FIRST SUMMER
2.046 Strength of Materials
8.03 Physics (Electricity)
13.20 Elementary Ship Design
M73 Review of Mathematics

FALL
2.081 Strength of Materials
2.402 Heat Engines
3.391 Properties of Metals
10.311 Heat Transfer
13.17 History of Warships
M351 Adv. Calculus for Engineers

SPRING
1.401T Structures
1.612 Fluid Mechanics
13.01 Statics of Ship Design
13.12 Warship General Arrangement
13.21 Warship Form Design
M352 Adv. Calculus for Engineers
Intersessional Field Trip; summer leave.

SECOND YEAR
FALL
1.63T Applied Hydromechanics
6.181 Electrical Engineering
13.02 Dynamics of Ship Design
13.13 Warship Structural Theory I
13.22 Warship General Design
13.75 Warship Propulsion

SPRING
1.42 Structures
1.683 Experimental Hydromechanics
3.392 Properties of Metals
6.191 Electrical Engineering
13.14 Warship Structural Theory II
13.24 Warship Structural Design II
13.76 Warship Propulsion II
Intersessional Field Trip; summer leave.

THIRD YEAR
FALL
2.216 Experimental Stress Analysis
6.351 Engineering Acoustics
13.15 Warship Basic Design I
13.16 Warship Basic Design II
13.25 Warship Structural Design II
13.54 Marine Eng. Dynamics
Thesis

SPRING
1.58 Elastic Stability of Flat Plates
13.26 Preliminary Design of Warships
14.113 Economics and Labor Relations
13.04 Ship Design, Advanced Thesis

Degree: Naval Engineer.
Note: Three other subspecialties are offered, all of which contain basic ship design, but proportionately greater amounts of other phases of marine engineering. These are:
XIII-S-2 Marine Electrical Engineering
XIII-A-3 Electronics Engineering
XIII-A-4 Ship Propulsion Engineering
NAVAL CONSTRUCTION AND ENGINEERING
(Hull Design and Construction)
At Webb Institute of Naval Architecture

This three-year curriculum is basically equivalent to the Hull Design and Construction Subspecialty at M.I.T. The schedule provides for a long winter practical work period (field trip), each year, during which the students work in a naval shipyard or other suitable installation.

FIRST SUMMER
Practical Naval Architecture I
Calculus Review
Mechanics Review

FIRST YEAR
Calculus III and IV
Differential Equations
Theoretical Fluid Mechanics I and II
Ship Model Testing
Thermodynamics I and II
Mechanical Processes
Mechanics of Materials I and II
Laying Off
Practical Naval Architecture II and III
Theoretical Naval Architecture I and II
Naval Architecture Design I and II
Ship Resistance and Propellers I

SECOND YEAR
Advanced Theoretical Fluid Mechanics
Metallurgy
Advanced Structures I and II
Structures Lab
Electrical Engineering IV
Ship Resistance and Propellers II
Naval Architecture Design III
Theoretical Naval Architecture III
Theory of Warship Design I and II
Warship Design I and II
Internal Combustion Engines
Marine Engineering III and IV

THIRD YEAR
Economics I and II
Advanced Structures III
Kinematics and Machine Design
Vibrations
Theory of Warship Design III and IV
Warship Design III and IV
Marine Engineering V and VI
Thesis

Degree: Master of Science

NUCLEAR ENGINEERING (Advanced)
At Massachusetts Institute of Technology

FIRST SUMMER
8.05 Atomic Physics
10.31 Chemical Engineering
10.32 Chemical Engineering
8.07 Nuclear Physics (Special Seminar)

FALL
2.521 Adv. Heat Transfer
3.396 Technology of Nuclear Reactor Materials
8.511 Nuclear Physics I
N.21 Nuclear Reactor Eng. I
8.57 Neutron Physics (Engineering Emphasis)

SPRING
2.783 Control Probs. in Mech. Engineering
8.512 Nuclear Physics II
N.22 Biological Effects of Nuclear Radiation
N.2 Nuclear Reactor Eng. II
Thesis

SECOND SUMMER
Thesis

Degree: M.S. in Chemical Engineering

PETROLEUM LOGISTICS
At University of Pittsburgh and in Petroleum Industry
Formerly Petroleum Engineering (Advanced)

Objective: To equip senior officers with a broad understanding of the petroleum industry, its problems and economics, for duties on the Munitions Board and other high-level logistics agencies where liaison with civilian industry is required.

FIRST YEAR
FALL
Pet. Eng. 101 Drilling and Development
Pet. Eng. 104 Business of Oil and Gas Production
Chem. Eng. 17 Petroleum Processes
Geology 2 Historical Geology

SPRING
Pet. Eng. 102 Petroleum Production Practice
Pet. Eng. 107 Gathering, Transportation and Storage
Pet. Eng. 200 Research and Thesis
Pet. Eng. 227 Valuation of Oil and Gas Properties
Geology 121 Geology of Oil and Gas
Geography 53 World Resources and Industry

SUMMER
Transportation 109 Principles of Transportation

Degree: Master of Science
SECOND YEAR

Assigned to various petroleum industrial concerns under instruction. This period is devoted to intensive study of operations and procedure in office and field, in close contact with the management.

Degree: M.S. on completion of Summer Term of academic work.

PUBLIC INFORMATION

At Boston University

Objective: To advance the qualifications of a small group of officers in public relations.

The following is a typical curriculum composed of representative courses which are described in the Boston University Bulletin, catalogue issue 1952-1953.

ZIB GROUP

FIRST SEMESTER

PR-441 Publicity: Principles and Practice II
PR-461 Government Relations
PR-701 Contemporary Problems in Public Relations
PR-721 Methods in Social Science Research
PR-741 Propaganda—Its Analysis and Use

SECOND SEMESTER

PR-445 Advanced Techniques in Public Relations Media
PR-702 Contemporary Problems in Public Relations II
PR-761 Factors Influencing Morale
PR-801 Special Problems in Public Relations

SUMMER SESSION

PR-825 Thesis Seminar

Degree: M.S. in Public Relations
THE ENGINEERING SCHOOL

Description of Courses at Monterey

Descriptive name of course is followed by two numbers, separated by a hyphen. The first number signifies classroom hours; the second, laboratory hours.

THE ACADEMIC LEVEL OF A COURSE IS INDICATED BY A LETTER IN PARENTHESES AFTER THE COURSE NUMBER AS FOLLOWS:

(A) Full graduate course
(B) Partial graduate course
(C) Undergraduate course

One term credit-hour is given for each hour of lecture or recitation, and half of this amount for each hour of laboratory work. A term credit-hour is equivalent to two thirds of the conventional college semester credit hour because the Engineering School term is of ten weeks' duration in contrast to the usual college semester of 15 or 16 weeks.
THE ENGINEERING SCHOOL

AEROLOGY

Mr Courses

Fundamentals of Atmospheric Circulation 3-0
Primarily designed to give non-aerological student officers a survey of meteorology. The topics included are essentially the same as in Mr-200; however, there is greater emphasis on large and small scale circulations.

Text: Petterssen: Introduction to Synoptic Meteorology.

Prerequisite: None.

Mr-110(C) Radiological Defense 2-0
Basic theory of atomic weapons and effects as applied to aerological aspects of atomic and radiological warfare. Principles of operation of various instruments utilized in field.

Texts: Nucleons for the Navy; appropriate NWP’s.

Prerequisite: Mr-191(C) or equivalent.

Mr-120(C) Operational Aspects of Meteorology and Oceanography 3-0
Distribution of physical properties of the atmosphere and the oceans, with resultant circulation patterns. Methods of prediction of weather and sea conditions, with application to naval operations.

Texts: Berry, Bollay, Beers: Handbook of Meteorology; selected NavAer publications.

Prerequisite: None.

Mr-200(C) Introduction to Synoptic Meteorology 3-0
Composition and vertical structure of the atmosphere, physical processes, general circulation, air masses, fronts, cyclones, and anticyclones, and weather forecasting.

Text: Petterssen: Introduction to Synoptic Meteorology.

Prerequisite: None.

Mr-227(B) Southern Hemisphere and Tropical Meteorology 3-0

Selected Topics in Meteorology 3-0
Operational Forecasting 2-0
Synoptic Meteorology I 3-0
Synoptic Meteorology II 3-0
Synoptic Meteorology III 3-0
Dynamic Meteorology I 3-0
Dynamic Meteorology II 3-0
Dynamic Meteorology III (Turbulence and Diffusion) 3-0
Meteorological Charts and Diagrams 3-0
Introduction to Physical Meteorology 3-0
Meteorological Instruments 3-0
Thermodynamics of Meteorology 3-0
Physical Meteorology 3-0
The Upper Atmosphere 3-0
Climatology 3-0
Applied Climatology 3-0
Sea and Swell Forecasting 3-0
Sea and Swell Forecasting 3-0
Seminar 3-0

Mr-229(B) Selected Topics in Meteorology
Mr-230(A) Operational Forecasting
Mr-301(C) Synoptic Meteorology I
Mr-302(C) Synoptic Meteorology II
Mr-303(C) Synoptic Meteorology III
Mr-321(A) Dynamic Meteorology I
Mr-322(A) Dynamic Meteorology II
Mr-323(A) Dynamic Meteorology III (Turbulence and Diffusion)
Mr-402(C) Meteorological Charts and Diagrams
Mr-403(C) Introduction to Physical Meteorology
Mr-410(C) Meteorological Instruments
Mr-411(B) Thermodynamics of Meteorology
Mr-412(A) Physical Meteorology
Mr-422(A) The Upper Atmosphere
Mr-510(C) Climatology
Mr-520(B) Applied Climatology
Mr-610(C) Sea and Swell Forecasting
Mr-620(B) Sea and Swell Forecasting
Mr-810(A) Seminar

Prerequisite: None.
Mr-202(C) Surface Weather Map Analysis 2-12

Lectures cover the following topics: Weather producing processes; graphical representation of atmospheric properties and processes; geostrophic and gradient wind scales; representativeness and diurnal variation of meteorological elements; anatomy and synoptic characteristics of fronts, wave cyclones and occlusions.

In laboratory, a selected series and current daily weather maps are analyzed, making use of upper wind data; local weather is observed and map analyses discussed. A series of flights are made by the students to compare observed flight conditions with those indicated on the weather map.

Texts: Berry, Bollay, Beers: Handbook of Meteorology; departmental notes.

Prerequisites: Mr-200(C), Mr-201(C).

Mr-203(C) Weather Analysis and Forecasting 2-12

A continuation of Mr-202(C). Lectures cover the following: inversions and cross-sections; fog and fog forecasting; kinematics of fronts and pressure systems; construction of trajectories; constant-level and constant pressure charts; and differential analyses.

In laboratory, advanced methods of current weather map analysis and forecasting are presented. Relation of upper air observations to the overall structure of the atmosphere, daily forecasts, map discussions and flight cross-sections are covered. Flight cross-sections are verified through a series of flights over various routes.

Texts: Berry, Bollay, Beers: Handbook of Meteorology; selected NavAer publications.

Prerequisites: Mr-202(C), Ma-162(C).

Mr-204(C) Upper-Air Analysis and Forecasting 2-12

A continuation of Mr-203(C). Lectures cover the following: stability analysis, deepening and filling, prognostic upper-air charts, forecasting displacement of fronts and pressure systems, air-mass stability and frontal-passage forecasts, and middle-latitude forecasting techniques.

In laboratory, the relationship between various upper-air charts and the sea-level chart. Preparation of differential, jet stream and isotach analyses, and prognostic upper-air charts. Daily forecasts and map discussions are continued, with verification based on computation of winds and pressure surfaces from aircraft in flight.

Texts: Berry, Bollay, Beers: Handbook of Meteorology; Riehl et al: Forecasting in Middle Latitudes; selected NavAer publications.

Prerequisites: Mr-203(C), Mr-301(C), Mr-402(C), Ma-163(C).

Mr-211(C) Weather Codes, Maps, and Elementary Surface Analysis 2-12

Lectures include: techniques of weather observations and the encoding, decoding and plotting of data; fundamentals of map analysis; weather producing processes; graphical representation of atmospheric properties and processes; geostrophic and gradient wind scales. An Aerology series of motion pictures is shown. In laboratory, weather data are decoded and plotted, weather observations are made, an elementary series of maps is analyzed and aircraft flights are made for familiarization.

Texts: Departmental notes.

Prerequisites: None.

Mr-212(C) Surface Weather Map Analysis 2-12

Continuation of Mr-211(C). Lectures include: representativeness and diurnal variation of meteorological elements; anatomy and synoptic characteristics of fronts, wave cyclones and occlusions; inversions and cross-sections; fog and fog forecasting; construction of trajectories. In laboratory, current daily weather maps are analyzed making use of upper-air data, and map analyses are discussed. A series of flights are made by the students to compare observed flight conditions with those indicated on the weather map.

Texts: Berry, Bollay, Beers; Handbook of Meteorology; Departmental Notes; Selected NavAer Publications.

Prerequisites: Mr-200(C); Mr-211(C); Mr-402(C).

Mr-213(C) Weather Analysis and Forecasting 2-12

A continuation of Mr-212(C). Lectures cover the following: constant level and constant pressure charts; differential analyses; upper-level patterns and trends, long and short waves, blocks and closed circulations, and the jet streams; prognostic upper-air charts; forecasting displacement of fronts and pressure systems; deepening and filling; air mass, stability and frontal passage forecasts; temperature and precipitation forecasting.

Laboratory work includes: relationship between upper-air charts and the sea-level chart; differential, jet stream and isotach analyses; prognostic surface and upper-air charts; flight cross-sections; daily forecasts and map discussions; special weather sequences for selected areas of the world; verifica-
tion of flight cross-sections and forecasts based on computation of winds and pressure surfaces and observation of weather from aircraft in flight.

Texts: Berry, Bollay, Beers: Handbook of Meteorology; Riehl et al: Forecasting in Middle Latitudes; Selected NavAer Publications.

Prerequisites: Mr-212(C); Mr-311(B); Ma-163(C).

Mr-215(B) Advanced Weather Analysis
0-12
Analysis and Forecasting

Various analysis and forecasting techniques developed in previous synoptic and theoretical courses applied to laboratory and inflight solution of selected forecast problems. Special weather sequences for selected localities of the world, arctic, tropics and Southern Hemisphere are analyzed.

Text: None.

Prerequisites: Mr-204(C), Mr-302(C), Oc-201(C).

Mr-216(B) Advanced Weather Analysis
2-12
and Forecasting

Continuation of Mr-215 (B). Lectures cover the following: general operational weather problems; weather briefing for overseas flight clearances, carrier strikes and amphibious operations; pressure pattern flight; single station forecasting, CAA and general flight manuals, instructions and supplements; fleet and area commanders' instructions; and detailed climatology of major areas of interest.

In laboratory, analysis and forecast of the weather in accordance with recent advanced methods using all available sources of information. Coordinated with Mr-217(B). Verification of flight forecasts and cross sections based on actual inflight observations and computations.

Texts: NavAer 50-11OR-50: Weather Briefing Manual; other selected NavAer publications; lecture notes.

Prerequisites: Mr-215(B), Mr-303(C), Mr-403(C).

Mr-217(B) Upper-Air Analysis and
0-8
Forecasting

Constant-pressure, jet-stream, and isotach analysis presented and supplemented by surface map analysis in Mr-216(B). Time cross-sections and constant absolute vorticity trajectories computed. Computations necessary for pressure-pattern flight carried out and checked by inflight observations.

Text: None.

Prerequisites: Mr-303(C), Mr-215(B), Mr-403(C).

Mr-226(B) Advanced Weather Analysis
2-9
and Forecasting

Lectures review the following: fundamental weather-producing processes; principles of surface map analysis, constant-pressure and differential analyses and preparation of surface and upper-air prognostic charts. In the laboratory, upper-air observations and analyses used to determine air mass characteristics, three-dimensional weather analysis stressed by use of upper-air charts, differential analyses, and vertical cross sections in conjunction with surface charts. Daily forecasts of surface and upper-air conditions are prepared and discussed.

Texts: Berry, Bollay, Beers: Handbook of Meteorology; selected NavAer and AROWA publications; departmental notes.

Prerequisites: Mr-411(B), Mr-412(A), Ma-103(B).

Mr-227(B) Upper-Air Analysis and
2-9
Forecasting

A continuation of Mr-226(B). Lectures review forecasting displacement of fronts and pressure systems, deepening and filling of pressure systems, and latest forecasting methods based on three-dimensional analysis, with emphasis on the role of the jet stream. In the laboratory, principles outlined in lectures are applied to analysis of synoptic charts and preparation of prognostic charts. A special period is devoted to practical trials of new or untested synoptic techniques.

Texts: Same as for Mr-226(B), plus Riehl et al: Forecasting in Middle Latitudes.

Prerequisites: Mr-226(B), Mr-321(A), Mr-228(B).

Mr-228(B) Southern Hemisphere and
2-0
Tropical Meteorology

Southern Hemisphere synoptic meteorology, tropical synoptic models (with emphasis on the tropical cyclone), and tropical forecasting.

Texts: Berry, Bollay, Beers: Handbook of Meteorology; selected U. S. Navy and Weather Bureau publications.

Prerequisite: Mr-321(A) concurrently.

Mr-229(B) Selected Topics in Meteorology
2-0

General circulation of the atmosphere, single-station analysis and forecasting, arctic and antarctic meteorology, extended-range forecasting, and recent developments as time permits.

Prerequisite: Mr-321(A), Mr-228(B), Ma-134(B).
Mr-230(A) Operational Forecasting 0-10

Presentation and application of recent developments in the technique of preparing surface and upper-level prognostic charts. Preparation of forecast from prognostic charts. Streamline and jet-stream analysis, time cross-sections, constant absolute vorticity trajectories, time and space differential analysis techniques. Instruction in the preparation of aerological annexes to Naval Operations Plans.

Text: Riehl et al: Forecasting in Middle Latitudes.

Prerequisites: Mr-227(B), Mr-422(A), Mr-520(B).

Mr-301(C) Synoptic Meteorology I 4-0

The General Circulation, production and transformation of air masses; the equations of motion, wind and pressure systems, the thermal wind, differential analysis, and frontogenesis.

Texts: Berry, Bollay, Beers: Handbook of Meteorology; departmental notes.

Prerequisites: Mr-200(C), Ph-191(C), Ma-162(C).

Mr-302(C) Synoptic Meteorology II 4-0

A continuation of Mr-301(C), covering the following topics: frontal characteristics, theoretical and synoptic analysis of pressure changes, and methods of long-range forecasting.

Texts: Same as for Mr-301(C).

Prerequisites: Mr-301(C), Mr-402(C).

Mr-303(C) Synoptic Meteorology III 4-0

A continuation of Mr-302(C), covering Southern Hemisphere meteorology, tropical analysis and forecasting, arctic and antarctic meteorology, objective forecasting methods, and marine meteorology.

Texts: Same as for Mr-302(C) plus selected NavAer and AROWA pamphlets.

Prerequisites: Mr-302(C), Mr-403(C), Ma-381(C).

Mr-311(B) Synoptic Meteorology Ia 5-0

The general circulation; production and transformation of air masses; the equations of motion, wind and pressure systems, the thermal wind, and differential analysis; frontogenesis, fronts, and frontal characteristics.

Texts: Berry, Bollay, Beers: Handbook of Meteorology; Departmental Notes.

Prerequisites: Mr-200(C); Mr-402(C); Ma-163(C) concurrent.

Mr-312(B) Synoptic Meteorology IIa 5-0

Theoretical and synoptic analysis of pressure changes; methods of long-range forecasting; Southern Hemisphere, tropical, and polar analysis and forecasting; objective forecasting methods.

Texts: Same as for Mr-311(B), plus selected NavAer and AROWA pamphlets.

Prerequisites: Mr-311(B); Ma-361(C) concurrent.

Mr-321(A) Dynamic Meteorology I 3-0

The equations of motion in the absolute and relative reference frames. Solutions in particular atmospheric cases. Geostrophic and gradient winds measured in surfaces of constant property. Streamlines and trajectories. The thermal wind equation in various forms. Surfaces of discontinuity. Solenoids and the circulation theorems.

Texts: Holmboe, Forsythe and Gustin: Dynamic Meteorology; Petterssen: Weather Analysis and Forecasting.

Prerequisites: Mr-411(B), Mr-412(A), Ma-103(B).

Mr-322(A) Dynamic Meteorology II 3-0

A continuation of Mr-321(A), covering the topics listed below. Continuity and tendency equations. Convergence and divergence in general and in application to circular and wave-shaped systems. The vorticity theorem with applications to certain types of atmospheric flow. Frontogenesis and frontolysis in relation to linear velocity fields. Perturbation techniques in the solution of the equations of motion.

Texts: Same as for Mr-321(A) plus Haurwitz: Dynamic Meteorology.

Prerequisites: Mr-321(A), Ma-134(B).

Mr-323(A) Dynamic Meteorology III 3-0

(Turbulence and Diffusion)

A continuation of Mr-322(A) and considers the following topics: General effects of viscosity, equations of motion for laminar and turbulent flow, wind variation in the surface layer, energy changes in wind systems, transfer of properties by turbulent mass exchange, diurnal temperature variation; transformation of air masses; and introduction to the statistical theory of turbulence.

Texts: Berry, Bollay, Beers: Handbook of Meteorology; Sutton: Micrometeorology; Brunt: Physical and Dynamical Meteorology.

Prerequisites: Mr-321(A), Ma-134(B).
Mr-402(C) Meteorological Charts and Diagrams

A treatment of elementary thermodynamics and its application in meteorology, with particular emphasis on thermodynamic charts and diagrams. Atmospheric stability, instability phenomena, and the forecasting techniques are discussed.

Text: Haltiner: Mimeographed notes titled Elementary Meteorological Thermodynamics.

Prerequisites: Ph-191(C), Ma-162(C).

Mr-403(C) Introduction to Physical Meteorology

This course divides naturally into two parts: (a) properties of radiation in general, solar and terrestrial radiations and their contributions to certain large and small scale atmospheric energy problems; (b) laminar and turbulent flow. The Navier-Stokes equations and their modification by Reynolds. Structure of the mean wind in the surface and frictional layers. Diurnal variation of certain properties affected by turbulence. Air mass modification by turbulence. Diffusion from point and line sources.

Texts: Berry, Bollay, Beers: Handbook of Meteorology; mimeographed notes.

Prerequisites: Mr-302(C), Ma-163(C).

Mr-410(C) Meteorological Instruments

Standard naval meteorological instruments including those required for aircraft observations are studied and used by the students in the laboratory and while airborne. Additional instrumentation peculiar to (1) cold climates, (2) high elevations, and (3) micrometeorological elements is investigated generally. Special attention is paid to errors and reliability of observation.

Prerequisite: Ph-191(C).

Mr-411(B) Thermodynamics of Meteorology

The physical variables; the equation of state; first law of thermodynamics; properties of gases; properties of water and moist air; thermodynamic diagrams; air-mass identification indices; geopotential determinations; instability phenomena and criteria.

Prerequisites: Ma-132(C), Ph-196(C).

Mr-412(A) Physical Meteorology

Prerequisites: Ph-196(C), Ma-132(C).

Mr-422(A) The Upper Atmosphere

Prerequisites: Mr-322(A), Mr-323(A).

Mr-510(C) Climatology

The distribution with respect to season, geography and orography of the major meteorological elements. Definitions of climatic zones and types according to Koppen, and their meteorological descriptions. Micrometeorology. Regional climatology of the oceans. Climatology as a tool in objective forecasting.

Text: Haurwitz and Austin: Climatology.

Prerequisites: Mr-203(C), Mr-301(C).

Mr-520(B) Applied Climatology

Prerequisites: Ma-331(A), Mr-510(C) or equivalent.
Mr-610(C) Sea and Swell Forecasting 2-2

Wind wave generation, propagation and decay; forecasting surface deep-water waves from meteorological data, their transformation and refraction in shallow water, breakers and surf; statistical properties of waves.

Texts: H.O. 604: Techniques for Forecasting Wind Waves and Swell; H.O. 234: Breakers and Surf; Principles in Forecasting.

Prerequisites: Mr-302(C), Oc-201(C).

Mr-620(B) Sea and Swell Forecasting 2-2

Similar to Mr-610(C), but emphasis on new developments, including statistical theory of wave generation.

Texts: H.O. 604: Techniques for Forecasting Wind Waves and Swell; H.O. 234: Breakers and Surf; mimeographed notes.

Prerequisite: Oc-111(B).

Mr-810(A) Seminar 2-0

Students study and prepare synopses of current publications or original data concerning meteorology and present them for group discussion.

Text: None.

Prerequisites: Mr-229(B), Mr-422(A). Mr-520(B).
AERONAUTICS

Ae Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ae-001(C)</td>
<td>Aeronautical Lecture Series</td>
<td>0-2</td>
</tr>
<tr>
<td>Ae-002(C)</td>
<td>Aeronautical Lecture Series</td>
<td>0-1</td>
</tr>
<tr>
<td>Ae-100(C)</td>
<td>Basic Aerodynamics</td>
<td>3-4</td>
</tr>
<tr>
<td>Ae-104(C)</td>
<td>Aircraft Performance Evaluation</td>
<td>3-0</td>
</tr>
<tr>
<td>Ae-121(C)</td>
<td>Technical Aerodynamics</td>
<td>3-2</td>
</tr>
<tr>
<td>Ae-131(C)</td>
<td>Technical Aerodynamics—Performance</td>
<td></td>
</tr>
<tr>
<td>Ae-132(B)</td>
<td>Flight Analysis</td>
<td></td>
</tr>
<tr>
<td>Ae-136(B)</td>
<td>Aircraft Performance—Flight Analysis</td>
<td></td>
</tr>
<tr>
<td>Ae-141(A)</td>
<td>Dynamics I</td>
<td></td>
</tr>
<tr>
<td>Ae-142(A)</td>
<td>Dynamics II</td>
<td></td>
</tr>
<tr>
<td>Ae-146(A)</td>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>Ae-151(B)</td>
<td>Flight Testing and Evaluation I</td>
<td></td>
</tr>
<tr>
<td>Ae-152(B)</td>
<td>Flight Testing and Evaluation II</td>
<td></td>
</tr>
<tr>
<td>Ae-153(B)</td>
<td>Flight Testing and Evaluation III</td>
<td></td>
</tr>
<tr>
<td>Ae-161(B)</td>
<td>Flight Testing and Evaluation Laboratory I</td>
<td></td>
</tr>
<tr>
<td>Ae-162(B)</td>
<td>Flight Testing and Evaluation Laboratory II</td>
<td></td>
</tr>
<tr>
<td>Ae-163(B)</td>
<td>Flight Testing and Evaluation Laboratory III</td>
<td></td>
</tr>
<tr>
<td>Ae-200(C)</td>
<td>Statics of Aircraft</td>
<td></td>
</tr>
<tr>
<td>Ae-211(C)</td>
<td>Stress Analysis I</td>
<td></td>
</tr>
<tr>
<td>Ae-212(C)</td>
<td>Stress Analysis II</td>
<td></td>
</tr>
<tr>
<td>Ae-213(B)</td>
<td>Stress Analysis III</td>
<td></td>
</tr>
<tr>
<td>Ae-214(A)</td>
<td>Stress Analysis IV</td>
<td></td>
</tr>
<tr>
<td>Ae-215(A)</td>
<td>Advanced Stress Analysis</td>
<td></td>
</tr>
<tr>
<td>Ae-311(C)</td>
<td>Airplane Design I</td>
<td></td>
</tr>
<tr>
<td>Ae-312(B)</td>
<td>Airplane Design II</td>
<td></td>
</tr>
<tr>
<td>Ae-411(B)</td>
<td>Aircraft Engines</td>
<td></td>
</tr>
<tr>
<td>Ae-421(B)</td>
<td>Aircraft Propulsion</td>
<td></td>
</tr>
<tr>
<td>Ae-431(A)</td>
<td>Internal Flow in Aircraft Engines</td>
<td></td>
</tr>
<tr>
<td>Ae-451(C)</td>
<td>Gas Turbines I</td>
<td></td>
</tr>
<tr>
<td>Ae-452(C)</td>
<td>Gas Turbines II</td>
<td></td>
</tr>
<tr>
<td>Ae-501(A)</td>
<td>Hydro-Aero Mechanics I</td>
<td></td>
</tr>
<tr>
<td>Ae-502(A)</td>
<td>Hydro-Aero Mechanics II</td>
<td></td>
</tr>
<tr>
<td>Ae-503(A)</td>
<td>Compressibility I</td>
<td></td>
</tr>
<tr>
<td>Ae-504(A)</td>
<td>Compressibility II</td>
<td></td>
</tr>
<tr>
<td>Ae-508(A)</td>
<td>Compressibility III</td>
<td></td>
</tr>
</tbody>
</table>

Ae-001(C) Aeronautical Lecture Series 0-2
Lectures on general aeronautical engineering subjects by prominent authorities from the Bureau of Aeronautics, research laboratories, and the industry.
Text: None.
Prerequisite: None.

Ae-001(C) Aeronautical Lecture Series 0-1
Lectures on electrical engineering subjects in connection with aeronautical engineering by prominent authorities from the Bureau of Aeronautics, research laboratories, and the industry.
Text: None.
Prerequisite: None.

Ae-100(C) Basic Aerodynamics 3-4
Properties of fluids; statics; velocity and pressure; Bernoulli's theorem; cavitation; theory of lift; blade screws and propellers; viscous flows; vortices; laminar and turbulent boundary layer flows; separation phenomena; surface friction; resistance of floating bodies; dynamics of compressible fluids. The laboratory periods include experimental work in the wind tunnel, allied to the topics above; technical analysis and report writing.
Prerequisite: None.

Ae-104(C) Aircraft Performance Evaluation 3-0
Fundamentals of technical aerodynamics; aircraft aerodynamic characteristics, performance analysis and propulsion characteristics; operational analysis of aircraft in fuel consumption, range, and performance.
Texts: Dwinnell: Principles of Aerodynamics; NavAer publications.
Prerequisites: Oa-103(B); Ph-541(B).

Ae-121(C) Technical Aerodynamics 3-2
Characteristic flows and pressures about bodies; surface friction; wake drag; aerodynamic characteristic of airfoil sections; three-dimensional airfoil theory; induced drag; interference drag; high lift devices; velocity polar. The laboratory periods include wind tunnel experiments, analysis and technical report writing on topics allied to the above class work.
Prerequisite: Ae-100(C).

Ae-131(C) Technical Aerodynamics 4-2
Performance
The aerodynamic characteristics of the airplane; propeller and engine characteristics; sea level performance; performance at altitudes; superchargers;
range and endurance; special performance problems; charts. The laboratory periods are devoted to computations and performance analysis.

Texts: The same as in Ae-121(C).
Prerequisite: Ae-121(C).

Ae-132(B) Flight Analysis

Parametric study of aircraft performance; flight test procedure; flight data reduction; special flight problems. Laboratory periods are devoted to problems dealing with the above.

Prerequisite: Ae-131(C).

Ae-136(B) Aircraft Performance—Flight Analysis

Aerodynamic characteristics of composite aircraft; propeller and engine characteristics; aircraft performance; range and endurance; special performance problems; performance parameters; flight test reduction and analysis. Laboratory analysis of performance of an aircraft will be made based upon wind tunnel tests; analysis of practical problems from flight test.

Prerequisite: Ae-121(C).

Ae-141(A) Dynamics I

Fundamental definitions; the forces and moments on the entire airplane; the equations of motion; the moments of the wing, tail and other parts of the airplane; C.G. location, effect on static stability; neutral points; maneuver points; fixed control and free control stability; elevator, aileron rudder effectiveness; control design features; maneuverability and controllability; turns and loops. The laboratory work consists of wind tunnel experimentation and analysis of the above topics on models.

Prerequisite: Ae-131(C).

Ae-142(A) Dynamics II

The Euler equations of motion; the moments of inertia of aircraft; the aerodynamic reactions and derivatives; solution of the symmetrical or longitudinal motion, analysis; solution of the asymmetrical or lateral motion, analysis; effect of control freedom, of controls and response; spins. The laboratory work consists of wind tunnel experimentation on models to study some of the above problems.

Texts: The same as in Ae-141(C).
Prerequisite: Ae-141(A).

Ae-146(A) Dynamics

Fundamental definitions, forces and moments of composite aircraft; equations of motion; static stability and trim; effects of CG location; static margins; free control stability; dynamic longitudinal stability; dynamic lateral stability, force and moment; derivatives; stability charts; controllability; maneuverability; three-dimensional motions; spins.

Laboratory work consists of experimentation and analysis of static and dynamic stability of some particular aircraft.

Texts: Same as in Ae-141(A).
Prerequisite: Ae-131(C) or Ae-136(B).

Ae-151(B) Flight Testing and Evaluation I

The technical aerodynamics of airplanes, especially performance and test methods.

Prerequisite: Ae-132(B).

Ae-152(B) Flight Testing and Evaluation II

This is a continuation of Ae-151(B) in the same field.

Texts: Same as Ae-151(B).
Prerequisite: Ae-151(B).

Ae-153(B) Flight Testing and Evaluation III

A continuation of Ae-152(B).

Texts: The same as in Ae-152(B).
Prerequisite: Ae-152(B).

Ae-161(B) Flight and Evaluation Laboratory I

Flight Test program accompanying Ae-151(B).

Ae-161(B) Flight Testing and Evaluation Laboratory II

Flight Test program accompanying Ae-152(B).

Ae-163(B) Flight Testing and Evaluation Laboratory III

Flight Test program accompanying Ae-153(B).
Ae-200(C) Statics of Aircraft

This course parallels Mc-101, extending the coverage of rigid body statics graphically and analytically to meet design requirements of aircraft components. Topics include: plane, compound and complex trusses; centroids, moments of inertia, properties of aircraft sections; moments of inertia of aircraft, balance diagrams; simple, compound and complex space frames; load lines, shear and bending moment diagrams; influence lines.

Prerequisite: Ae-200(C).

Ae-211(C) Stress Analysis I

Elastic body analysis applied to aircraft structures and machines. Topics are: the elementary state of stress in ties, struts, shear members, circular shafts, simple beams, short beam-struts, cores, simple columns, thin cylinders; extended discussion of deflection of straight beams, frames with straight members; statically indeterminate cases using diagrammatic and moment-distribution methods.

Prerequisite: Ae-200(C).

Ae-212(C) Stress Analysis II

A continuation of Ae-211. The general state of plane stress in complicated components of air frames and machines, and the stability of continuous beam columns. Topics are: plane stress, principal stresses, Mohr circle of stress, stress ellipse; shear stress developed in bending, effect on deflection; shear flow in bending under transverse loads, center of twist; bending beams with open or hollow sections; torsion of shafts of non-circular section, membrane analogy, torsional shear flow; torsion and bending; built-up beams, shear-resistant webs, tension field webs, wooden beams; beam-columns and ties.

Prerequisite: Ae-211(C).

Ae-213(B) Stress Analysis III

A continuation of Ae-212. Strain energy, curved bars and frames. Topics are: strain energy, applications to impact loading; Castigliano theorem; displacements in trusses, trusses with redundant members; virtual energy, applications, Maxwell-Mohr method; law of reciprocal deflection, influence line applications; energy methods applied to buckling; curved bars, stresses and deflections; rotating machine parts.

Texts: The same as in Ae-212(C).

Prerequisite: Ae-212(C).

Ae-214(A) Stress Analysis IV

A continuation of Ae-213. The general three dimensional state of stress, strain and displacement in elastic media. Thin stiff plates under lateral load in bending. Axially symmetrical plates and membranes. Discontinuity effects in shells. Beams on elastic foundation, applications to cylinder and hemisphere or flat plate or hollow ring. Thick walled spheres and cylinders under inner and outer pressures, application to rotating discs.

Texts: The same as in Ae-213(B).

Prerequisite: Ae-213(B).

Ae-215(A) Advanced Stress Analysis

A continuation of Ae-214. Rectangular plates in pure bending, in bending and under middle surface loading; buckling, crippling; selected topics from theory of elasticity and plasticity; advanced stability considerations.

Texts: The same as in Ae-214 plus Sechler and Dunn: Airplane Structural Analysis and Design.

Prerequisite: Ae-214(A).

Ae-311(C) Airplane Design I

Detail methods of layout and analysis of a light plane.

Design requirements are for the condition of high angle of attack; prepare equipment list and balance diagram; correct airfoil characteristics for structural use; construct three-view drawing; run the balance calculation and the preliminaries to the wing design.

Prerequisite: Ae-213(B).

Ae-312(B) Airplane Design II

A continuation of Ae-311(C). Wing spar analysis, wing truss analysis, fuselage analysis including Maxwell diagram. Design: one wing-spar on basis, shear-resistant web, tension-field web, com-
posite spar of two materials; elevator torque tube in bending and twist for given loading condition; several members of the fuselage truss as columns and as ties; indicated fittings.

Texts: The same as in Ae-311(C).
Prerequisite: Ae-311(C).

Ae-410(B) Thermodynamics (Aeronautical) 3-2

This course extends the study of fundamental thermodynamics in preparation for advanced work in aerothermodynamics and aircraft propulsion. Topics include one-dimensional compressible flow, internal combustion engine and turbine cycles and elements of heat transfer.

Prerequisite: ME-131(C).

Ae-411(B) Aircraft Engines 3-2

This course extends the study of combustion with particular reference to piston engine and gas turbine applications. Topics are: fuel mixtures; ignition; flame propagation and stability; utilization, conversion and mechanical aspects; survey of current engine design and construction.

Texts: Lichty: Internal Combustion Engines; Taylor and Taylor: Internal Combustion Engines; USNPS stencils.
Prerequisite: Ae-410(B).

Ae-421(B) Aircraft Propulsion 3-2

Sea level and altitude performance characteristics of piston engines, propellers, turbo-jet and turbo-prop engines. Topics are: maximum performance; cruise control; laboratory and flight testing; test data correction methods; aircraft performance review with particular reference to the propulsion system. The practical work of this course consists of supervised analysis of test data taken at various Naval Air Test Centers.

Prerequisites: Ae-411(B), Ae-131(C).

Ae-431(A) Internal Flow in Aircraft Engines 4-0

This is a fundamental course in the application of thermo-aerodynamics to the study of flow in machines. Topics are: momentum theorem; thrust equations; flow equations; relative and absolute flow, relative flow in machines; energy equations; thermodynamic flow equations; axial-flow compressors; centrifugal compressors; axial-flow turbines; centrifugal turbines.

Texts: ATSC: Jet Propulsion; Zucrow: Jet Propulsion and Gas Turbines; USNPS stencils.
Prerequisite: Ae-503(A).

Ae-451(C) Gas Turbines I 3-0

A seminar on the theory, design, and control of gas turbines, stationary and marine.
Text: None.
Prerequisites: Ae-502(A), Ae-410(B) or ME-132(C).

Ae-452(C) Gas Turbines II 3-0

A seminar in continuation of Ae-451(C).
Text: None.
Prerequisite: Ae-451(C).

Ae-501(A) Hydro-Aero Mechanics I 4-0

This is the first of a sequence of four courses which study in detail the rational mechanics of fluid media; Vector calculus and aerodynamical applications; fluid kinematics and flow description; stream and velocity potential functions; dynamic equations for a perfect fluid; solution by scalar and vector methods; properties of elemental and combined flows; two-dimensional problems; use of complex numbers in flow description; conformal transformation; complex integration; Blasius equations; Kutta-Joukowski theorem; lift and pitching moment on an infinite wing.

Texts: Glauert: Airfoil and Airscrew Theory; Streeter: Fluid Dynamics.
Prerequisite: Ae-131(C).

Ae-502(A) Hydro-Aero Mechanics II 4-0

Helmholtz vortex theory; the three-dimensional airfoil; induced velocity, angle of attack, drag; lift distribution; least induced drag; tapered and twisted airfoils; Chordwise and spanwise load distribution, tunnel-wall effect; viscous fluids.

Texts: The same as in Ae-501(A).
Prerequisite: Ae-501(A).

Ae-503(A) Compressibility I 4-0

Compressible flow; thermodynamic fundamentals; adiabatic flow equations; propagation of plane disturbances; one-dimensional channel flow; oblique shock waves and shock reflections; optical measurement techniques.
COURSE DESCRIPTIONS—AERONAUTICS

Prerequisites: Ae-410(B), Ae-502(A).

Ae-504(A) Compressibility II 3-2

Two and three-dimensional compressible flows; two-dimensional linearized theory and application to airfoils in compressible flow; three-dimensional linearized theory; hodograph methods; method of characteristics; exact solutions in two-dimensional flow; transonic flow problems. Transonic and supersonic wind tunnel tests are conducted in conjunction with class discussion.

Texts: The same as in Ae-503(A)
Prerequisite: Ae-503(A).

Ae-508(A) Compressibility 3-2

Thermoaerodynamic fundamentals of flow in compressible fluids; adiabatic equations; propagation of plane disturbances; one-dimensional channel flow; oblique shock waves, reflections; transonic flow shock waves, reflections; transonic flow problems. Laboratory periods are used in transonic and supersonic wind tunnel tests and in measurements by optical instrumentation.

Texts: The same as in Ae-503(A).
Prerequisites: Ae-410(B); Ae-502(A).
THE ENGINEERING SCHOOL

CHEMISTRY

Ch Courses

General Inorganic Chemistry
Ch-101(C)

General Inorganic Chemistry
Ch-102(C)

Elementary Physical Chemistry
Ch-103(C)

Fuel and Oil Chemistry
Ch-111(A)

General and Petroleum Chemistry
Ch-121(B)

Quantitative Analysis
Ch-213(C)

Qualitative Analysis
Ch-221(C)

Quantitative Analysis
Ch-231(C)

Organic Chemistry
Ch-301(C)

Organic Chemistry
Ch-311(C)

Organic Chemistry
Ch-312(C)

Organic Chemistry
Ch-315(C)

Organic Qualitative Analysis
Ch-321(A)

Organic Chemistry Advanced
Ch-322(A)

The Chemistry of High Polymers
Ch-323(A)

Physical Chemistry (Ord.)
Ch-401(A)

Physical Chemistry
Ch-411(C)

Physical Chemistry
Ch-412(C)

Physical Chemistry Advanced
Ch-413(A)

Physical Chemistry
Ch-442(C)

Plastics
Ch-521(A)

Physical Chemistry (for Metallurgy Students)
Ch-531(A)

Reaction Motors
Ch-541(A)

Radiochemistry
Ch-551(A)

Physical Chemistry
Ch-561(A)

Explosives
Ch-571(A)

Chemistry of Special Fuels
Ch-581(A)

Blast and Shock Effects
Ch-591(A)

Thermodynamics
Ch-611(C)

Thermodynamics
Ch-612(C)

Chemical Engineering Thermodynamics
Ch-613(A)

Chemical Engineering Thermodynamics
Ch-631(A)

Chemical Engineering Calculations
Ch-701(C)

Chemical Engineering Calculations
Ch-711(C)

Unit Operations
Ch-721(C)

Unit Operations
Ch-722(C)

Chemistry Seminar
Ch-800(A)

Ch-101(C) General Inorganic Chemistry 3-2

A study of the principles governing the chemical behavior of matter and includes topics such as kinds of matter, stoichiometric calculations, utility of the mole concept, kinetic theory, atomic structure, speed of chemical reactions, chemical equilibrium, introduction to organic chemistry and specialized topics (explosives, corrosion, etc.). Elementary physical chemistry experiments such as determination of molecular formulas, pH, reaction rates, etc., are performed in the laboratory.

Text: Hildebrand: Principles of Chemistry.

Prerequisite: None.

Ch-102(C) General Inorganic Chemistry 4-2

Topics include properties of matter, atomic and molecular structure, valence, weight relations in chemical reactions, oxidation-reduction, electrochemistry, gases, solutions, chemical equilibrium, reactions of metallic ions and ionic equilibria encountered in qualitative analysis. The laboratory work is qualitative analysis performed on a semimicro scale.

Text: Pauling: General Chemistry; Curtman: Introduction to Semimicro Qualitative Analysis.

Prerequisite: None.

Ch-103(C) Elementary Physical Chemistry 3-2

A course in theoretical chemistry for operations analysis curriculum; a study of principles governing the behavior of matter when subjected to various influences. Modern concept of the structure of matter, kinetic theory, dynamic equilibria in various systems, etc. In the development of the subject the mathematical approach is emphasized. Discussion of the various topics utilizes examples selected from situations of interest to officers in the military services.

The laboratory work consists of experiments, largely quantitative, illustrating the principles discussed in the lectures.

The course is designed to serve both as a refresher and a terminal background course for officers whose major interest lies in fields other than chemistry, physics, or related sciences.

Text: Hildebrand: Principles of Chemistry.

Ch-111(A) Fuel and Oil Chemistry

The occurrence, classification and refining of petroleum, theory of combustion of fuels, theory of lubrication, physical and chemical properties of fuels and lubricants and their correlation with performance, and the analysis of Orsat data. Laboratory work consists of conducting standard tests on fuels and lubricants, and Orsat analysis of combustion gases.

Text: Gruse and Stevens: Chemical Technology of Petroleum.

Prerequisite: Ch-101(C).
Ch-121(B) General and Petroleum Chemistry 4-2

Topics covered in this course are: classification of matter, atomic theory, atomic structure, gas laws, thermochemistry, chemical equilibria, chemical kinetics, elementary stoichiometry, organic chemistry, occurrence, classification and refining of petroleum, theory of combustion, theory of lubrication, physical and chemical properties of fuels and lubricants and their correlation with performance, and analysis of Orsat data. Laboratory work consists of experiments illustrating topics covered in lectures and standard tests on fuels and lubricants.

Texts: Hildebrand: Principles of Chemistry; Gruse and Stevens: Chemical Technology of Petroleum.

Prerequisite: None.

Ch-213(C) Quantitative Analysis 2-3

A review of the theoretical principles underlying analytical chemical methods, and the calculations involved in quantitative determinations. The laboratory work consists of typical volumetric and gravimetric determinations.

Text: Pierce and Haenisch: Quantitative Analysis.

Prerequisite: Ch-102(C).

Ch-221(C) Qualitative Analysis 3-2

The first part of a course in analytical chemistry, including the treatment of ionization, chemical equilibrium, solubility product, complex-ion formation and oxidation-reduction reactions, as they apply to qualitative analysis. The laboratory work consists of the separation and detection of selected ions on a semimicro scale.

Text: Curtman: Introduction to Semimicro Qualitative Analysis.

Prerequisite: Ch-101(C) or Ch-121(B).

Ch-231(C) Quantitative Analysis 2-3

A continuation of Ch-221(C), dealing with the principles and calculation involved in quantitative analysis. The laboratory work consists of typical volumetric and gravimetric determinations.

Text: Pierce and Haenisch: Quantitative Analysis.

Prerequisite: Ch-101(C) or Ch-121(B), Ch-221(C).

Ch-301(C) Organic Chemistry 3-2

An introduction to the properties, reactions and relationships of the principal classes of aliphatic and aromatic organic compounds. The laboratory work includes preparative experiments and experiments illustrating typical organic reactions.

Text: Schwenck and Martin: Basic Organic Chemistry.

Prerequisite: Ch-101(C) or Ch-121(B).

Ch-311(C) Organic Chemistry 3-2

The first half of a course in organic chemistry, consisting of the study of the properties and reactions of aliphatic compounds. The laboratory work is designed to illustrate typical organic reactions.

Prerequisite: Ch-101(C).

Ch-312(C) Organic Chemistry 3-2

A continuation of Ch-311(C), dealing chiefly with aromatic compounds. Organic synthetic methods are emphasized in the laboratory.

Prerequisite: Ch-311(C).

Ch-315(C) Organic Chemistry 3-0

An introduction to the properties, reactions, and relationships of the principal classes of organic compounds, as a basis for work in the biological sciences.

Text: Schwenck and Martin: Basic Organic Chemistry.

Prerequisites: Ch-102(C); Ch-213(C).

Ch-321(A) Organic Qualitative Analysis 2-2

Identification of organic compounds on the basis of physical properties, solubility behavior, classification reactions and the preparation of derivatives.

Prerequisite: Ch-301(C), Ch-312(C) or Ch-315(C).

Ch-322(A) Organic Chemistry, Advanced 3-2

A more detailed consideration of reactions used in organic syntheses, with particular attention to reaction mechanisms and electronic configurations.

Prerequisite: Ch-301(C), Ch-312(C) or Ch-315(C).
Ch-323(A) The Chemistry of High Polymers 3-0
Mechanism of polymerization; addition and condensation polymers; phenoplastics; aminoplastics; elastomers; natural high polymers and their modification; structure and physical properties of high polymers.

Text: Ritchie: Chemistry of Plastics and High Polymers.

Prerequisite: Ch-301(C), Ch-312(C) or Ch-315(C), Ch-323(A)

Ch-401(A) Physical Chemistry 3-2
Physical chemistry for ordnance students; a study of the laws governing behavior of matter. Gases, liquids, solids, chemical kinetics, thermochemistry, and chemical thermodynamics with emphasis placed on chemical equilibrium in gaseous mixtures. Numerical problems on gas mixtures, equilibria in explosion products, and flame temperatures form an integral part of the course.

The laboratory work consists of experiments illustrating principles discussed in the lectures.

Texts: Daniels: Outlines of Physical Chemistry; Daniels, Mathews and Williams: Experimental Physical Chemistry.

Prerequisite: Ch-101 or equivalent; Ch-613 or equivalent.

Ch-411(C) Physical Chemistry 3-2
Gases, solids, physical properties and molecular structure, thermodynamics, thermochemistry, liquids and solutions. The laboratory work consists of experiments which illustrate principles discussed in the lectures.

Texts: Daniels: Outlines of Physical Chemistry Daniels, Mathews, Williams and Staff: Experimental Physical Chemistry.

Prerequisite: Ch-101(C) or Ch-121(B).

Ch-412(C) Physical Chemistry 3-2
Continuation of Ch-411(C). Chemical equilibrium, chemical kinetics, electrical conductance, electro motive force, colloids and atomic and nuclear structure. Related laboratory work is included.

Texts: Daniels: Outlines of Physical Chemistry; Daniels, Mathews, Williams and Staff: Experimental Physical Chemistry.

Prerequisite: Ch-411(C).

Ch-413(A) Physical Chemistry (Advanced) 2-2
A graduate course covering selected topics in physical chemistry, such as electrochemistry, electronic configurations and dipole moments, and the physical chemistry of the solid and liquid states. The laboratory work consists of experiments designed to supplement the material covered in the lectures.

Prerequisites: Two terms of physical chemistry, one term of thermodynamics.

Ch-412(C) Physical Chemistry 4-2
A short course in physical chemistry for chemistry majors. Gases, solids, thermochemistry, liquids, solutions, chemical equilibrium, chemical kinetics, electrochemistry and colloids. Laboratory experiments which illustrate principles discussed in the lectures are performed.

Texts: Daniels: Outlines of Physical Chemistry; Daniels, Mathews, Williams and Staff: Experimental Physical Chemistry.

Prerequisite: Ch-101(C) or equivalent.

Ch-521(A) Plastics 3-2
A study of the nature and types of plastics, including alkyds, polyesters, silicone-base plastics, and rubbers, both natural and synthetic. Emphasis is placed on application, limitations as engineering materials, and correlation between properties and chemical structure. Service applications are cited as examples whenever possible. The laboratory exercises consist of the preparation of typical plastics, a study of their properties, and identification tests.

Prerequisite: Ch-101(C) or Ch-121(B).

Ch-531(A) Physical Chemistry 2-0 (for Metallurgy Students)
A continuation of the study of physical chemistry, emphasizing aspects of importance in metallurgy. Chemical equilibria in smelting and refining processes, in deoxidation and in carburizing; principles of controlled atmospheres; activity and activity coefficients in metal solutions; concentration gradients and diffusion effects.

Prerequisite: Physical chemistry; Mt-202.

Ch-541(A) Reaction Motors 2-2
A course covering the classification of reaction motions, basic mechanics, nozzle theory, propellant performance calculations, liquid and solid propellant motors, rocket testing, ramjet, pulse jet, military applications. Laboratory period is devoted to working problems.

Prerequisite: Ch-101 or equivalent and one term of thermodynamics.

Ch-551(A) Radiochemistry 2-2

A seminar course with discussions on important aspects of radioactivity from standpoint of the chemical transformations which accompany it and which it may induce; possible health hazards associated with radioactivity, safety measures and decontamination problems; techniques for measurement and study of ionizing radiation.

Prerequisite: Physical chemistry.

Ch-561(A) Physical Chemistry 3-2

A course in physical chemistry for students who are non-chemistry majors. Gases, liquids, chemical thermodynamics, thermochimistry, chemical equilibrium and chemical kinetics. Numerical problems on gas mixtures, combustion, equilibria in combustion products and flame temperatures are emphasized. Related laboratory experiments are included.

Texts: Daniels: Outlines of Physical Chemistry; Daniels, Mathews, Williams and Staff: Experimental Physical Chemistry.

Prerequisite: Ch-111(A) or Ch-121(B).

Ch-571(A) Explosives 3-2

Modes of behavior and principles of use of explosive substances as related to their chemical and physical properties; underlying principles of explosives testing and evaluation; theory of detonation; propagation of flame front in propellants; trends in new explosive investigation, selection, and development.

Prerequisites: One term each of Thermodynamics and Physical Chemistry.

Ch-581(A) Chemistry of Special Fuels 2-2

A brief survey of the organic and physical chemistry necessary for an appreciation of the problems associated with special fuels. The nature of conventional fuels and of high-energy fuels, their limitations, and possible future developments; methods of reaction of rate control; etc.

Prerequisite: Physical Chemistry.

Ch-591(A) Blast and Shock Effects 3-0

Propagation of shock waves in homogeneous media; scaling laws for damage for air, underwater and underground explosions, thermal radiation and incendiary effects; ionizing radiation effects; principles of protection of personnel against damage.

Prerequisite: Physical Chemistry, Thermodynamics.

Ch-611(C) Thermodynamics 3-2

Study of the fundamentals of thermodynamics, the concept of energy and its classification and transformation, concept of entropy, the first and second laws and their application, thermodynamic properties of substances, deal gases, thermochemistry. The laboratory period is devoted to problem working.

Prerequisite: Ch-101.

Ch-612(C) Thermodynamics 3-2

A continuation of Ch-611, covering the application of thermodynamic principles to processes involving non-deal gases, complex systems in chemical equilibrium, and the flow of compressible fluids. The laboratory period is devoted to problem working.

Prerequisite: Ch-611(C).

Ch-613(A) Chemical Engineering Thermodynamics 3-2

Designed for non-chemical majors, the course extends previous studies in mechanical engineering thermodynamics to include the thermodynamics analysis and solution of chemical engineering problems. Emphasizing applications of principles by solution of problems, the subject matter includes specialized treatment of the thermal and thermodynamic properties of materials; thermochemistry; equilibrium and the phase rule; phase relations; chemical equilibria and energy relations, particularly at higher temperatures and pressures.

Texts: Smith: Introduction to Chemical Engineering Thermodynamics; Perry: Chemical Engineers Handbook.

Prerequisite: One term of Physical Chemistry and one term of Thermodynamics.

Ch-631(A) Chemical Engineering Thermodynamics 3-2

An extension of Ch-711(C) to include such thermodynamic analyses as are fundamental and requisite to the solution of many ordnance problems; prepara-
tion for subsequent study of reaction motors and interior ballistics.

In addition to treatment of the First and Second Laws of Thermodynamics, the subject matter includes thermodynamic properties of matter, compression and expansion processes, phase equilibria, criteria of equilibrium, fugacity, chemical reaction equilibria.

Texts: Smith: Introduction to Chemical Thermodynamics; Robinson: Thermodynamics of Firearms; Keenan and Keyes: Thermodynamic Properties of Steam; Keenan and Kaye: Gas Tables.

Prerequisite: Ch-Tll(C), or Ch-701(C).

Ch-701(C) Chemical Engineering Calculations 3-2

Recognition and solution of engineering problems involving mass and energy relationships in chemical and physical-chemical reactions. Problems, chosen from engineering practice whenever possible, are based on combustion, distillation, absorption, evaporation, humidification, and other unit operations and processes.

Texts: Hougen and Watson: Chemical Process Principles, Part I; Lewis and Radasch: Industrial Stoichiometry; Perry: Chemical Engineers Handbook.

Prerequisite: Ch-101(C), or Ch-121(B)

Ch-711(C) Chemical Engineering Calculations 3-2

An introductory course in chemical engineering, with part of the numerical problems selected from ordnance application; material and energy balances in various unit operations and in typical chemical reactions, processes and plants; principles of thermochemistry; composition of equilibrium mixtures.

Texts: Hougen and Watson: Chemical Process Principles, Part I; Robinson: Thermodynamics of Firearms.

Prerequisite: Ch-101(C).

Ch-721(C) Unit Operations 3-0

An introduction to the study of the unit operations of chemical engineering. Materials handling, screening, size reduction and handling of solids; classification methods; transportation of fluids; measurements of flow of fluids.

Texts: Brown and Associates: Unit Operations.

Prerequisite: Ch-701, Ch-411.

Ch-722(C) Unit Operations 3-0

A continuation of Ch-721. Filtration, solid-liquid and liquid-liquid extractions; fractionation, stripping and rectifying columns.

Text: Brown and Associates: Unit Operations.

Ch-800(A) Chemistry Seminar

This course involves library investigations of assigned topics, and reports on articles in the current technical journals.
COURSE DESCRIPTIONS—COMMUNICATIONS

COMMUNICATIONS
Co Courses

Typing and W/T Code Co-101(C)
W/T Code and Procedure Co-102(C)
Visual and Radiotelephone Procedure Co-103(C)
Military Communication Organizations Co-104(C)
W/T and Visual Procedure Co-111(C)
Tape Relay and Toll Traffic Procedure Co-112(C)
International and Commercial
Communications Co-113(C)
Correspondence and Mail Co-114(C)
Cryptosystems Co-115(C)
Security of Classified Matter and Registered
Publication Handling Co-121(C)
Communication Planning Co-122(C)
Communication Planning Co-123(C)
Communication Planning Co-124(C)

Co-101(C) Typing and Radiotelegraph Code 0-4
The first course in the operating communication series. Designed to teach student officers the touch
system of typing in order to facilitate participation
in courses Co-102(C) and Co-115(C) and to provide a
necessary basic skill of communication officers.
When students attain a typing proficiency of 30
WPM they are started on radio telegraph code.

Text: Lessenberry: 20th Century Typing.
Prerequisite: None.

Co-102(C) Radiotelegraph Code and Procedure 0-3
A continuation of Co-101(C), planned to bring
student operating ability in Morse Code up to a
level that will permit them to operate on slow-speed
W/T circuits. Actual operation of slow-speed W/T
circuits provides experience in logkeeping, message-
serving and circuit discipline.

Text: Classified official publications.
Prerequisite: Co-101(C).

Co-103(C) Visual and Radiotelephone 1-3
Procedure
The third course in the operating communication
series, designed to develop student ability by actual
operation in sending and receiving flashing light,
flaghoist, semaphore and radiotelephone message.

Text: Classified official publications.
Prerequisite: Co-102(C).

Co-104(C) Military Communication Organizations 1-1
The final course of the operational communication
series. Covers the organization of naval communi-
cations afloat and ashore. Laboratory periods are
devoted to seminar presentation of papers prepared
by each student on a communication subject, and to
lectures by representatives of other military commu-
nication organizations.

Text: Classified official publications.
Prerequisite: None.

Co-111(C) Radio Telegraph and Visual Procedure 2-2
Principles of effective message drafting, proce-
dures of radiotelegraph, visual and radiotelephone
communication; use of operating signals, call signs,
routing indicators and delivery groups.

Text: Classified official publications.
Prerequisite: None.

Co-112(C) Tape Relay and Toll Traffic Procedures 2-1
Tape relay procedures and instructions for han-
dling and abstracting toll traffic.

Text: Classified official publications.
Prerequisite: None.

Co-113(C) International and Commercial Communications 1-1
Survey of international communication agreements, world-wide frequency allocations, naviga-
tional radio aids and NATO naval communications.
The operations of various commercial companies and
their inter-relationship with U. S. naval com-
Communications is presented through the medium of lectures.

Text: Classified official publications.
Prerequisite: None.

Co-114(C) Correspondence and Mail 1-1
Lectures and written exercises on correspondence and filing, covering the duties of the communication officer in connection with the Postal Service.
Text: Classified official publications.
Prerequisite: None.

Co-115(C) Cryptosystems 0-3
Practical instruction in the selection and manipulation of cryptographic aids and devices.
Text: Classified official publications.
Prerequisite: Co-101(C).

Co-121(C) Security of Classified Matter and Registered Publication Handling 2-1
Directives and instructions governing the security of classified matter including armed forces censorship. Emphasis is placed on the Registered Publication System and the detailed duties and responsibilities of the Registered Publication Custodian.
Text: Classified official publications.
Prerequisite: None.

Co-122(C) Communication Planning 2-1
Study of the basic communication doctrine of the naval establishment.
Text: Classified official publications.
Prerequisite: None.

Co-123(C) Communication Planning 2-2
Application of the basic communication doctrine for naval forces, including the actual preparation of communication plans and their usual appendices for specific types of naval operations.
Text: Classified official publications.
Prerequisite: Co-122(C).

Co-124(C) Communication Planning 1-2
Completes the formal study of communication planning, covering the application of principles previously studied to the development of typical communication plans for amphibious operations. The completion of this course realizes the objective of furnishing the student with background knowledge required to draft a communication plan to support any mission assigned or derived.
Text: Classified official publications.
Prerequisite: Co-133(C), Co-122(C), Co-123(C).

Co-131(C) Tactics 2-2
The first of a series designed to give the student officer a working knowledge of naval tactics and effective tactical publications. This course covers the maneuvering board and its uses, the basic rules for ship and formation maneuvers, the function of CIC, and screening instructions. The intimate relationship between tactics and communications is stressed in all courses of this series.
Text: Classified official publications.
Prerequisite: None.

Co-132(C) Tactics 2-2
The second of the tactical series; application of the principles learned in Co-131(C) to the various naval striking and support forces. The principles of scouting are also studied.
Text: Classified official publications.
Prerequisite: Co-131(C).

Co-133(C) Tactics 2-2
The third in the tactical series, introducing the officer to the tactical problems involved in amphibious operations and procedures developed to solve them. It provides a foundation for Co-123(C).
Text: Classified official publications.
Prerequisite: Co-131(C), Co-132(C).

Co-134(C) Tactics 2-2
The final course in the tactical series, covering submarine warfare, anti-submarine warfare, and escort of convoy.
Text: Classified official publications.
Prerequisite: Co-131(C), Co-132(C).

Co-135(C) Correspondence Course in Strategy and Tactics
The officer student is required to complete at least four assignments of the U. S. Naval War College Correspondence Course in Strategy and Tactics prior to the completion of his instruction at the Postgraduate School. This provides experience in using the Armed Forces Estimate Form and the Armed Forces Operation Plan Form.
Co-150(C) Communication Procedures 80 classroom hours

Instructions for the various means of communications, including the principles of effective message drafting and the use of operating signals, call signs and procedure signs. The study of toll traffic and visual signalling is included.

Text: Classified official publications.
Prerequisite: None.

Co-151(C) Security 32 classroom hours

The need for adequate security measures, the rules governing physical security, communication security, and the duties of the Registered Publication Custodian.

Text: Classified official publications.
Prerequisite: None.

Co-152(C) Cryptography 34 classroom hours

The overall cryptoplan of the U. S. Navy and instruction in the use of cryptoaids. Use of authentication and recognition signals is also included.

Text: Classified official publications.
Prerequisite: None.

Co-153(C) Communication Plans 62 classroom hours

The basic U. S. naval communication doctrine and frequency plans. The principles of typical communication plans are studied with emphasis on those for carrier task force and amphibious operations. The NATO communications are also included. Practical works are used extensively to explain and emphasize material covered.

Text: Classified official publications.
Prerequisite: None.

Co-154(C) Miscellaneous Communication Subjects 20 classroom hours

Administrative subjects of fleet and shipboard organizations, Navy correspondence and filing practices, and the U. S. Postal Service. Familiarization with communication equipments and elementary electronics is also included.

Text: Classified official publications.
Prerequisite: None.

Co-155(C) Typing, Radiotelegraph Code and Radiotelephone Operating 32 classroom hours

The touch typing system; basic instruction in radiotelegraph code; practical operating experience in radiotelegraph and radiotelephone. The time devoted to radiotelegraph is varied as necessary to obtain the maximum of this training commensurate with the individual student's initial proficiency in typing and his progress during the first part of the course.

Text: Classified official publications.
Prerequisite: None.

Co-160(C) Tactics 76 classroom hours

By study of the principal tactical publications of the U. S. Navy, motion pictures thereon, and practical works, the officer student acquires sufficient knowledge and background to effectively use the Navy's basic tactical publications and to fully appreciate the relationship between communications and tactical operations.

Text: Classified official publications.
Prerequisite: None.
Cr-271(B) Crystallography and X-Ray Techniques 3-2

The essential concepts of crystallography, including: symmetry, point groups, plane lattices, space lattices, space groups, coordinate systems, indices, crystal classes, crystal systems, common forms and combinations in the various systems, the stereographic projection, modern x-ray diffraction and radiographic apparatus and techniques, the theory of x-ray diffraction, powder methods, single crystal and moving film methods, high temperature diffraction techniques, back reflection and transmitted beam methods. The laboratory work includes a study of crystal models for symmetry, forms, and combinations; the construction of stereographic projections; and actual practice in making and interpreting of x-ray diffraction photographs.

Text: Dana, Ford: Textbook of Mineralogy; Barrett: Structure of Metals.

Prerequisite: Ch-101(C).

Cr-301(B) Crystallography and Mineralogy 3-4

Designed primarily for the student who will continue with courses in mineralogy, geology, and petrology. The student is introduced to the fundamental concepts of crystallography, including: symmetry, point groups, plane lattices, space lattices, space groups, coordinate systems, indices, crystal classes, crystal systems, common form and combinations in the various systems and classes, the stereographic projection, and the theory of x-ray diffraction and the application of x-ray powder methods as applied to identification of minerals. The laboratory work includes a study of crystal models for symmetry forms, and combinations; the practical application and construction of stereographic projections; determination of minerals by x-ray powder diffraction patterns.

Text: Dana, Ford: Textbook of Mineralogy.

Prerequisite: Ch-101(C).

Cr-311(B) Crystallography and Mineralogy 3-2

Subject matter similar to Cr-301, but designed for students who will continue with courses in chemistry.

Text: Dana, Ford: Textbook of Mineralogy.

Prerequisite: Ch-101(C).
COURSE DESCRIPITONS—ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING

EE Courses

Fundamentals of Electrical Engineering EE-111(C) 3-2

Basic concepts of direct-current circuits and static electric and magnetic fields are considered. Electrical units, resistivity, electromotive forces, basic measurements and metering equipment, Kirchhoff's laws, magnetism, typical magnetic circuits and simple electrostatic fields are studied.

Prerequisites: Differential and Integral Calculus; Elementary Physics.

Direct-Current Circuits and Fields EE-151(C) 3-4

Designed to provide a good background in electricity and magnetism, this course covers systems of units, Kirchhoff's laws, direct-current measurements, magnetism and magnetic circuits, electrostatics, capacitance and inductance. The emphasis is on fundamental concepts with considerable time spent in working problems.

Text: Corcoran: Basic Electrical Engineering.
Prerequisites: Differential and Integral Calculus; Elementary Physics.

Electric Circuits and Fields EE-171(C) 3-4

As a foundation in electricity and magnetism for a curriculum majoring in electrical science, the basic laws are studied in detail. Units, Kirchhoff's laws, electrostatic fields, magnetic fields, ferromagnetism, direct-current networks, direct-current measurements, calculation of resistance, capacitance and inductance are covered. Basic laboratory experiments deal with measurements, the proper use of metering equipment and magnetic circuits. Supervised problem work is included.

Text: Corcoran: Basic Electrical Engineering.
Prerequisites: Differential and Integral Calculus; Elementary Physics.

DC Machines and AC Circuits EE-231(C) 3-2

General principles of DC machines, their control and application. The qualitative characteristics of the various machines are developed from basic principles, then a study of the theory of alternating currents is begun. Experiments are performed to demonstrate the general machine characteristics and the use of control devices.

Text: Dawes: Electrical Engineering, Vols. I and II.
Prerequisite: EE-111(C).

Alternating Current Circuits EE-241(C) 3-2

For those curricula that do not require an extensive coverage. Consists of an elementary treatment.
of single-phase series and parallel circuits, resonance, vector representation and vector algebra, the most commonly used network theorems, non-sinusoidal wave analysis, coupled circuits, and balanced polyphase circuits. Laboratory and problem work illustrate the basic theory.

Text: Kerchner and Corcoran: Alternating Current Circuits.
Prerequisite: EE-151(C).

EE-251(C) Alternating Current Circuits 3-4
This course presents the essentials of alternating current circuits. Single-phase circuits, resonance, vector representation and complex numbers, basic metering, coupled circuits, and balanced polyphase circuits are treated. The elements of non-sinusoidal wave analysis are included. Laboratory experiments cover series and parallel resonance, single-phase and polyphase metering and elementary bridge measurements. Time is allotted for supervised problem work.

Text: Kerchner and Corcoran: Alternating Current Circuits.
Prerequisite: EE-151(C).

EE-271(C) Alternating Current Circuits 3-2
The basic theory of the alternating current circuit for those curricula that require an extensive coverage. Single-phase series and parallel circuits, resonance, vector algebra and vector representation of electrical magnitudes, network theorems, non-sinusoidal wave analysis, balanced polyphase circuits and power measurements in polyphase circuits. Problems and laboratory work illustrate the basic theory.

Text: Kerchner and Corcoran; Alternating Current Circuits.
Prerequisite: EE-171(C).

EE-272(B) Alternating Current Circuits 2-2
A continuation of EE-271. Unbalanced polyphase circuits, instruments and measurements, coupled circuits, bridge theory and symmetrical components. Problems and laboratory work illustrate the basic principles.

Text: Kerchner and Corcoran; Alternating Current Circuits.
Prerequisite: EE-271(C).

EE-273(C) Electrical Measurements I 2-3
An introduction to the measurement of the fundamental quantities; current, voltage, capacitance, inductance, and the magnetic properties of materials. Direct current bridges, the measurement of high resistance, characteristics of direct-current galvanometers, potentiometer principles, commercial potentiometer types, direct current indicating instruments.

Text: Stout: Basic Electrical Measurements.
Prerequisite: EE-272(C).

EE-274(B) Electrical Measurements II 2-3

Text: Stout: Basic Electrical Measurements.
Prerequisite: EE-273(C).

EE-314(C) AC and DC Machinery 3-4
The fundamentals of representative direct-current and alternating-current machines are studied in classroom and supplemented with laboratory experiments. The theory, practical construction, types of windings and the performance of direct-current generators and motors, alternators, transformers, synchronous motors, induction motors, and single-phase motors are briefly covered.

Text: Dawes: Electrical Engineering, Vols. I and II.
Prerequisites: Es-111(C), Es-112(C).

EE-351(C) DC Machinery 2-2
Fundamentals of direct current machinery with emphasis upon operating characteristics and applications. The external characteristics are developed from basic relations. Problems and laboratory work supplement that of the classroom.

Prerequisite: EE-151(C) or EE-171(C).

EE-371(C) DC Machinery 3-2
A thorough presentation of the theory and performance of direct current machines and control devices. Armature windings, armature reaction and commutation are fully covered. The operating characteristics of generators and motors are developed from basic relations so as to provide a foundation for subsequent work in design. Problems are assigned to illustrate the application of the theory. Laboratory work supplements the work of the classroom.

Text: Langsdorf: Principles of DC Machines.
Prerequisite: EE-171(C).
EE-451(C) Transformers and Synchrons 2-2

The theory, construction and performance of single-phase transformers and polyphase transformer connections are covered in the first part of the course. Approximately the latter half of the term is given to the study of synchrons, their theory, construction and performance under normal and abnormal conditions. Laboratory experiments parallel the classroom study.

Text: Hehre and Harness: Electrical Circuits and Machinery, Vol. II.

Prerequisite: EE-251(C).

EE-452(C) Polyphase Transformers, Synchronous Machines and Induction Motors 3-4

A continuation of EE-451(C). It completes a general presentation of AC machinery for those curricula that do not require an extensive treatment. Alternators, synchronous motors, polyphase and single-phase induction motors are presented. A brief survey of induction generators, induction regulators and the commutator type AC motor is included. Laboratory and problem work illustrate the basic theory.

Text: Hehre and Harness: Electrical Circuits and Machinery, Vol. II.

Prerequisite: EE-451(C).

EE-455(C) Asynchronous Motors 2-2

An elementary presentation of the principles and operating characteristics of the induction motor and of single-phase commutator motors. Emphasis is placed upon the unbalanced operation of the two-phase symmetrical induction motor. Laboratory and problem work supplement the theory.

Text: Hehre and Harness: Electrical Circuits and Machinery, Vol. II.

Prerequisite: EE-451(C).

EE-461(C) Transformers and Synchrons 3-2

For those curricula which do not require an extensive coverage of these topics. Single-phase transformer principles, constructional features and operating characteristics. Special transformers, synchro and induction motor windings. Single-phase and polyphase synchro constructional features. Mathematical analysis of the torque, current and voltage characteristics of synchros operating under normal and fault conditions. Synchros in control circuits. Laboratory and problem work illustrate the basic principles.

Text: Hehre and Harness: Electrical Circuits and Machinery, Vol. II.

Prerequisite: EE-241(C) or EE-251(C).

EE-462(B) Asynchronous Motors and Special Machines 4-2

Basic principles and operating characteristics of single-phase and polyphase induction motors and single-phase commutator motors. Operation of two-phase induction motors with unbalanced voltages and variable phase angles. Theory and operating characteristics of amplidyne and rototrol generators. Operation of direct current motors on variable voltage. Calculation of the transfer function for motors and generators. Laboratory and problem work illustrate the basic principles.

Text: Hehre and Harness: Electrical Circuits and Machinery, Vol. II.

Prerequisite: EE-461(C).

EE-471(C) Transformers and Asynchronous Machines 3-4

For those curricula giving advanced work in electrical engineering. Basic theory and operating characteristics of single-phase and polyphase transformers, special transformers, polyphase and single-phase induction motors, induction generators and commutator type alternating current motors. Motor and generator armature windings, voltage and mmf waves. Laboratory and problem work illustrate the basic theory.

Text: Bryant and Johnson: Alternating Current Machinery.

Prerequisite: EE-272(B).

EE-472(C) Synchronous Machines and Synchros 3-4

Text: Bryant and Johnson: Alternating Current Machinery.

Prerequisite: EE-471(C).

EE-473(B) Synchros 2-2

Basic theory and mathematical analysis of single-phase and polyphase operating characteristics. Voltage, current and torque relations under normal and fault conditions. Equivalent circuits and vector diagrams, control circuits using synchros. Labora-
tory and problem work supplement the study of basic principles.

Text: None.

Prerequisite: EE-271(C) or EE-251(C).

EE-551(B) Transmission Lines and Filters 3-2

An intermediate level course for those curricula which do not require the more thorough treatment given in EE-571(B). Transmission line parameters, general transmission line equations for distributed parameters, infinite line, open and short circuited lines, loading, reflection and equivalent circuits. Impedance transformation and impedance matching with stubs and networks. Constant K, M-derived and composite filters. Problems and laboratory work illustrate the basic theory.

Text: Ware and Reed: Communication Circuits.

Prerequisite: EE-251(C).

EE-571(B) Transmission Lines and Filters 3-4

A more thorough coverage of transmission line and filter theory and more emphasis on transmission at power frequencies than given in EE-551(B). Transmission line parameters, general transmission line equations, transmission line vector diagrams and charts. Losses, efficiency and regulation. Loading, open-circuited lines, short-circuited lines and reflection. Equivalent circuits. Impedance transformation, impedance matching with networks and stubs. Transient voltages and currents on lines. Constant K, M-derived and composite filters for low pass, high pass, band pass and band elimination. Problems and laboratory work illustrate the basic principles.

Texts: Woodruff: Electric Power Transmission and Distribution; Ware and Reed: Communication Circuits.

Prerequisite: EE-271(C).

EE-611(B) Servomechanisms 3-4

This course presents the essential basic principles of servomechanisms. The topics covered are the amplidyne, the elements of electrical transients, the synchro, and an introduction to servomechanism devices. Problems and laboratory work supplement the classroom theory.

Text: Kurtz and Corcoran: Introduction to Electric Transients.

Prerequisite: EE-314(C).

EE-651(B) Transients and Servomechanisms 3-4

Basic principles of electric transients and servomechanisms. DC and AC transients in series, parallel, series-parallel and coupled circuits. The solution of the differential equations by classical and Laplace operational methods. Servomechanisms with viscous damping and differential and integral control. Problems and laboratory experiments illustrate the theory.

Prerequisite: EE-451(C).

EE-655(B) Filters and Transients 3-2

Basic principles of filters and electrical transients. T and Pi section filters and composite filters. DC and AC transients in series, parallel, series-parallel and coupled circuits. The solution of the differential equations by classical methods and Laplace operational methods.

Prerequisite: EE-251(C).

EE-665(B) Lines, Filters and Transients 4-2

The basic principles of each subject are presented. The topics covered are: Transmission line parameters, infinite lines, open and shorted lines, reflection, matching, stubs, T and Pi sections, constant K and M-derived sections and composite filters; DC and AC transients in series, parallel, series-parallel and coupled circuits for particular boundary conditions using the Laplace transform methods. An introduction to transfer functions and elementary machine transients is included.

Texts: Gardner and Barnes: Transients in Linear Systems; Kurtz and Corcoran: Introduction to Electric Transients; Ware and Reed: Communication Circuits.

Prerequisites: EE-241(C) and Ma-114(A) or equivalent.

EE-671(A) Transients 3-4

The basic theory and practical applications of transient phenomena are treated in detail. Emphasis is on electric circuits and electromechanical system transients. Topics covered are: DC and AC transients in series, parallel, series-parallel, coupled and multiloop circuits; transients in motors, generators, and elementary servo systems; transfer functions, elementary non-linear transients; the analogue computer and its use. The Laplace transform method is used.
COURSE DESCRIPTIONS—ELECTRICAL ENGINEERING

Texts: Gardner and Barnes: Transients in Linear Systems; Kurtz and Corcoran: Introduction to Electric Transients.

Prerequisite: EE-251(C) or EE-272(C).

EE-672(A) Servomechanisms 3-3

The mathematical theory of linear feedback-control systems is discussed in detail. Topics are: Basic system equations, time domain and frequency domain relationships, methods for improving performance, damping, differentiation and integration and their relationship to phase concepts, polar and logarithmic plots, design calculations, introduction to the root locus method. Problems and laboratory work illustrate the theory.

Text: Thaler and Brown: Servomechanisms Analysis.

Prerequisites: EE-671(A), EE-452(C) or EE-473(B).

EE-711(C) Electronics 3-2

The elementary theory of the control of electron motion by electric and magnetic fields in vacuum, gaseous conduction phenomena and electron tube characteristics are presented as a basis for the study of electronic circuits. The principles of the amplifier, rectifier and oscillator circuits are presented in their essentials. Some consideration is given to the special tubes encountered in electronic devices. Laboratory work serves to integrate the principles presented in the classroom with practical applications and circuits.

Prerequisite: EE-251(C).

EE-731(C) Power Electronics 3-2

The theory and application of various types of electron tubes is covered with particular emphasis on the thyatron. The principles of electronics circuitry as applied to the control of power in motors, generators and selsyn instruments constitute the general theme of the course. Application in naval devices is stressed. The laboratory work consists of experiments to demonstrate the theory.

Prerequisite: EE-231(C).

EE-755(A) Electronic Control and Measurement 3-4

This course presents the principles and practice of electronic control and measurement as found in research laboratories and in industry. It includes the theory of such basic circuits as vacuum tube voltmeters, direct coupled amplifiers, oscillators, timing circuits and frequency sensitive circuits with particular attention to their application in the measurement and control of current, voltage, frequency, speed, pressure, temperature and illumination. Some time is devoted to the study of data transmission methods by modulation and detection in carrier systems. Applications are studied in the laboratory.

Prerequisite: EE-751(C).

EE-753(C) Electronics 1-2

A continuation of EE-751, with emphasis on applications and electronic controls. The use of vacuum and gas-filled tubes in the control of motors, generators, and mechanical devices is treated in detail. Laboratory work supplements the theory.

Text: None.

Prerequisites: EE-451(C), EE-751(C).

EE-771(B) Electronics 3-2

The theory of electron tubes and circuits for those curricula requiring a more advanced treatment. The theory of electron motion in electric and magnetic fields, vacuum and gas tube characteristics and the principles of such tubes as the ignitron, glow tube,
cathode-ray tube and phototube. Circuit theory of rectifiers, detectors, amplifiers and oscillators is covered, with particular attention to industrial and naval power and control applications. Laboratory experiments and problems supplement the basic theory.

Prerequisite: EE-272(C).

EE-772(B) Electronics 3-2
A continuation of EE-771(B). The more complicated electronic circuits encountered in practice with particular attention to the integration of various components in accordance with the basic theory of feedback and stabilization.

Prerequisite: EE-771(B).

EE-871(A) Electrical Machine Design 4-0
A quantitative analysis of machine characteristics using the design approach. Serves to develop an appreciation for the limitations and possibilities in electrical machine construction especially for naval applications, and the ability to evaluate properly the merits of present designs. In particular, this course consists of the quantitative study and design of a transformer to meet certain specifications. Later, the analysis of the DC machine is begun.

Prerequisite: EE-472(C).

EE-872(A) Electrical Machine Design 4-0
A continuation of EE-871(A). The completion of the quantitative analysis and design of a DC machine and the beginning of a similar analysis of the synchronous machine.

Prerequisite: EE-871(A).

EE-873(A) Electrical Machine Design 4-0
A continuation of EE-872(A). The completion of the quantitative analysis and design of a synchronous machine and a similar analysis and design of the induction machine.

Prerequisite: EE-872(A).

EE-874(A) Electrical Machine Design 4-0
A continuation of EE-873(A). The design of the induction machine is analyzed quantitatively and its operating characteristics, both as a motor and as an induction generator, are determined.

Prerequisite: EE-873(A).

EE-971(A) Seminar 1-0
In the seminar sessions, papers on research and developments in the field of electrical science are presented to the more advanced group of students. Some appreciation for research methods is developed. In these sessions papers treating of student research in progress and matters of major importance in electrical engineering are delivered by the faculty and by the students pursuing an advanced engineering curriculum.

Text: None.
Prerequisite: A background of advanced work in electrical engineering.

EE-972(A) Thesis 0-0
This work provides an opportunity for research and study necessary for the preparation of the thesis as required for the master's degree in electrical engineering. Individual laboratory and library work is performed under the general supervision of the members of the Electrical Engineering Staff.

Text: None.
Prerequisite: The first two years of the advanced electrical engineering curriculum.
ENGINEERING ELECTRONICS

Es Courses

Electronics Administration ____________ Es-036(C)
DC and AC Electric Circuits ____________ Es-111(C)
AC Electricity __________________________ Es-112(C)
Circuit Analysis and Measurements ______ Es-113(C)
Circuit Analysis and Measurements ______ Es-114(C)
Advanced Circuit Theory ________________ Es-121(A)
Advanced Circuit Theory ________________ Es-122(A)
Advanced Circuit Theory ________________ Es-123(A)
Radio-Frequency Measurements __________ Es-126(C)
Advanced Circuit Theory ________________ Es-134(A)
DC Electricity and Static Fields __________ Es-141(C)
AC Electricity __________________________ Es-142(A)
Communications Fundamentals __________ Es-186(C)
Electron Tubes and Circuits ____________ Es-212(C)
Electron Tubes and Circuits ____________ Es-213(C)
Electron Tubes and Circuits ____________ Es-214(C)
Electron Tubes __________________________ Es-225(A)
Ultra-High Frequency Techniques ________ Es-226(A)
Ultra-High Frequency Techniques ________ Es-227(C)
Electron Tubes and Circuits ____________ Es-261(C)
Electron Tubes and Circuits ____________ Es-262(C)
Electronics I ____________________________ Es-271(C)
Electronics II __________________________ Es-272(C)
Electronic Fundamentals ________________ Es-281(C)
Vacuum Tube Circuits _________________ Es-282(C)
Vacuum Tube Circuits _________________ Es-283(C)
Pulsing and High-Frequency Circuits ______ Es-286(C)
Radio Systems _________________________ Es-321(B)
Radio Systems _________________________ Es-322(B)
Radio Systems _________________________ Es-326(B)
Radio Systems _________________________ Es-327(B)
Radio Systems _________________________ Es-328(B)
Radio Systems _________________________ Es-333(B)
Transmitters and Receivers ____________ Es-386(C)
Pulse Techniques ________________________ Es-421(B)
Radar System Engineering ______________ Es-422(B)
Radar System Engineering ______________ Es-423(B)
Radar System Engineering ______________ Es-451(B)
Radar System Engineering ______________ Es-432(B)
Introduction to Radar _________________ Es-446(C)
Electronics Pulse Techniques __________ Es-447(C)
Introduction to Radar (Airborne) ________ Es-456(C)
Radar Propagation and Displays ________ Es-466(C)
Special Systems ________________________ Es-521(B)
Special Systems ________________________ Es-522(B)
Special Systems ________________________ Es-531(B)
Special Systems ________________________ Es-532(B)
Counter Measures ______________________ Es-536(B)
Special Systems ________________________ Es-586(C)
Electric and Magnetic Fields __________ Es-616(C)
Electromagnetics ______________________ Es-621(A)
Electromagnetics ______________________ Es-622(A)
Electromagnetics ______________________ Es-623(A)
Electromagnetics ______________________ Es-624(A)
Antennas and Wave Propagation _________ Es-721(B)
Antennas and Wave Propagation _________ Es-722(B)
Antennas, Transmission Lines __________ Es-736(B)
R-F Energy Transmission _______________ Es-786(C)
Project Seminar _______________________ Es-836(A)
Introduction to Electronics ____________ Es-991(C)
Introduction to Electronics ____________ Es-992(C)

Es-036(C) Electronics Administration 2-0

A problem and lecture series designed to acquaint the student with the administration and organization of electronics activities and applications, ashore and afloat. The principal topics are: Army, Navy and Air Force organization; shipyard electronics organization; and electronics supply matters.

Text: None.
Prerequisite: None.

Es-111(C) DC and AC Electric Circuits 4-5

An introduction to DC and AC circuits. The principal topics are: circuit fundamentals, batteries, non-linear elements, elementary AC concepts, complex quantities, series and parallel circuits, real and apparent power, network theorems, coupled circuits. The laboratory work familiarizes the student with electronic components and basic measuring equipment.

Prerequisite: Mathematics through calculus.

Es-112(C) AC Electricity 2-0

A continuation of Es-111(C). The principal topics are: a brief introduction to polyphase circuits, nonsinusoidal voltages and currents, DC and AC transients in RLC circuits, voltage and current relations, and impedance on transmission lines.

Prerequisite: Es-111(C).

Es-113(C) Circuit Analysis and Measurements 3-3

This course covers ordinary measurements techniques and continues into AC circuit theory. The principal topics are: coupled circuits, network...
theorems, the infinite line, radio frequency bridges, measurements at high frequencies, measurements involving complex wave forms.

Prerequisite: Es-112(C).

Es-114(C) Circuit Analysis and Measurements 3-3

A continuation of Es-113(C). The principal topics are: reflections in lines, solution of the general line, stubs, derivation and use of circle diagrams, constant-K and M-derived filters, impedance measurements with slotted lines.

Text: Everitt: Communication Engineering.

Prerequisite: Es-113(C).

Es-121(A) Advanced Circuit Theory 3-2

An introduction to transient phenomena in electrical networks and their solutions on the loop and nodal basis; modes. Solutions are by classical methods, Fourier Integral, Laplace transforms.

Prerequisite: Es-114(C).

Es-122(A) Advanced Circuit Theory 3-2

A continuation of Es-121(A). The Laplace transform is employed for solution of transients in typical circuits used in radio and radar.

Text: Gardner and Barnes: Transients in Linear Systems.

Prerequisite: Es-121(A).

Es-123(A) Advanced Circuit Theory 3-0

A continuation of Es-122(A). The transmission line as a communication facility leading to filter theory is treated. The principal topics are: four terminal networks; Foster's reactance theorem with Cauer's extension; Lagrange's equations; driving point impedances; principle of duality; lumped loaded lines; lattice structures.

Text: Guillemin: Communication Networks, Vol. II.

Prerequisite: Es-122(A).

Es-126(C) Radio-Frequency Measurements 2-6

Impedance and frequency bridges and the techniques of the measurement of voltage, current, power, and impedance in the various frequency ranges. The topics include a detailed study of radio-frequency resonant methods, precision slotted lines, microwave measurements, standards of E, R, L, C and F.

Prerequisites: Es-114(C), Es-225(A).

Es-134(A) Advanced Circuit Theory 3-0

A continuation of Es-123(A). The theory and basic design of ladder and lattice structure filters are studied together with their transient behavior.

Prerequisite: Es-123(A).

Es-141(C) DC Electricity and Static Fields 4-4

Develops circuit analysis techniques applicable to direct current circuits and presents fundamental electric and magnetic concepts. Principal topics covered are: Ohm's Law; Kirchhoff's Laws; network theorems; mesh and nodal analysis; electric fields; capacitance; magnetic fields; inductance; mutual inductance. The laboratory work familiarizes the student with electrical components and common configurations thereof, and with basic measuring instruments.

Prerequisite: Mathematics through the calculus.

Es-142(C) AC Electricity 4-3

A continuation of Es-141(C). Circuit analysis techniques are extended to include alternating currents and reactive circuits. Principal topics covered are: Definition of alternating voltage and current; non-sinusoidal waves, elementary reactive circuits, resonance, network theorems, analysis of multi-mesh networks, mutual inductance, inductively coupled circuits, equivalent tee and pi sections, impedance transformation, polyphase circuits (brief).

The factual content of Es-141(C) and Es-142(C) is presented rapidly and largely constitutes a review for most students. Emphasis is placed particularly on developing effective analysis techniques.

Prerequisite: Es-141(C).

Es-186(C) Communications Fundamentals 4-4

The fundamental principles of radio communications and basic circuits. The principal topics are: fundamentals of energy transmission by means of
radio waves, basic alternating-current theory, frequency selectivity circuits, coupled circuits.

Prerequisite: None.

Es-212(C) Electron Tubes and Circuits 4-6

The principal topics are: physical principles of vacuum and gas tubes, i.e., emission, space charge; tube characteristics and coefficients; R-C and transformer coupled voltage amplifiers; audio power amplifiers; rectifiers and filters.

Prerequisites: Es-111(C), Es-616(C).

Es-213(C) Electron Tubes and Circuits 4-3

A continuation of Es-212(C). Course topics include: voltage regulator; applications of the tube as a switch, i.e., saw-tooth and square-wave generators, clipping clamping, differentiating, and integrating; inverse feedback; video amplifier; tuned amplifiers, i.e., narrow-band voltage and power amplifiers, wide-band voltage amplifier.

Prerequisite: Es-212(C).

Es-214(C) Electron Tubes and Circuits 4-3

A continuation of Es-213(C). The principal topics are: Sine-wave oscillators; methods of modulation; methods of detection; acv; discriminators; receiver principles.

Prerequisite: Es-213(C)

Es-225(A) Electron Tubes 3-6

A continuation of Es-214(C). The principal topics are: noise, electron ballistics, electron optics, cathode-ray tubes, photo-multiplier tubes, television tubes, polyphase and controlled rectifiers, transistors. Laboratory work includes individual student projects.

Text: Spangenberg: Vacuum Tubes.

Prerequisite: Es-214(C).

Es-226(A) Ultra-High Frequency Techniques 4-3

The principal topics are: ultra-high frequency effects in conventional tubes, cavity resonators, klystron and magnetron tubes and circuits, traveling-wave tubes, pulsing circuits, and related laboratory work.

Prerequisites. Es-225(A), Es-623(A).

Es-227(C) Ultra-High Frequency Techniques 3-2

The principles and underlying problems of high-frequency techniques. The principal topics are: limitations of conventional tubes at ultra-high frequencies, transit-time effects, noise problems, electron ballistics, wave guides, cavity resonators, klystrons, magnetrons and travelling-wave tubes. The course emphasizes a descriptive presentation rather than a mathematical one.

Texts: Spangenberg: Vacuum Tubes; Massachusetts Institute of Technology Radar School Staff: Principles of Radar, Third Ed.

Prerequisite: Es-214(C).

Es-261(C) Electron Tubes and Circuits 3-2

The first term of a two-term course in the fundamentals and general applications of electron tubes and circuits, primarily for non-communication students. The principal topics are: emission, characteristics of vacuum and gas tubes, rectifiers and filters, grid-controlled rectifiers, class A amplifiers.

Text: Massachusetts Institute of Technology Staff: Applied Electronics.

Prerequisites: Es-111(C), Es-112(C).

Es-262(C) Electron Tubes and Circuits 3-2

A continuation of Es-261(C). The principal topics are: feedback amplifiers, class B and C amplifiers, oscillators, modulation, detection.

Text: Massachusetts Institute of Technology Staff: Applied Electronics.

Prerequisite: Es-261(C).

Es-271(C) Electronics I 3-3

An introduction to DC and AC circuit theory. The principal topics are: series and parallel circuit analysis; an introduction to thermionic vacuum tubes.

Text: Cruft Electronics Staff: Electronic Circuits and Tubes.

Prerequisite: None.

Es-272(C) Electronics II 3-2

The study of thermionic vacuum tube circuits, simple rectifiers, voltage and power amplifiers,
counting circuits, timing circuits, simple R, L and C transients.

Text: Cruft Electronics Staff: Electronic Circuits and Tubes.

Prerequisite: Es-271(C) or equivalent.

Es-281(C) Electronic Fundamentals 2-2

The basic principles of electronics. The principal topics are: a review of basic mathematical concepts; the underlying physical principles of electron-tube operation.

Texts: Robeson: Physics; Eastman: Fundamentals of Vacuum Tubes; Cook: Mathematics for Electricians and Radiomen; Sheingold: Fundamentals of Radio Communications.

Prerequisite: None.

Es-282(C) Vacuum Tube Circuits 4-4

A continuation of Es-281(C). The course covers the operational characteristics of electron tubes and some of their applications. The principal topics are: general operational features of diodes, triodes, multigrid tubes and gas tubes; amplification of small alternating voltages; power amplifiers.

Text: Sheingold: Fundamentals of Radio Communications.

Prerequisite: Es-281(C).

Es-283(C) Vacuum Tube Circuits 4-3

A continuation of Es-282(C). The course covers further applications of electron tubes, in continuation of the material presented in Es-282(C). The principal topics are: sine-wave oscillators, amplitude modulation and the A-M transmitter, demodulation and the TRF receiver, frequency conversion and the superheterodyne A-M receiver, power supplies, frequency modulation.

Text: Sheingold: Fundamentals of Radio Communications.

Prerequisite: Es-282(C).

Es-286(C) Pulsing and High Frequency 3-2

The principles and underlying problems of pulsing and high-frequency circuit operation. The principal topics are: Characteristics of non-sinusoidal waves; pulse-shaping techniques; the sawtooth generator, multivibrator, and blocking oscillator; problems and techniques of high-frequency circuit operation; the magnetron and velocity-modulated tubes; guided waves.

Prerequisite: Es-282(C).

Es-321(B) Radio Systems 3-3

The first of a sequence of five courses on the engineering applications of theoretical electronics to the specific problems of radio communications and electronic systems aimed to give the student experience in design and to integrate his previous theoretical training as applied in radio systems engineering. Included is a general survey of the basic problems of a communications system with emphasis on the design of transmitters for medium and high frequencies.

Texts: Terman: Radio Engineer's Handbook; War Department Technical Manual, TM11-486 (Electrical Communication System Engineering); Navy equipment instruction books.

Prerequisites: Es-225(A), Ma-104(A).

Es-322(B) Radio Systems 3-3

A continuation of the series begun in Es-321(B). Emphasis is placed upon the design of receivers for the reception of amplitude-modulated signals in the medium and high frequency bands. The design problem is extended to include the VHF region and the changes introduced by the use of frequency and phase modulation.

Text: Sturley: Radio Receiver Design; Terman: Radio Engineer's Handbook; Massachusetts Institute of Technology Radiation Laboratory Series: Microwave Receivers; other selected references.

Prerequisite: Es-321(B).

Es-326(B) Radio Systems 3-3

The first of a sequence of five courses on the engineering applications of theoretical electronics to the specific problems of radio communications and electronics systems, aimed to give the student an appreciation of the problems encountered in such systems design and to integrate his previous theoretical training as applied in radio systems engineering. Included is a general survey of the basic problems of a communications system with emphasis on typical designs employed in transmitters for medium and high frequencies.

Texts: Terman: Radio Engineer's Handbook; War Department Technical Manual, TM11-486 (Electrical Communication System Engineering); Navy equipment instruction books.

Prerequisites: Es-114(C), Es-214(C).
Es-327(B) Radio Systems 4-3
A continuation of the series begun in Es-326(B). Emphasis is placed upon typical circuit designs of receivers for the reception of amplitude-modulated signals in the medium and high frequency band. Circuit modifications to include the VHF region and the changes introduced by the use of frequency and phase modulation are also covered.

Texts: Sturley: Radio Receiver Design; Terman: Radio Engineer's Handbook; Massachusetts Institute of Technology Radiation Laboratory Series: Microwave Receivers; other selected references.

Prerequisite: Es-326(B).

Es-328(B) Radio Systems 2-3
Continues the systems series. The principal topics are: the application of teletype and frequency-shift keying to radio transmission; tone multiplex, applications of multiplexing to remote control, single side-band transmission theory and basic single side-band multiplex transmitter and receiver design.

Texts: Naval instruction books; instructor's notes.

Prerequisite: Es-327(B).

Es-333(B) Radio Systems 2-3
Continues the systems series. The principal topics are: the application of teletype and frequency-shift keying to radio transmission, tone multiplex, applications of multiplexing to remote control, single side-band multiplex transmitter and receiver design.

Texts: Naval instruction books; instructor's notes.

Prerequisite: Es-322(B).

Es-386(C) Transmitter and Receivers 3-3
The operational characteristics of typical Navy-type transmitters and receivers. Included topics are frequency standards and meters, Navy transmitters, Navy receivers.

Texts: Lecture notes; equipment instruction books.

Prerequisites: Es-283(C), Es-786(C).

Es-412(B) Radar System Engineering 3-3
A study of the fundamental principles of radar. The principal topics are: the theory of operation of radar timing circuits, indicators, modulators, transmitters, r-f systems and receivers, the radar range equation.

Texts: Ridenour: Radar System Engineering; Massachusetts Institute of Technology Radar School Staff: Principles of Radar, Second Ed.

Prerequisite: Es-421(B).

Es-423(B) Radar System Engineering 3-6
A continuation of Es-422(B). The course contents include a study of representative search, fire-control and IFF systems, including airborne, with particular attention to design features; a study of current radar developments; related laboratory work on current Navy radar equipment.

Text: Ridenour: Radar System Engineering.

Prerequisite: Es-422(B).

Es-431(B) Radar System Engineering 3-3
A study of the fundamental principles of radar. The principal topics are: the theory of operation and design features of radar timing circuits, indicators, modulators, transmitters, r-f systems and receivers.

Texts: Ridenour: Radar System Engineering; Massachusetts Institute of Technology Radar School Staff: Principles of Radar, Second Ed.

Prerequisite: Es-226(A).

Es-432(B) Radar System Engineering 3-6
A continuation of Es-431(B). The course contents include a study of representative search, fire-control and IFF systems, including airborne, with particular attention to design features; a study of current radar developments; related laboratory work on current Navy radar equipment.

Text: Ridenour: Radar System Engineering.

Prerequisite: Es-431(B).

Es-446(C) Introduction to Radar 2-2
A study of the radar range equation, i.e., effect of pulse duration, pulse repetition frequency, types of targets, etc.; block diagram studies of current fire-control systems, with emphasis on operational limitations, propagation phenomena, types of presentation, and anti-jam techniques; and laboratory work that emphasizes operational techniques of current fire-control systems.

Text: Massachusetts Institute of Technology Radar School Staff: Principles of Radar, Third Ed.

Prerequisite: Es-114(C).
Es-447(C) Electronics Pulse Techniques 3-0
The basic principles of pulse-shaping circuits, clippers, peakers, gaters, etc., pulse-forming networks and artificial lines. Also, r-f, i-f and video amplifiers are treated from the viewpoint of pulse amplification, distortion tolerances and requirements. The course is directed toward preparing the students for more advanced courses in radar.

Texts: Ridenour: Radar System Engineering; Massachusetts Institute of Technology Radar School Staff: Principles of Radar, Second Ed.

Prerequisite: Es-262(C) or equivalent.

Es-456(C) Introduction to Radar (Airborne) 2-2
A study of the radar range equation, i.e., effect of pulse duration, pulse repetition frequency, types of targets, etc., block diagram studies of current airborne systems with emphasis on operational limitations, propagation phenomena, types of presentation, and anti-jam techniques and laboratory work on current airborne radar equipment.

Text: Massachusetts Institute of Technology Radar School Staff: Principles of Radar, Second Ed.

Prerequisite: Es-262 or equivalent.

Es-466(C) Radar Propagation and Displays
The principal topics are: the operational characteristics of search radar; a complete study of the radar equation; types of indicators and the influence of phosphor types on data interpretation.

Texts: Ridenour: Radar System Engineering; Massachusetts Institute of Technology Staff: Principles of Radar, Third Ed.

Prerequisite: None

Es-521(B) Special Systems 3-3
A continuation of the series starting with Es-321 (B). The principal topics are: pulse-modulation principles, pulse-time-modulation multiplex, principles of television, television receiver and transmitter design, facsimile and basic telemetering systems.

Texts: Naval instruction books; instructor's notes.

Prerequisite: Es-327(B).

Es-522(B) Special Systems 3-3
A continuation of the special systems series. The principal topics are: principles of radio direction finding and navigation, and radio and radar countermeasures.

Texts: Massachusetts Institute of Technology Radiation Laboratory Series: Loran; Radio Research Laboratory Staff: Very High Frequency Techniques, Vol. I; other selected references.

Prerequisite: None.

Es-531(B) Special Systems 3-3
A continuation of the series starting with Es-321 (B). The principal topics are: pulse-modulation principles, pulse-time-modulation multiplex, principles of television, television receiver and transmitter design, facsimile and basic telemetering systems.

Texts: Naval instruction books; instructor's notes.

Prerequisite: Es-333(B).

Es-532(B) Special Systems 3-3
A continuation of the special systems series. The principal topics are: principles of radio direction finding and navigation, and radio and radar countermeasures.

Texts: Massachusetts Institute of Technology Radiation Laboratory Series: Loran; Radio Research Laboratory Staff: Very High Frequency Techniques, Vol. I; other selected references.

Prerequisite: Es-531(B).

Es-536(B) Counter Measures 2-3
Principles of radio direction finding; special electronic circuits with particular application to the field of electronic counter-measures; basic principles of electronic counter-measures tactics and operational procedures; passive and active electronic countermeasures equipment.

Texts: Radio Research Laboratory Staff: Very High Frequency Techniques, Vols. I and II; Navy equipment manuals; instructor's notes.

Prerequisite: None.

Es-586(C) Special Systems 3-3
Navy electronic systems other than communications transmitters and receivers. The principal topics are: loran systems; radar systems; image transmission systems; frequency-shift keying techniques; multiplex systems.

Texts: Lecture notes; equipment instruction books; Sheingold: Fundamentals of Radio Communications.

Prerequisites: Es-283(C), Es-786(C).

Es-616(C) Basic Electric and Magnetic Fields 2-2
Electric field concepts (potential, intensity, flux, mapping, energy, capacitance, RC transients); mag-
magnetic field concepts (MMF, potential, intensity, flux, energy, inductance, RL transients); magnetic circuits (B-H curves, calculation of MMF and flux, hysteresis and eddy currents); electromagnetic induction and forces, cathode ray deflection.

Text: Corcoran: Basic Electrical Engineering.
Prerequisite: None.

Es-621(A) Electromagnetics 3-0
An introduction to the fundamental definitions and circuit parameters later to be used in resonant cavities, wave guides, wave propagation, etc., as exemplified through the differential equations solution of lumped circuits and transmission lines. An application of vector analysis to electrostatics and magnetostatics in rectangular and in generalized coordinates, including the gradient, divergence and curl of electromagnetic fields; scalar and vector potentials; energy stored in electric and in magnetic fields. Text material is considerably amplified in class lectures.

References: Ramo and Whinnery: Fields and Waves in Modern Radio; Schelkunoff: Electromagnetic Waves.
Prerequisites: Ma-104(A), Ph-311(B).

Es-622(A) Electromagnetics 4-0
A continuation of Es-621(A). An application of complex variables to potential theory; derivation of capacitance and inductance per unit length for open wire and coaxial transmission lines; application of Bessel equations to potential theory; Maxwell's equations; relations between units; Poisson's equations; retarded vector potentials; radiation from current dipole, halfwave antennas, radiation resistance of halfwave antennas in terms of Ci and Si functions; antenna arrays; field patterns and gain of yagi arrays; input impedance of yagi arrays.

References: Ramo and Whinnery: Fields and Waves in Modern Radio; Schelkunoff: Electromagnetic Waves.
Prerequisite: Es-621(A).

Es-623(A) Electromagnetics 4-0
A continuation of Es-622(A). The principal topics are: skin effect and internal impedance; solutions involving Bessel and Hankel functions; calculations of inductance; propagation and reflection of plane electromagnetic waves; attenuation; power factor; waves guided by lossy planes; solutions of Maxwell's equations for rectangular and cylindrical wave guides.

References: Ramo and Whinnery: Fields and Waves in Modern Radio; Schelkunoff: Electromagnetic Waves.
Prerequisite: Es-622(A).

Es-624(A) Electromagnetics 3-0
A continuation of Es-623(A). The principal topics are: radial disk transmission lines; resonant cavities; generalized Maxwell's equations; generalized method of deriving radiation field patterns; radiation resistance; long straight wire antenna; Vee antenna; radiation from end of wave guide; rhombic antenna; non-uniform transmission line; input impedance of antennas.

References: Ramo and Whinnery: Fields and Waves in Modern Radio; Schelkunoff: Electromagnetic Waves.
Prerequisite: Es-623(A).

Es-721(B) Antennas and Wave Propagation 3-3
Designed to give the student the best possible understanding of the problems involved in the radiation and propagation of electromagnetic energy without the use of the classic Maxwell equation type of approach. The emphasis is on practical problems encountered in communications engineering, including selection of proper antennas for various services as well as proper frequencies for optimum transmission.

Prerequisites: Es-327(B), Es-114(C).

Es-722(B) Antennas and Wave Propagation 3-3
A continuation of Es-721(B).

Texts: Instructor's notes; Kraus; Antennas; King, Mimno, and Wing: Antennas, Transmission Lines, and Wave Guides.
Prerequisite: Es-721(B).

Es-736(B) Antennas, Transmission Lines 3-3
The engineering problems associated with the practical design of antennas, antenna systems, and transmission lines. A technique of rapid approximation of antenna field patterns is presented. All
common receiving and transmitting antennas are presented and analyzed. The problems inherent in the various frequency ranges are discussed, including the microwave region. The problem of efficient transmission of r-f energy, matching, phasing and achieving proper current distributions are studied. The classwork is accompanied by considerable problem drill and measurements on typical systems.

Text: Kraus: Antennas.
Prerequisite: Es-624(A).

Es-786(C) R-F Energy Transmission 3-2

The principles and techniques of energy transmission by means of radio-frequency waves. The principal topics are: conditions for maximum energy transfer between circuits; r-f transmission lines for energy transfer; lines as circuit elements; principles of energy radiation; directional radiation techniques; propagation characteristics. The laboratory periods are occasionally used for lecture-demonstrations.

Prerequisite: Es-186(C).

Es-836(A) Project Seminar 1-0

Provides the student with the opportunity to prepare a report on the project in which he was engaged during his experience at an industrial laboratory. The student is required to give an oral seminar report.

Text: None.
Prerequisite: None.

Es-991(C) and 992(C) Introduction to Electronics 2-0

This course will continue through two consecutive terms and is intended to acquaint the student officer with the general principles, capabilities and limitations of radio, sonar and radar and to give him a limited familiarity with equipment. The following topics will be studied in an elementary manner: resonant circuits; principles of vacuum tubes; their actions as oscillators, amplifiers, detectors, modulators; general principles of transmitters and receivers, both AM and FM; antennas, wave propagation; basic principles of radar and sonar.

Text: None.
Prerequisite: None.
COURSE DESCRIPTIONS—GEOLOGY

GEOLOGY

Ge Courses

Physical Geology ___________________ Ge-101(C)
Physical Geology ___________________ Ge-201(C)
Geology of Petroleum _________________ Ge-241(C)
Determinative Mineralogy _____________ Ge-302(C)
Petrology and Petrography _____________ Ge-401(C)

Ge-101(C) Physical Geology 3-0

The study of the various geological phenomena. Topics discussed are: rock-forming minerals; igneous, sedimentary, and metamorphic rocks; weathering and erosion; stream sculpture; glaciation; surface and sub-surface waters; volcanism, dynamic processes; structural geology; and interpretation of topographic maps. Frequent reference is made to other than the prescribed textbook. The course stresses those topics of particular interest to the petroleum engineer.

Prerequisite: None.

Ge-201(C) Physical Geology 4-0

Course content similar to Ge-101, but directed towards the specific needs of the Nuclear Engineering Groups.

Prerequisite: None.

Ge-241(C) Geology of Petroleum 2-2

Seminars and discussions on the origin, accumulation, and structure which aid in the accumulation of petroleum, its general occurrence and distribution. The following regions are studied: Eastern United States, Mid-Continent, Gulf Coast, Rocky Mountains, Pacific Coast, North America (except U. S.), West Indies, South America, Europe, Russia, Oceanica and Asia. This course is supplemented by reading assignments in the current petroleum and petroleum geology journals.

Prerequisite: Ge-101(C).

Ge-302(C) Determinative Mineralogy 1-4

The lectures are designed to familiarize the student with the principles and techniques involved in determining minerals in the laboratory. The laboratory periods are spent in the determination of some fifty of the more common minerals by blowpipe, chemical, x-ray diffraction and crystallographic methods. The student is also made familiar with the methods employed in the use of chemical microscopy for the determination of certain elements.

Text: Lewis, Hawkins: Determinative Mineralogy; Dana, Ford: Textbook of Mineralogy.
Prerequisite: Cr-301(B) or Cr-311(B).

Ge-401(C) Petrology and Petrography 2-3

A series of lectures on the differentiation of magmas into the various igneous rock series on the basis of physical chemical theories; the characteristics, structures and textures of igneous rocks; the metamorphic rocks, mineral alteration, metamorphism and the resultant rock types. The laboratory work consists of the study of the various rocks in hand specimens, and in thin sections under the petrographic microscope. When practicable, the course is supplemented by trips to nearby localities to study rocks and minerals in the field.

Prerequisite: Ge-101(C) (may be taken concurrently), or Cr-301(B), or Cr-311.
INDUSTRIAL ENGINEERING
IE Lecture Courses

Principles of Industrial Organization _______IE-101(C)
Applied Industrial Organization _______IE-103(C)
Technical Lectures _____________IE-104(C)

IE-101(C) Principles of Industrial Organization 0-1

Ten lectures covering the rise and growth of industrial enterprises; standard types of ownership and organization structures; coordination and executive control; standardization; labor compensation; problems of management; effects of science in industry, and related topics. An integrated series given by authorities in the field of industrial and management engineering.

Text: None.
Prerequisite: None.

IE-103(C) Applied Industrial Organization. 0-1

The application of organization and management principles to the structure of actual industrial and government enterprises; further consideration of problems facing management. In some lectures, representatives of typical industrial or government activities discuss the structure and management of their own activities; in other speeches, educators and authorities in various fields discuss particular aspects of industrial engineering.

Text: None.
Prerequisite: IE-101.

IE-104(C) Technical Lectures 0-1

A series of ten lectures covering various technical subjects pertaining to engineering in the Navy, delivered by naval officer specialists or qualified civilians. In addition to strictly engineering subjects, lectures are scheduled in such fields as human engineering, psychophysical systems research, and use of human factors in equipment design.

Text: None.
Prerequisite: None.
COURSE DESCRIPTIONS—MARINE ENGINEERING

MARINE ENGINEERING
NE Courses

Main Propulsion Plants ____________ NE-101(C)
Auxiliary Machinery ________________ NE-102(C)
Administration ________________ NE-103(C)

NE-101(C) Main Propulsion Plants ____________ 3-0

A practical study of naval geared-turbine main propulsion plants, boilers and main propulsion plant auxiliaries. This course deals primarily with the Bureau of Ships with regard to the operation, main-ship journals and letters, and by descriptive texts as necessary. The purpose of the course is to give the technical engineer a sound basic knowledge of and familiarity with, the procedures set forth by the Bureau of Ships with regard to the operation, maintenance and repair of main propulsion machinery.

Prerequisite: None.

NE-102(C) Auxiliary Machinery ____________ 3-0

A practical study of naval machinery other than main propulsion machinery, boilers and main propulsion plant auxiliaries. This course deals primarily with the Bureau of Ships Manual supplemented by Bureau of Ships Journals and letters and by descriptive texts as necessary. The purpose is to give the technical engineer a sound basic knowledge of, and familiarity with, the procedures set forth by the Bureau of Ships with regard to the operation, maintenance and repair of subject machinery.

Prerequisite: None.

NE-103(C) Engineering Department ____________ Administration ____________ 2-0

Engineering Department

A study of the administrative duties of the Engineer Officer ashore. Subjects treated include: engineering department organization, routine tests and inspections, machinery index, machinery history, current ship's maintenance project, ship's force overhauls, tender overhauls, shipyard overhauls, supplies, spare parts, requisitions, engineering casualty control, safety precautions, engineering competition and economical operation of engineering plants.

Texts: Bureau of Ships Manual; Bureau of Ships Journals; fleet training publications; prepared pamphlets on above subjects.

Prerequisite: None.
MATHEMATICS

Ma Courses

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Algebra and Geometry</td>
<td>Ma-100(C)</td>
</tr>
<tr>
<td>Introduction to Engineering</td>
<td>Ma-101(C)</td>
</tr>
<tr>
<td>Differential Equations and Series and Related Topics</td>
<td>Ma-102(C)</td>
</tr>
<tr>
<td>Functions of Several Variables and Vector Analysis</td>
<td>Ma-103(B)</td>
</tr>
<tr>
<td>Partial Differential Equations</td>
<td>Ma-104(A)</td>
</tr>
<tr>
<td>Fourier Series and Boundary Value Problems</td>
<td>Ma-105(A)</td>
</tr>
<tr>
<td>Complex Variables and Laplace Transforms</td>
<td>Ma-106(A)</td>
</tr>
<tr>
<td>Topics in Advanced Calculus</td>
<td>Ma-109(A)</td>
</tr>
<tr>
<td>Introduction to Engineering</td>
<td>Ma-111(C)</td>
</tr>
<tr>
<td>Differential Equations and Boundary Value Problems</td>
<td>Ma-112(B)</td>
</tr>
<tr>
<td>Automatic Control</td>
<td>Ma-115(A)</td>
</tr>
<tr>
<td>Matrices and Numerical Methods</td>
<td>Ma-116(A)</td>
</tr>
<tr>
<td>Mathematics of Stability Analysis</td>
<td>Ma-118(A)</td>
</tr>
<tr>
<td>Algebraic Equations and Series</td>
<td>Ma-131(C)</td>
</tr>
<tr>
<td>Topics in Engineering Mathematics</td>
<td>Ma-132(C)</td>
</tr>
<tr>
<td>Vector Mechanics and Introduction to Statistics</td>
<td>Ma-134(B)</td>
</tr>
<tr>
<td>Partial Differential Equations and Numerical Methods</td>
<td>Ma-135(B)</td>
</tr>
<tr>
<td>Survey of Calculus</td>
<td>Ma-140(C)</td>
</tr>
<tr>
<td>Algebra, Trigonometry and Analytic Geometry</td>
<td>Ma-161(C)</td>
</tr>
<tr>
<td>Introduction to Calculus</td>
<td>Ma-162(C)</td>
</tr>
<tr>
<td>Calculus and Vector Analysis</td>
<td>Ma-163(C)</td>
</tr>
<tr>
<td>Special Topics in Calculus I</td>
<td>Ma-171(C)</td>
</tr>
<tr>
<td>Special Topics in Calculus II</td>
<td>Ma-172(C)</td>
</tr>
<tr>
<td>Special Topics in Calculus III</td>
<td>Ma-173(B)</td>
</tr>
<tr>
<td>Special Topics in Calculus IV</td>
<td>Ma-174(B)</td>
</tr>
<tr>
<td>Directional Derivatives and Locus Integrals</td>
<td>Ma-181(C)</td>
</tr>
<tr>
<td>Differential Equations and Complex Analysis</td>
<td>Ma-182(C)</td>
</tr>
<tr>
<td>Partial Differential Equations and Variations</td>
<td>Ma-193(B)</td>
</tr>
<tr>
<td>Laplace Transforms, Matrices</td>
<td>Ma-194(A)</td>
</tr>
<tr>
<td>Matrix Theory and Integration Theory</td>
<td>Ma-195(A)</td>
</tr>
<tr>
<td>Graphical and Mechanical Computation</td>
<td>Ma-201(C)</td>
</tr>
<tr>
<td>Statistics</td>
<td>Ma-301(B)</td>
</tr>
<tr>
<td>Elementary Probability and Statistics</td>
<td>Ma-331(A)</td>
</tr>
<tr>
<td>Probability</td>
<td>Ma-382(A)</td>
</tr>
<tr>
<td>Statistics</td>
<td>Ma-383(A)</td>
</tr>
<tr>
<td>Statistical Decision Functions</td>
<td>Ma-385(A)</td>
</tr>
<tr>
<td>Mathematical Computation by Physical Means</td>
<td>Ma-401(A)</td>
</tr>
<tr>
<td>High Speed Computing Machines</td>
<td>Ma-456(A)</td>
</tr>
<tr>
<td>Theory of Games</td>
<td>Ma-501(A)</td>
</tr>
</tbody>
</table>

Ma-100(C) Vector Algebra and Geometry 2-1

Texts: Smith, Gale and Neelley: New Analytic Geometry; mimeographed notes.

Prerequisite: A former course in plane analytic geometry.

Ma-101(C) Introduction to Engineering 3-0

Mathematics

Texts: Sokolnikoff and Sokolnikoff: Higher Mathematics; Granville, Smith and Longley: Elements of the Differential and Integral Calculus.

Prerequisites: A former course in differential and integral calculus, and Ma-100(C) to be taken concurrently.

Ma-102(C) Differential Equations and Series 5-0

A continuation of Ma-100(C) and Ma-101(C). Elementary operations with complex quantities. Solution of algebraic equations, Graeffe's method. Further study of ordinary differential equations and their applications, stability criteria, systems of linear differential equations with constant coefficients. Operations on series, power series. Introduction to elliptic integrals, Fourier series, numerical harmonic analysis.

Texts: Cohen: Differential Equations; Sokolnikoff and Sokolnikoff: Higher Mathematics.

Prerequisites: Ma-100(C), Ma-101(C).
COURSE DESCRIPTIONS—MATHEMATICS

Ma-103(B) Functions of Several Variables 5-0
and Vector Analysis

A continuation of Ma-102(C). Elementary matrix
theory and applications. Analytic geometry of
space curves and surfaces. Applications of partial
derivatives. Differentiation of vectors. Differential
operators. Line, surface, and space integrals with
applications. Divergence theorem and the theorems
of Green and Stokes. Curvilinear coordinates. In-
troduction to analytic functions of a complex
variable.

Texts: Sokolnikoff and Sokolnikoff: Higher
mathematics; Weatherburn: Elementary and
Advanced Vector Analysis; Smith, Gale and Neeley:
New Analytic Geometry.

Prerequisite: Ma-102(C) or Ma-132(C).

Ma-104(A) Partial Differential Equations 5-0
and Related Topics

A continuation of Ma-103(B). Total differential
equations and systems of ordinary differential
equations. Linear and other first order partial differential
equations. Special cases of higher order partial
differential equations with emphasis on those with
constant coefficients. Solution of ordinary differential
equations by series. Gamma, Beta, Bessel and
Legendre functions. Introduction to boundary value
problems and orthogonal functions with applications
to heat flow, vibrations of strings and membranes,
and flow of electricity in cables. Interpolation
formulas of Newton, Stirling and Lagrange. Quadra-
ture formulas and numerical integration of ordi-
nary differential equations and systems of such
equations.

Texts: Sokolnikoff and Sokolnikoff: Higher
Mathematics; Cohen: Differential Equations; Scar-
borough: Numerical Mathematical Analysis.

Prerequisite: Ma-103(B).

Ma-105(A) Fourier Series and Boundary 4-0
Value Problems

Derivation of the basic partial differential
equations of theoretical physics. Study of the trig-
onometric, Bessel and Legendre functions, and other
systems of orthogonal functions. The Sturm-
Liouville theory. Solution of boundary value problems
by orthogonal series. Method of relaxation.
Uniqueness of the solution.

Texts: Churchill: Fourier Series and Boundary
Value Problems; H. W. Emmons: Numerical Solu-
tion of Partial Differential Equations (Quart. Appl.

Prerequisite: Ma-104(A) or Ma-114(A).

Ma-106(A) Complex Variables and 4-0
Laplace Transforms

Analytic functions; Cauchy's theorem and formula,
Taylor and Laurent series, residues, contour integra-
tion, conformal mapping. The Laplace transform
and its use in solving ordinary differential equations;
special theorems and manipulations for the Laplace
transform; application to partial differential equa-
tions and difference equations.

Texts: Churchill: Introduction to Complex Vari-
ables and Applications; Churchill: Modern Opera-
tional Mathematics in Engineering; Gardner and
Barnes: Transients in Linear Systems.

Prerequisite: Ma-104(A).

Ma-109(A) Topics in Advanced Calculus 3-0

Extension of natural numbers to the real number
system; basic theorems on limits; continuity and
differentiation properties of functions; the definite
integral and improper definite integrals; infinite
series.

Text: Courant: Differential and Integral Calcu-
lus, Volume I.

Prerequisite: Ma-104(A) or Ma-184(A) or one of
these to be taken concurrently.

Ma-111(C) Introduction to Engineering 3-1
Mathematics

Partial differentiation; multiple integrals; solution
of algebraic equations; algebra of complex numbers;
introduction to infinite series and ordinary differenti-
al equations.

Texts: Sokolnikoff and Sokolnikoff: Higher
Mathematics; Golomb and Shanks: Ordinary Diff-
erential Equations; Granville, Smith and Longley:
Elements of the Differential and Integral Calculus.

Prerequisites: A former course in differential and
integral calculus, and Ma-100(C) to be taken con-
currently.

Ma-112(B) Differential Equations and 4-0
Boundary Value Problems

A continuation of Ma-111(C). Systems of ordi-
nary linear differential equations with constant co-
efficients; the Laplace transform; series solutions
of differential equations; boundary value problems
and orthogonal functions including Fourier series.

Texts: Hildebrand: Advanced Calculus for En-
gineers; Golomb and Shanks: Ordinary Differential
Equations.

Prerequisite: Ma-111(C).
Ma-113(B) Vector Analysis and Introduction to Partial Differential Equations 3-0
A continuation of Ma-112(B). Calculus of vectors with geometric applications; line, surface and volume integrals involving vector fields with applications to fluid flow problems; differentiation under the integral sign and introduction to partial differential equations.
Texts: Hildebrand: Advanced Calculus for Engineers; Sokolnikoff and Sokolnikoff: Higher Mathematics.
Prerequisite: Ma-112(B).

Ma-114(A) Partial Differential Equations and Functions of a Complex Variable 3-0
A continuation of Ma-113(B). Solution of the Laplace and Poisson partial differential equations occurring in engineering; functions of a complex variable; analytic functions; line integrals; singularities; residues; evaluation of integrals; conformal mapping and applications.
Texts: Hildebrand: Advanced Calculus for Engineers; Churchill: Complex Variables.
Prerequisite: Ma-113(B).

Ma-115(A) Differential Equations for Automatic Control 3-0
Phase trajectories for linear and certain non-linear systems; stability investigations; theories of Poincare and of Kryloff and Bogoliuboff; resonance. The Laplace transform as used in ordinary initial value problems and partial differential equations; inversion integrals; Fourier transforms. Application of Laplace transforms to non-linear mechanics.
Prerequisite: Ma-114(A).

Ma-116(A) Matrices and Numerical Methods 4-0
Finite differences, interpolation, numerical differentiation and integration; numerical solution of polynomial equations; numerical methods for initial value and boundary value problems involving ordinary and partial differential equations; solution of systems of linear algebraic equations; elementary properties and types of matrices; matrix algebra; latent roots and characteristic vectors of matrices; numerical methods for inversion of matrices.
Texts: Scarborough: Numerical Mathematical Analysis; Frazer, Duncan and Collar: Elementary Matrices; Reprints of articles from scientific journals.
Prerequisite: Ma-114(A).

Ma-118(A) Mathematics of Stability Analysis 3-0
This course covers topics important in the study of aircraft flight performance. These topics include differential operator methods, Laplace transform methods, applications of matrix theory and non-linear mechanics.
Prerequisite: Ma-104(A) or Ma-114(A).

Ma-131(C) Algebraic Equations and Series 3-0
Prerequisite: A former course in differential and integral calculus.

Ma-132(C) Topics in Engineering Mathematics 5-0
Prerequisites: A former course in differential and integral calculus and Ma-131(C) to be taken concurrently.

Ma-134(B) Vector Mechanics and Introduction to Statistics 5-0
Prerequisite: Ma 103(B).

Ma-135(B) Partial Differential Equations and Numerical Methods 4-1

Texts: Cohen: Differential Equations (Revised); Churchill: Fourier Series and Boundary Value Problems; Scarborough: Numerical Mathematical Analysis.

Prerequisite: Ma-103(B).

Ma-140(C) Survey of Calculus 3-0
Definition of derivative; rules for differentiation; applications of derivatives; integration as inverse of differentiation; standard integration formulas; definite integrals as limit of sum; applications to area, volume, moment problem; motion problems, curvature, equation solving and other applications.

Prerequisite: Previous study of calculus.

Ma-161(C) Algebra, Trigonometry and Analytic Geometry 5-0

Text: Brink: A First Year of College Mathematics.

Prerequisite: None.

Ma-162(C) Introduction to Calculus 5-0
The limit concept. The derivatives of elementary functions. Elementary applications of derivatives. Differentials, higher order derivatives and curvature. The integral as an antiderivative and as an area. Elementary applications of integration.

Prerequisite: Ma-161(C) or satisfactory evidence of competence in analytic geometry.

Ma-163(C) Calculus and Vector Analysis 5-0

Prerequisite: Ma-162(C), Ma-140(C) or a recent course in differential and integral calculus.

Ma-171(C) Special Topics in Calculus I 3-0

Texts: Granville, Smith and Longley: Elements of the Differential and Integral Calculus; Churchill: Introduction to Complex Variables and Applications; Reddick and Miller: Advanced Mathematics for Engineers.

Prerequisites: A former course in differential and integral calculus, and Ma-100(C) to be taken concurrently.

Ma-172(C) Special Topics in Calculus II 3-0

Prerequisite: Ma-171(C).

Ma-173(B) Special Topics in Calculus III 3-0
Fourier series. Linear differential equations of higher order and systems of such equations. Introduction to functions of a complex variable.

Texts: Reddick and Miller: Advanced Mathematics for Engineers; Churchill: Introduction to Complex Variables and Applications.

Prerequisite: Ma-172(C).

Ma-174(B) Special Topics in Calculus IV 3-0
Introduction to Laplace transforms. Vector differential calculus.

Texts: Churchill: Modern Operational Mathematics in Engineering; Reddick and Miller: Advanced Mathematics for Engineers.

Prerequisite: Ma-173(B).

Ma-181(C) Directional Derivatives and Locus Integrals 3-1
Review of elementary calculus. Partial derivatives and their physical interpretations. Total de-
derivatives and gradients. Line integrals, surface integrals, volume integrals, and their physical interpretations.

Prerequisites: A former course in differential and integral calculus, and Ma-100(C) to be taken concurrently.

Ma-182(C) Differential Equations and Vector Analysis

Texts: Cohen: Differential Equations (Revised); Phillips: Vector Analysis; Weatherburn: Elementary and Advanced Vector Analysis.

Prerequisites: Ma-100(C) and Ma-181(C).

Ma-183(B) Complex Variables and Partial Differential Equations

Texts: Churchill: Complex Variables; Churchill: Fourier Series and Boundary Value Problems; Margenau and Murphy: Mathematics of Physics and Chemistry.

Prerequisite: Ma-182(C).

Ma-184(A) Laplace Transforms and Matrices

Texts: Churchill: Modern Operational Mathematics; Margenau and Murphy: Mathematics of Physics and Chemistry.

Prerequisite: Ma-183(B).

Ma-191(C) Basic Concepts and Interpretations of Mathematical Analysis

Prerequisites: A former course in differential and integral calculus, and Ma-100(C) to be taken concurrently.

Ma-192(C) Ordinary Differential Equations and Vector Analysis

Texts: Cohen: Differential Equations (Revised); Phillips: Vector Analysis; Weatherburn: Elementary and Advanced Vector Analysis.

Prerequisites: Ma-100(C) and Ma-191(C).

Ma-193(B) Partial Differential Equations

Texts: Granville, Smith and Longley: Differential and Integral Calculus; Cohen: Differential Equations (Revised); Churchill: Fourier Series and Boundary Value Problems; Churchill: Modern Operational Mathematics; Churchill: Complex Variables.

Prerequisite: Ma-192(C).

Ma-194(A) Laplace Transforms, Matrices and Variations

Prerequisite: Ma-183(B).

Ma-195(A) Matrix Theory and Integration Theory
Algebra of matrices; characteristic values of matrices; Hamilton-Cayley and Sylvester’s theorems;
matrix methods in the solution of systems of differential equations. Basic concepts in the theories of Riemann, Lebesgue, and Stieltjes integrals with emphasis on the applications of these theories.

Prerequisite: Ma-193(B).

Ma-201(C) Graphical and Mechanical Computation

Prerequisite: Ma-100(C). (May be taken concurrently).

Ma-301(B) Statistics

Prerequisite: Ma-103(B). (May be taken concurrently).

Ma-331(A) Statistics

A continuation of Ma-134(B). Gamma and Beta functions. Mathematical expectation, moments and moment generating functions. Theoretical distribution functions of one variable. Distribution functions of two or more variables. Large and small sampling theory. Testing statistical hypotheses; sampling and the design of experiments. Applications to problems in aeronautics.

Prerequisite: Ma-134(B).

Ma-381(C) Elementary Probability and Statistics

Prerequisite: Ma-163(C) or Ma-181(C).

Ma-382(A) Probability

Prerequisite: Ma-381(C).

Ma-383(A) Statistics

Prerequisite: Ma-382(A).

Ma-385(A) Statistical Decision Functions

Basic concepts; relation of statistical decision functions to the theory of games; applications in the planning of operational evaluation trials.

Texts: Wald: Statistical Decision Functions; classified official publications.

Prerequisites: Ma-383(A), Ma-501(A).

Ma-401(A) Mathematical Computation

by Physical Means

Elementary physical devices which may be used to perform addition, multiplication, function generation, integration, etc. Combinations of such devices for solution of differential equations, systems of linear equations, algebraic equations, harmonic analysis, etc. Some of the material is presented to the class by the students as informal reports.

Texts: Murray: Theory of Mathematical Machines; reprints of articles from scientific periodicals.

Prerequisite: Ma-103(B) or Ma-113(B).
Ma-496(A) High Speed Computing Machines 3-2

The logical design of punch card machines, automatic digital computers and simulators. Programming and coding. Laboratory operation of computing machines. Numerical analysis. Applications to problems in operations analysis.

Prerequisite: Ma-195(A), or Ma-116(A), or Ma-184(A).

Ma-501(A) Theory of Games 3-2

The basic concepts and foundations for the theory of games, such as game, play, strategy, complete and incomplete information, zero-sum games, etc. The structures of various games, particularly two-person zero-sum games with finite and infinite strategies. Games of timing. The related algebra of matrices and bilinear forms to yield methods for evaluating games. The minimax theorem and properties of minimax strategies. Games involving three or more persons and the effects of coalitions.

Prerequisites: Ma-195(A), Ma-382(A).
MECHANICS

Mc Courses

Engineering Mechanics I Mc-101(C) 2-2
Engineering Mechanics II Mc-102(C) 2-2
Methods in Dynamics Mc-201(A) 2-2
Vibrations Mc-311(A) 2-2
Exterior Ballistics Mc-401(A) 2-2

Dynamics of Missiles and Gyros Mc-402(A) 3-0
Interior Ballistics Mc-421(A) 3-0
Theory of Plasticity of Metals and Strength of Guns Mc-431(A) 3-0

Mc-101(C) Engineering Mechanics I 2-2

Review of statics; free-body diagrams; distributed forces; centroids; moments and products of inertia of areas; hydrostatics; friction; plane trusses; funicular polygon; general principles of dynamics; dimensional analysis; kinematics of a particle; relative and absolute time rate of change of a vector; Coriolis acceleration.

Prerequisite: A previous course in mechanics is desirable.

Mc-102(C) Engineering Mechanics II 2-2

Dynamics of a particle; impulse and momentum; work and energy; potential; conservation of energy; vibrating systems, free and forced, with and without damping; impact; dynamics of rigid bodies; moments and products of inertia; principal axes of inertia; the gyroscope.

Prerequisite: Mc-101(C).

Mc-201(A) Methods in Dynamics 2-2

The principles of (a) linear momentum, (b) angular momentum, (c) work and energy, (d) power and energy, (e) conservation of energy, (f) virtual work, and (g) d’Alembert are developed and discussed in detail. This work is followed by a development and interpretation of Lagrange’s equations of motion. Application of these various principles to obtain the differential equations of motion of dynamical systems is given particular attention. Numerous exercises in the writing of differential equations of motion are assigned; some of these are designed to furnish practice in the formulation of the differential equations for systems of variable mass.

Prerequisites: Mc-102(C) and Ma-103(B). (The latter may be taken concurrently.)

Mc-311(A) Vibrations 3-2

Kinematics of vibrations; free and forced vibrations of systems with one degree of freedom; theory of vibration measuring instruments and of vibration insulation; systems with many degrees of freedom; normal modes of vibration; computation of fastest and slowest modes by matrix methods; vibrations of strings, beams, shafts and membranes; Rayleigh’s method; Stodola’s method; critical speeds; self-excited vibrations; effect of impact on elastic structures.

Prerequisite: Ma-104(A), Mc-102(C) and ME-500(C).

Mc-401(A) Exterior Ballistics 3-0

Topics presented include the vacuum trajectory; density and temperature structure of the atmosphere; application of dimensional analysis to the problem of air resistance; theory of longitudinal elastic waves in the air; numerical integration of differential equations of motion under standard conditions; differential corrections for abnormal conditions; weighting factors; integration of the adjoint system; exact and approximate construction of firing tables for aircraft machine guns. The projectile is treated as a mass particle, aerodynamic and rocket considerations being deferred to a later course, Mc-402(A).

Prerequisite Mc-102(C).

Mc-402(A) Dynamics of Missiles and Gyros 3-0

Review of the dynamics of rigid bodies; gyroscopes; the general aerodynamic system of forces acting on a spinning projectile; necessary and sufficient conditions for the stability and trailing of a spinning projectile; computation of drift; dispersion of fin-stabilized and spin-stabilized rockets; effect of wind on rockets.

Prerequisite: Mc-401(A).

Mc-421(A) Interior Ballistics

2-0

Basic thermodynamics of interior ballistics including methods of determining the adiabatic flame temperature, specific heat and number of moles of powder gas. These basic topics are followed by a detailed study (including computational exercises) of the linear system of interior ballistics of Hirschfelder developed under NDRC auspices. The contribution of modern interior ballistic theory to the problem of gun design is emphasized.

Prerequisites: Ma-111(C), Mc-102(C), Ch-631(A).

Mc-431(A) Theory of Plasticity of Metals and Strength of Guns

3-0

Types of gun construction; theory of the tensile test; geometry of stress; Mohr's representation of stress; octahedral stresses; the Lode parameter; geometry of strain; theories of mechanical strength; the three rules of plastic deformation; theory of plastic deformation of thick-walled spheres and cylinders; autofrettage process used in the radial expansion of guns.

Prerequisites: Ma-112(B), Mc-102(C).
ME-111(C) Engineering Thermodynamics 4-2

Stored and transitional energies, their accounting by energy equations in dynamic and chemical processes. Aspects of reversibility, thermodynamic scale of temperature, entropy of energy and the entropy function. Second and Third Laws of thermodynamics, Maxwell relations. Phase rule, thermodynamic properties of liquids and vapors in equilibrial and metastable states, property tables and diagrams, representative reversible and irreversible processes in vapor and liquid phases. Property relations, tables and diagrams for ideal or quasi-ideal gases, representative reversible and irreversible processes with these. Associated problems. This course is the first of a coordinated sequence containing ME-112 or 122, 211 or 221, et cetera.

Text: Kiefer, Kinney and Stuart: Engineering Thermodynamics.

Prerequisite: ME-111(C).

ME-112(B) Engineering Thermodynamics 4-2

Properties of mixtures of quasi-ideal gases, low-pressure gas-vapor mixtures and related indices, representative processes with these, multi- and monopressure hygrometric diagrams. Combustion of fuels, material and energy balances, fuel calorimetry, equilibrium and equilibrium constant, rich-mixture and thin-mixture combustion, flame temperatures. As time permits, non-ideal gases and their p-v-T correlation by equation and by compressibility diagrams, residual enthalpy and entropy functions and their determination from compressibility and throttling data, representative processes and generation of thermodynamic diagrams. Associated problems. The course is in continuation of ME-111.

Text: Kiefer, Kinney and Stuart: Engineering Thermodynamics.

Prerequisite: ME-111(C).

ME-122(C) Engineering Thermodynamics 3-2

Studies included are as indicated for course ME-112 except for omission of considerations of the thermodynamic properties and property correlations for non-ideal gases. This course is in continuation of ME-111.

Text: Kiefer, Kinney and Stuart: Engineering Thermodynamics.

Prerequisite: ME-111(C).

ME-131(C) Engineering Thermodynamics 4-2

Stored and transitional energies, their accounting by energy equations in dynamic and chemical processes. Aspects of reversibility, thermodynamic
scale of temperature, entropy of energy and the entropy property, Second and Third Laws of thermodynamics, Maxwell relations. Phase rule, thermodynamic characteristics of liquids and vapors. Property relations, tables and diagrams for ideal or quasi-ideal gases and representative reversible and irreversible processes with these. Gas mixtures, low-pressure gas-vapor mixture and their indices, representative processes with them, multi- and monopressure hygrometric charts. Elements of atmospheric thermodynamics.

Text: Kiefer, Kinney and Stuart: Engineering Thermodynamics.

Prerequisite: Ma-102(C).

ME-132(C) Engineering Thermodynamics 3-2

Materials and energy balance in combustion. Spark-ignition engine and simpler gas-turbine power installations and their performance characteristics. Subsonic and supersonic flow of compressible fluids, reversible and shockwise, in nozzle, diffuser or duct; associated wall forces and their operation in turbine or compressor blading and in jet propulsion or the rocket motor. Elements of heat transmission. Sequent to ME-131, those thermodynamic applications are considered which are of major concern in aircraft power installations.

Prerequisite: ME-131(C).

ME-141(C) Engineering Thermodynamics 4-2

The fundamental concepts of thermodynamics; energy and its accounting; availability and entropy of energy; the thermodynamic properties of pure substances and their changes in various processes, including chemical interaction. Emphasis is placed on those topics essential for subsequent studies of torpedo power plants, jet engines, explosives and similar applications where non-standard fluids are involved. The laboratory periods are used for student solution of practical problems chosen to illustrate the principles discussed in the classroom.

Text: Kiefer, Kinney and Stuart: Engineering Thermodynamics.

Prerequisite: Ma-103(B).

ME-142(A) Engineering Thermodynamics 2-2

Organization of the thermodynamic properties of non-ideal gases through the use of the residual functions preparation and use of thermodynamic diagrams for simple systems of ideal and non-ideal gases and for complex systems in chemical equilibrium, heat and work effects in representative processes involving complex mixtures such as the products of combustion. This course is a continuation of ME-141(C). The laboratory periods are used for students solution of practical problems to illustrate the principles discussed in the classroom.

Text: Kiefer, Kinney and Stuart: Engineering Thermodynamics.

Prerequisite: ME-141(C).

ME-143(A) Engineering Thermodynamics 4-4

Thermodynamic aspects of the flow of compressible fluids in nozzle, diffuser and duct, compressive shocks, dynamics of the jet and diverted flow. Application of thermodynamic facilities to power plants such as jet engines and torpedo motors which operate on non-standard fluids. Turbine nozzle and blading design factors and performance indices. Elements of heat transfer. Associated problems.

Text: Kiefer, Kinney and Stuart: Engineering Thermodynamics; Church: Steam Turbine.

Prerequisite: ME-142(C).

ME-150(C) Thermodynamics 4-2

Fundamental aspects of energy accounting at molecular and atomic levels, and its mechanical availability. Thermodynamic properties of actual gases, correlation with the kinetic theory, property changes and their correlation in representative processes and accompanying work effects. Reversible and shockwise flow of gases and shock propagation.

Prerequisite: Ma-181(C).

ME-211(C) Marine Power Plant Equipment 3-2

Steam power plant cycles, internal combustion power cycles, elementary gas turbine power plant, influences of regenerative pre-heating and of re-heating, performance indices. Thermodynamic aspects of the flow of compressible fluids in nozzle, diffuser and duct, compressive shocks, dynamics of jet and of diverted flow. Marine boiler performance analysis and characteristics. Associated problems and laboratory work.

Text: Kiefer, Kinney and Stuart: Engineering Thermodynamics; miscellaneous supplementary material.

Prerequisite: ME-112(B).

ME-212(C) Marine Power Plant Equipment 3-4

Thermodynamic aspects of the turbine, impulse and reaction types of the reciprocating engine, the
gas compressor and blower. Refrigeration and heat pump cycles, refrigerants, multi-level refrigeration. Air conditioning; requirements and equipment, associated laboratory work.

Text: Kiefer, Kinney and Stuart: Engineering Thermodynamics; miscellaneous supplementary material.

Prerequisite: ME-211(C).

ME-215(A) Marine Power Plant Analysis and Design 2-4

Studies of the methods and procedures employed in the over-all planning of naval ships from the viewpoint of the power plant engineer, their principal plant components and various practical and military factors which influence the design. Project work includes preliminary methods of estimating for a hypothetical naval ship: the hull, main engine and auxiliary power requirements, inter-relationship of individual equipment items, and computation of various ship and plant performance indices. The time is distributed variously between lectures, student project work, seminar and, upon occasion, lectures by visiting authorities in specialized fields of naval marine engineering.

Text: Seward: Marine Engineering; Bureau of Ships publications and data; Kiefer, Kinney and Stuart: Engineering Thermodynamics.

Prerequisite: ME-212(C); ME-310(B) and ME-411(C).

ME-216(A) Marine Power Plant Analysis and Design 2-4

This course, in continuation of ME-215(A), carries to completion the project work of the latter, as required, with additional project work in preliminary design investigation of main propulsion turbines and other major equipment items. The time is distributed variously between lectures, student project work, seminar and, upon occasion, lectures by visiting authorities in specialized fields of naval marine engineering.

Text: Seward: Marine Engineering; Labberton: Marine Engineering; Church: Steam Turbines; Bureau of Ships publications and data; Kiefer, Kinney and Stuart: Engineering Thermodynamics.

Prerequisite: ME-215(A).

ME-217(C) Internal Combustion Engines 3-2 (Diesel)

The studies include the thermodynamic analysis of the fundamental cycle, ideal and actual combustion processes, cyclic processes, injection phenomena and methods of injection system analysis, and the variables that affect the efficiency and performance of the engine. The laboratory work includes a series of tests on various engines to determine volumetric and mechanical efficiency, speed-torque characteristics, fuel consumption rates, effect of injection system variables upon engine performance, analysis of high speed engine indicator card, etc.

Prerequisite: ME-112(B) or 122(C).

ME-221(C) Marine Power Plant Equipment 3-2

Text: Kiefer, Kinney and Stuart: Engineering Thermodynamics; miscellaneous supplementary material.

Prerequisite: ME-122(C).

ME-222(C) Marine Power Plant Equipment 3-4

Thermodynamic aspects of the turbine, impulse and reaction types, of the reciprocating engine, the gas compressor and blower. Refrigeration and heat pump cycles, refrigerants, multi-level refrigeration, air conditioning requirements and equipment. Associated laboratory work.

Text: Kiefer, Kinney and Stuart: Engineering Thermodynamics; miscellaneous supplementary material.

Prerequisite: ME-221(C).

ME-223(B) Marine Power Plant Analysis 2-4

Preliminary methods of estimating for a hypothetical naval ship the hull, main engine and auxiliary power requirements, inter-relationship of individual equipment items, and computation of various plant and ship performance indices. Preliminary design investigation of main propulsion turbines and other power plant equipment. Heat balance and flow diagrams.

Text: Seward: Marine Engineering; Labberton: Marine Engineering; Church: Steam Turbines; Bureau of Ships publications and data.

Prerequisite: ME-222(C) and ME-421(C).
ME-310(B) Heat Transfer 3-2

General manners of energy transition by temperature potential, characteristic thermal circuits, concepts and correlation of individual and overall heat transfer coefficients. Fourier's general law of conduction, applications to representative steady-state situations and unsteady-state condition, Schmidt and relaxation methods of approximation. Convection phases of thermal circuits, free and forced, and ones involving vaporization and condensation. Heat radiation. Associated problems and laboratory work.

Prerequisite: Ma-104 or 183 or equivalent, ME-112(B), ME-411(C).

ME-350(C) Heat Transfer 2-2

General survey of the manners of energy transition by temperature potential, with major emphasis on its transfer by radiation and conduction under steady and unsteady-state conditions.

Prerequisite: Ma-182(C) or equivalent.

ME-411(C) Hydromechanics 3-2

The mechanical properties of liquids, hydrostatic pressures and forces on submerged surfaces and associated matters of buoyancy and ship stability. Energy aspects of liquid flow, the resistance to such flow through pipes, liquid flow metering and control, hydraulic force-transmission and arrester systems. Dynamic forces associated with flow through confining channels, the centrifugal pump and hydrodynamic coupling, etc. The principle of dynamic similarity and dimensional analysis are developed and employed extensively. The laboratory periods are used for student's solution of related practical problems and for related laboratory tests. The course is the first of a sequence of ME-411 and 412.

Text: Departmental notes (Kiefer and Drucker), Mechanics of Hydraulic Equipment.

Prerequisite: Ma-103(B).

ME-412(A) Hydromechanics 4-2

Basic concepts and characteristics of flow, primarily with ideal and incompressible fluids. The flow net and primary flow patterns, their synthesis initially by graphical technics but subsequently utilizing the mathematic facilities of vector calculus and the complex variables. Theory and applications of conformal tranformation. Lamina flow, particularly in hydromechanic lubrication.

Text: Departmental notes (Kiefer and Drucker), Mechanics of Hydraulic Equipment; Streeter: Fluid Dynamics.

Prerequisite: ME-411(C), Ma-104(A) or equivalent.

ME-421(C) Hydromechanics 3-2

The course is the first of a sequence of ME-421 and 422. The content parallels that of ME-411, but proceeds at lower rate.

Text: Departmental notes (Kiefer and Drucker), Mechanics of Hydraulic Equipment.

Prerequisite: Ma-102 or equivalent.

ME-422(B) Hydromechanics 2-2

Dynamic forces in fluid flow, centrifugal pumps, couplings and torque converters, jet propulsion. Introduction to the kinematics of ideal-fluid flow, primary flow patterns and their synthesis by graphical technics. Elements of hydrodynamic lubrication.

Text: Departmental notes (Kiefer and Drucker), Mechanics of Hydraulic Equipment.

Prerequisite: ME-421, Ma-103 or equivalent.

ME-441(B) Hydromechanics 4-2

A one-term coverage of materials as follows: Mechanical properties of fluids. Hydrostatic pressures and force distribution, submerged surfaces. Energy aspects of flow; resistance to laminar and turbulent flow in ducts, with introduction to the correlation of relevant variables through the principle of dynamic similarity and use of dimensional analysis. Flow metering and control elements of hydraulic arrester. Dynamics of flow in representative devices, and performance correlations by dynamic similarity principle. Introduction to the concepts of the stream function, velocity potential, source, sink and free vortex and their synthesis to form simpler irrotational flow patterns. Brief survey of the utilization of vector calculus and the complex variable in analysis of more complex patterns.

Text: Kiefer and Drucker: departmental notes.

Prerequisite: Ma-153(B) and Ma-154(A).

ME-442(B) Compressible-fluid Flow 2-2

Review of general thermodynamic principles, and of the thermodynamic properties and property relation for gaseous fluids. Thermodynamics of the subsonic and supersonic flow of compressible fluids, reversible and shockwise, in nozzle or diffuser and
about simpler obstructions. Associated wall forces, and their operation in jet propulsion or the rocket motor.

Prerequisite: Ch-401(A) and Ch-631(A).

ME-500(C) Strength of Materials 3-0

Elements of the mechanics of elastic bodies; tensile and compressive stresses, shearing stress, Hooke's law, thin-walled cylinders, combined stresses, torsion of circular-sectioned members, elementary beam theory, combined loadings and columns.

Prerequisite: Ma-101(C) and Mc-101(C) or equivalent.

ME-511(C) Strength of Materials 5-0

Topics in elastic-body mechanics, including tensile and compressive stress, shearing stress, Hooke's law, thin-walled cylinders, combined stresses, torsion of circular-sectioned members, elementary beam theory, statically indeterminate problems in bending, beams on elastic foundations.

Prerequisite: Ma-101(C) and Mc-101(C) or equivalent.

ME-512(A) Strength of Materials 5-0

Beam columns, problems having radial symmetry, combined loading, columns, strain energy, thin plates, thick-walled cylinders, fundamental concepts in the theory of elasticity.

Prerequisite: ME-511(C).

ME-513(A) Theory of Elasticity 3-0

Plane-stress considerations, differential equations of equilibrium and compatibility, the Airy stress function, curvilinear coordinates, problems in plane stress and plane strain, three-dimensional stress considerations, St. Venant theory of torsion, energy considerations.

Prerequisite: ME-512(A) or the equivalent.

ME-522(B) Strength of Materials 4-0

Beam columns, problems having radial symmetry, strain energy, fundamental concepts in the theory of elasticity.

Prerequisite: ME-511(C).

ME-541(C) Strength of Materials 3-0

Stress, strain, Hooke's law, thin-walled cylinders, combined stresses, torsion of solid and hollow shafts, elementary beam theory, combined bending and torsion, combined bending and axial load, behavior of columns.

Prerequisite: Ma-101(C) and Mc-101(C) or equivalent.

ME-542(B) Strength of Materials 3-0

Statically indeterminate problems in bending, bending beyond the yield point, curved beams, strain energy, mechanical properties of materials.

Prerequisite: ME-541(C).

ME-550(B) Elastic Body Mechanics 5-0

Stress, strain, Hooke's law, torsion, elementary beam theory, reinforced concrete beams, columns, simple structures under static and impact loads.

Prerequisite: Mc-311(A).

ME-601(C) Materials Testing Laboratory 0-2

Performance and analysis of standard tests used in determining the mechanical properties of engineering materials, including tests in tension, compression, torsion, shear, transverse bending, impact and hardness.

Prerequisite: Subsequent to or concurrent with ME-500(C) or ME-541(C).

ME-611(C) Materials Testing Laboratory 2-2

Study of the theories of failure, the evaluation of experimental error and experiments in the determination of the mechanical properties of engineering
materials. These tests include: tension, compression, torsion, shear, transverse bending, impact, hardness, fatigue and columns.

Prerequisite: ME-511(C).

ME-612(A) Experimental Stress Analysis 3-2

The course includes: dimensional analysis, strain gage techniques, photoelasticity, brittle lacquer method, membrane analogy, miscellaneous methods in experimental stress analysis. Diversified laboratory projects will be assigned, offering an opportunity to apply the methods of experimental stress analysis to the solution of both static and dynamic problems.

Text: Lee: An Introduction to Experimental Stress Analysis.

Prerequisite: ME-513(A) and ME-611(C). ME-612(A) may be taken concurrently with ME-513(A).

ME-622(B) Experimental Stress Analysis 2-2

Introduction to the theory of elasticity, dimensional analysis, strain gage techniques, photoelasticity, brittle lacquer method, membrane analogy, miscellaneous methods in experimental stress analysis. Laboratory projects will be assigned to demonstrate the several methods presented.

Text: Lee: An Introduction to Experimental Stress Analysis.

Prerequisite: ME-522(B) and ME-611(C) or equivalent.

ME-700(C) Kinematics of Machinery 2-3

This is a general service course. The following topics are studied: link-work, cams, toothed gearing, trains of mechanisms, velocities, accelerations, static forces and inertia forces in machine members. The practical work periods are devoted to the solution on the drawing board of selected problems.

Text: Ham and Crane: Mechanics of Machinery.

Prerequisite: MC-102(C).

ME-711(B) Mechanics of Machinery 3-2

Topics considered briefly include link-works, cams and gears. Major emphasis is on the velocities and accelerations of moving parts, static and inertia forces and their balancing, critical speeds in shafts. This course is the first of a co-ordinated sequence of ME-711 and 712.

Text: Ham and Crane: Mechanics of Machinery.

Prerequisite: MC-102(C).

ME-712(A) Dynamics of Machinery 3-2

Studies are made of the following topics: balancing of solid rotors, torsional vibrations by the Holzer method, single and two degrees of freedom linear vibrating systems with and without damping, tuned pendulum absorbers, harmonic analysis of the reciprocating engine. Laboratory work includes the following experiments: balancing a solid rotor on a mechanical as well as an electrical balancing machine, vibrating linear damped vibration absorbers on the Westinghouse equipment, and operating a torsional vibration inducer unit.

Text: Den Hartog: Mechanical Vibrations; Notes by E. K. Gatcombe.

Prerequisite: Ma-103(B), Mc-201(A), ME-711(C) and ME-511(C).

ME-730(B) Dynamics of Machinery 3-2

Studies are made of the following topics: balancing of solid rotors, torsional vibration analysis by the Holzer method, single and two degrees of freedom linear vibrating systems with and without damping, tuned pendulum absorbers, harmonic analysis of the radial aircraft engine. The laboratory work includes the following experiments: balancing of solid rotors on the mechanical as well as the electrical balancing machine, vibrating linear damped vibration absorbers on the Westinghouse equipment and operating a torsional vibration inducer unit.

Text: Den Hartog: Mechanical Vibrations; Notes by E. K. Gatcombe.

Prerequisite: Ma-103(B), Mc-201(A), Ae-202(C).

ME-740(C) Kinematics and Machine Design 3-2

Studies are made of the following topics: displacements, velocities, and accelerations of the various kinematic linkages, such as the four bar mechanism, the drag link, cams, gears, intermittent motions, cyclic gears and gyro. Several design topics will be considered: the design of shafting (considering strength, deflection, bearing loads, critical speeds etc.); couplings; springs; bearings, fits and tolerances.

Text: Ham and Crane: Mechanics of Machinery; machine design notes by E. K. Gatcombe.

Prerequisite: Mc-102(C), ME-542(B)

ME-811(C) Machine Design 3-2

Review of strength of materials, selections of materials, stress-concentration, bearings, fits and tolerances. Several short design projects as follows: tabulation of tolerances for shafts and holes for the various classes of fits, accumulation of tolerances in machines, design of an armature shaft, spring de-
sign, screw fastening design, design of a power screw and the design of a set of gears. Studies of belt and chain drives, brakes, clutches, cams and thin and thick cylinders.

Prerequisite: ME-511(C) or equivalent, ME-711(B).

ME-812(B) Machine Design 3-4

Several practical design projects will be completed on the drawing board. The projects will give the students an opportunity to combine theory with practice. The drawings involved in the projects will be completely dimensioned; proper materials selected; correct base references, surfaces for machining and inspecting will be chosen; proper fits and tolerances will be chosen for interchangeable manufacture. The objective is to create designs which may actually be fabricated.

Text: Notes by E. K. Gatcombe.

Prerequisite: ME-811(C).

ME-820(C) Machine Design 2-4

Short review of strength of materials. Stress-concentration, factors of safety. Fits and tolerances. Several short design projects which illustrate the application of the principles of stress, strain deflection, fits and tolerances, vibrations, etc. General design information on bearings, springs shafting, screw fastenings, gears, clutches, brakes, cams and thick and thin cylinders.

Text: Notes by E. K. Gatcombe.

Prerequisite: ME-811(C).

ME-830(C) Machine Design 4-2

Review of strength of materials, selections of materials for different designs. Stress-concentration, bearing design, fits and tolerances. Several short design projects as follows: tabulation of tolerances for shafts and holes for various classes of fits, accumulation of tolerances in machines, design of an armature shaft, spring design, screw fastening design, design of a power screw and the design of a set of gears. Studies of belt and chain drives, brakes, clutches, cams and thin and thick cylinder design.

Text: Vallance: Design of Machine Members; Notes by E. K. Gatcombe.

Prerequisite: ME-700(C), Ae-202(C).

ME-840(C) Manufacturing Engineering 3-2

The following topics are studied: the principles of interchangeable manufacture, the selection and use of the proper machine tools to fulfill a specific requirement, the details of gage design and inspection methods with reference to proper fits and tolerances. Several industrial plants will be visited, where lectures on the use of machines will be provided.

Text: Buckingham: Interchangeable Manufacturing.

Prerequisite: ME-811(C).
METALLURGY
Mt Courses

Mt-101(C) Production Metallurgy 2-0
An introduction to the study of metallurgy and is essentially descriptive in nature. Subjects treated include the occurrence and classification of metal-bearing raw materials; the fundamental processes of extractive metallurgy; refractories, fuels, fluxes, slags and equipment; a brief summary of steelmaking and the production of copper and zinc.

Prerequisite: Ch-101(C), Ch-121(B), or concurrently with either.

Mt-102(C) Production of Steel 3-0
The subject matter includes such topics as the occurrence and composition of various iron ores, blast furnace products. The various methods of steel production and the production of grey, white and malleable cast iron.

Text: Bray: Ferrous Production Metallurgy.
Prerequisite: Ch-101(C) or Ch-121(B).

Mt-103(C) Production of Non-Ferrous Metals 3-0
A discussion of the sources, the strategic importance of, and the methods of production of the following metals: copper, zinc, lead, tin, aluminum, magnesium, and other metals of technical interest.

Text: Bray: Non-Ferrous Production Metallurgy.
Prerequisite: Ch-101(C) or Ch-121(B).

Mt-201(C) Introductory Physical Metallurgy 3-2
An introduction to physical metallurgy. Subjects treated include: (a) the nature, characteristics and properties of metals; (b) the application of the phase rule to binary and ternary alloy systems and characterize phase diagrams; (c) the correlation of microstructure, mechanical properties and corrosion resistance of alloys, with phase diagrams; (d) mechanical deformation and heat treatment of alloys; (e) descriptions of representative non-ferrous alloys of commercial importance. The subject matter is illustrated by reference to technically important alloy systems in which the phenomena are commonly observed.

Mt-202(C) Ferrous Physical Metallurgy 3-2
Continues the presentation of subject matter introduced in Metals, Mt-201, with emphasis on the alloys of iron. Subjects treated include (a) the iron-carbon alloys, (b) effects of various heat treatments and cooling rates on the structure and properties of steel, (c) isothermal reaction rates and the hardenability of steel, (d) surface hardening methods, (e) characteristics and properties of plain carbon and alloy cast irons, (f) the effect of other alloying elements on steel, (g) tool steels, (h) corrosion and corrosion-resisting steels.

The laboratory experiments are designed to introduce the student to the methods available to the metallurgist for the study of metals and alloys. These include the construction of equilibrium diagrams and metallographic studies of fundamental structures, brass, bronze, bearings, etc.

Prerequisite: None.

Mt-203(B) Physical Metallurgy 2-2
(Special Topics)
A continuation of material presented in Mt-201 and Mt-202. The subject of matter includes a discussion of the theories of corrosion, corrosion prevention, factors in corrosion, developments in powder metallurgy, metallurgical aspects of welding, casting, fatigue and fatigue failures. The alloys of aluminum and magnesium and certain alloys having characteristics suitable for special applications.

Prerequisite: Mt-202(C).
Mt-204(A) Advanced Physical Metallurgy 3-4

An enlargement of material covered in Mt-201 and Mt-202 to prepare students for advanced study in theoretical physical metallurgy. Subjects covered include the nature and source of structures occurring in steels and other ferrous materials, the interdependence of structures and mechanical properties, phase transformations in steels under isothermal and continuous cooling conditions, response to quenching and hardenablely of steels, practical heat treating of steels, effects of welding and the nature and properties of engineering cast irons and cast steels.

Prerequisite: Mt-201(C), Mt-202(C).

Mt-205(A) Advanced Physical Metallurgy 3-4

The subject matter includes a discussion of equilibrium in alloys systems, structure of metals and alloys, phase transformations and diffusion.

Text: Barrett: Structure of Metals.

Prerequisite: Mt-202(C).

Mt-206(A) Advanced Physical Metallurgy 3-4

The subject matter is an extension of that offered in Mt-205(A) and includes such topics as plastic deformation, theories of slip, recrystallization, preferred orientation, age hardening, etc.

Text: Barrett: Structure of Metals; Chalmers: Progress in Metal Physics.

Prerequisite: Mt-205(A).

Mt-207(A) The Physics of Solids

A course for engineers intended as an introduction to the current concepts of the nature of solids. Topics discussed include the wave and particle aspects of electrons, the band structure of metals, insulators and semi-conductors, perfect crystal and imperfect crystals and the interpretation of bulk properties, in terms of electronic, atomic and crystal structures.

Text: Instructor's notes.

Prerequisites: Mt-201, Ph-631, Ph-540.

Mt-301(A) High Temperature Materials 3-0

A study of the methods used in evaluating the probable behavior of materials at elevated temperatures, a consideration of the properties of particular importance in such service; evaluation of present heat-resisting alloys; a study of the effect of high temperature on the behavior of alloys; metals used in gas turbines, jets, and rockets; the use of ceramics for elevated temperatures.

Text: None.

Prerequisite: Mt-202(C).

Mt-302(A) Alloy Steels 3-3

The subject matter covered includes a thorough study of the effects of the alloying elements, including carbon, commonly used in steel making on the characteristics of steels in the annealed, the hardened and the hardened and tempered conditions. The principles elucidated are subsequently applied to studies of the classes of steels used for structural purposes, machinery (S.A.E. and A.I.S.I. grades), electrical purposes, tools, and corrosion resisting purposes.

Text: E. C. Bain: The Alloying Elements in Steel; references and reading assignments in other books and current literature.

Prerequisite: Mt-202(C), Mt-204(A).

Mt-303(A) Metallurgy Seminar

Hours to be arranged

Papers from current technical journals will be reported on and discussed by students.

Text: None.

Prerequisite: Mt-203(B), 204(A), or 205(A).

Mt-304(C) Radiography 2-2

Principles of x-ray and gamma ray radiography, including a discussion of high voltage equipment, film characteristics and a comparison of radiography with other non-destructive methods of inspection.

Text: None.

Prerequisite: Mt-202(C).

Mt-401(A) Physics of Metals 3-0

A discussion of crystal chemistry and modern theories of the solid state. Topics considered are the wave nature of electrons, the electron theory of metals, reaction kinetics, free energy of alloy phases, order-disorder transformations, etc.

Prerequisite: Mt-205(A), Ph-610(B), or 640(B).

Mt-402(B) Nuclear Reactor Materials-Effects of Radiation 3-0

A course designed for students in nuclear engineering. Includes a study of materials of reactor construction; factors in materials selection; commercially available materials; liquid metal coolants; nature of radiation damage on materials.

Prerequisite: Mt-202.
THE ENGINEERING SCHOOL

NEW WEAPONS DEVELOPMENT
SL Lecture Courses

New Weapons Development I ___________SL-101

SL-101 New Weapons Development I 0-1
Consists of the first ten lectures of a twenty-lecture series to be delivered by authorities in the field of new weapons development, the latter term being used in its broadest sense and including such developments as atomic energy, guided missiles, pilotless aircraft, radar, special communication equipment, countermeasures, special fuzes and jet propulsion.

Text: None.
Prerequisite: None.

New Weapons Development II ___________SL-102

SL-102 New Weapons Development II 0-1
A continuation of Course SL-101 and consists of the second ten lectures of the twenty-lecture series described under SL-101.
Text: None.
Prerequisite: None.
OCEANOGRAPHY

OCEANOGRAPHY

Oc Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Oceanography</td>
<td>Oc-101(C)</td>
</tr>
<tr>
<td>General Oceanography</td>
<td>Oc-111(C)</td>
</tr>
<tr>
<td>Physical Oceanography</td>
<td>Oc-201(B)</td>
</tr>
<tr>
<td>Amphibious Oceanography</td>
<td>Oc-203(C)</td>
</tr>
<tr>
<td>Littoral Oceanography</td>
<td>Oc-213(C)</td>
</tr>
<tr>
<td>Military Oceanography</td>
<td>Oc-301(C)</td>
</tr>
<tr>
<td>Oceanographic Factors in Underwater Sound</td>
<td>Oc-311(C)</td>
</tr>
<tr>
<td>Naval Applications of Oceanography</td>
<td>Oc-401(C)</td>
</tr>
</tbody>
</table>

Oc-101(C) Introduction to Oceanography 2-1

A survey of the physical and chemical properties of sea water, marine biology, and submarine geology; ocean currents, heat budget, water masses, tides, oceanographic observations and instruments.

Prerequisites: Ma-161(C) or Ma-100(C); Ph-190(C) or Ph-196(C) or equivalent.

Oc-111(B) General Oceanography 3-1

Physical, chemical, and biological properties of the oceans; exchange of heat, moisture, and momentum between sea and atmosphere; equations of relative mean motion, special forms; oceanographic instruments and observations.

Prerequisites: Ma-163(C), Mr-216(B) or equivalent.

Oc-201(C) Physical Oceanography 2-0

Processes which tend to modify the distribution of physical properties in the oceans: turbulence, diffusion, wind stress, internal waves, evaporation, the geostrophic current, upwelling and sinking, stability.

Texts: Sverdrup: Oceanography for Meteorologists; NavAer 50-1R-242: The Applications of Oceanography to Subsurface Warfare; Berry, Bollay, Beers: Handbook of Meteorology.

Prerequisites: Ph-191(C) or Ph-196(C) or equivalent; Ma-163(C) or Ma-100 and Ma-140; Oc-101(C).

Oc-203(C) Amphibious Oceanography 3-1

The characteristics of breaking waves, littoral currents and beach processes, and their effects upon amphibious operations; estuarine circulation, bottom sediments, and naval applications; shallow-water observations and equipment.

Text: Mimeographed notes.

Prerequisite: Mr-610(C) or Mr-620(B).

Oc-213(C) Littoral Oceanography 2-2

Similar to Course Oc-203(C), but emphasizing recent developments in the field.

Texts: Mimeographed notes.

Prerequisites: Oc-111(B), Mr-620(B), Mr-323(A).

Oc-301(C) Military Oceanography 2-1

The oceanographic factors involved in sound ranging: thermal gradients, ambient noise, volume and surface scattering and their time variation; forecasting sonar ranges and changes in ranging conditions as related to meteorological factors.

Prerequisite: Oc-201(C).

Oc-311(C) Oceanographic Factors in Underwater Sound 2-1

Refraction, absorption, scattering, and diffraction of underwater sound as a function of the oceanic environment. Similar to Course Oc-301(C), but emphasizing recent developments.

Texts: NDRC Technical Summary: The Principles of Underwater Sound; NavAer 50-1R-242: Applications of Oceanography to Submarine Warfare; mimeographed notes.

Prerequisites: Oc-111(B), Ph-196(C) or equivalent.

Oc-401(C) Naval Applications of Oceanography 3-0

Waves, currents, tides, thermal structure and biological phenomena in the oceans, and submarine geology; their applications to problems in landing operations, navigation, mine, and submarine warfare.

Prerequisite: Oc-101(C).
OPERATIONS ANALYSIS

Oa Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oa-151(B)</td>
<td>Survey of Weapons Evaluation</td>
<td>3-0</td>
</tr>
<tr>
<td>Oa-152(C)</td>
<td>Measures of Effectiveness of Mines</td>
<td>3-0</td>
</tr>
<tr>
<td>Oa-153(B)</td>
<td>Game Theory and Its Applications to Mine Fields</td>
<td>3-0</td>
</tr>
<tr>
<td>Oa-191(C)</td>
<td>Introduction to Operations Analysis</td>
<td>3-0</td>
</tr>
<tr>
<td>Oa-192(B)</td>
<td>Theory of Search</td>
<td>3-0</td>
</tr>
<tr>
<td>Oa-193(B)</td>
<td>Effectiveness of Weapons</td>
<td>4-0</td>
</tr>
<tr>
<td>Oa-194(A)</td>
<td>Optimal Weapon Systems I</td>
<td>4-0</td>
</tr>
<tr>
<td>Oa-195(A)</td>
<td>Optimal Weapon Systems II</td>
<td>3-0</td>
</tr>
<tr>
<td>Oa-201(A)</td>
<td>Logistics Analysis</td>
<td>3-0</td>
</tr>
<tr>
<td>Oa-202(A)</td>
<td>Econometrics</td>
<td>3-0</td>
</tr>
<tr>
<td>Oa-401(A)</td>
<td>Theory of Information</td>
<td>3-0</td>
</tr>
</tbody>
</table>

Oa-151(B) Survey of Weapons Evaluation

Sources of firing errors and their relative contributions to the over-all errors. Determination of aim point for an evading target. Concept and evaluation of lethal area as a function of both the target and the weapon system. Damage probabilities. Patterns of projectiles, bombs, torpedoes, and mines.

Texts: Operations Evaluation Group: Report No. 54, Methods of Operations Research; Classified official publications.

Prerequisites: Ma-100(C), Ma-101(C), Ma-301(B).

Oa-152(C) Measures of Effectiveness of Mines

Texts: Classified official publications.

Prerequisites: Ma-381(C), Ma-382(A).

Oa-153(B) Game Theory and Its Applications to Mine Fields

A continuation of Oa-152(C). Introduction to Game Theory. Operation of a mine field according to Game Theory. Design of mine fields. Detection of mines.

Texts: Classified official publications.

Prerequisite: Oa-152(C).

Oa-191(C) Introduction to Operations Analysis

Development of fundamental concepts and methods of operations analysis as illustrated in the fields of submarine and anti-submarine warfare. Overall measures of effectiveness of a submarine as a weapon system. Determination of effectiveness as a product of measures of detection, attack, and kill capabilities.

Texts: Operations Evaluation Group: Report No. 54, Methods of Operations Research; Classified official publications.

Prerequisites: Ma-192(C), Ma-381(C).

Oa-192(B) Theory of Search

Texts: Classified official publications.

Prerequisites: Oa-191(C), Ma-382(A).

Oa-193(B) Effectiveness of Weapons

Probability of a hit by one or more projectiles, torpedoes or other weapons. Correlation between shots. Sources of errors. Lethal area and lethal volume. Damage and kill probabilities. Theory of prediction. Comparison of weapons.

Text: Classified official publications.

Prerequisites: Ma-192(C), Ma-382(A) and Oa-192(B).

Oa-194(A) Optimal Weapon Systems I

Selection of optimum airplane-weapon system for anti-submarine patrol. Optimal formations of ships and airplanes. Optimal design of minefields.

Text: Classified official publications.

Prerequisites: Ma-591(A), Oa-193(B).

Oa-195(A) Optimal Weapon Systems II

Texts: Classified official publications.

Prerequisite: Oa-194(A).
Oa-201(A) Logistics Analysis 3-2

Mathematical methods in logistics, with major emphasis on applications of linear programming to problems of transportation and scheduling of interdependent activities. Theory of inventory control. Laboratory work on computation of optimal solutions of linear programs.

Text: Koopmans: Activity Analysis of Production and Allocation.

Prerequisites: Ma-501(A), Ma-195(A).

Oa-202(A) Econometrics 3-0

A continuation of Oa-201(A). Inter-industry analysis; mathematical economic theory; review of current theoretical investigations of relationships between military programs and the national economy.

Oa-401(A) Theory of Information 3-0

Communication

Measurement of information; noise; entropy of information; maximum capacity of a channel. Automatic control. Stochastic functions, stationary processes, correlation, spectral resolution; prediction; filtration.

Prerequisites: Ma-195(A), Ma-383(A).
ORDNANCE
Or Courses

Ordnance I __________________ Or-101(C)
Guided Missiles I __________________ Or-241(C)
Ordnance II __________________ Or-102(C)
Guided Missiles II __________________ Or-242(B)
Ordnance III __________________ Or-103(C)
Mine Countermeasures I __________________ Or-291(C)
Ordnance IV __________________ Or-104(C)
Mine Countermeasures II __________________ Or-292(C)
Mines and Mine Mechanisms __________ Or-191(C)
Mine Warfare Seminar __________ Or-294(A)
Mining Operations ____________ Or-192(C)
Thesis I __________ Or-295(A)
Advanced Fire Control __________ Or-231(B)
Thesis II __________ Or-296(A)

Or-101(C) Ordnance I 2-1
The first of four courses in a series designed to provide a survey of the organization, principles, and theories used in the various ordnance fields with limited examples to demonstrate application. Bureau of Ordnance organization and activities; logistics; safety precautions; explosives; ammunition selection and capabilities; ordnance literature.

Text: Classified official publications.
Prerequisite: None.

Or-102(C) Ordnance II 3-2
Continuation of Or-101(C) series. Basic mechanisms (mechanical, electrical, and electronic); aviation ordnance; guided missiles; underwater ordnance.

Text: Classified official publications.
Prerequisite: None.

Or-103(C) Ordnance III 2-2
Continuation of Or-101(C) series. Fire control radar; surface fire control; AA fire control, fire control fundamentals, representative naval systems.

Text: Classified official publications.
Prerequisite: None.

Or-104(C) Ordnance IV 2-1
Continuation of Or-101(C) series. Chemical warfare, agents, effects, methods; biological warfare, agents, methods; atomic warfare, nuclear reactions, effects, damage criteria and weapons size.

Text: Classified official publications.
Prerequisite: None.

Or-191(C) Mines and Mine Mechanisms 2-0

Text: Classified official publications.
Prerequisite: None.

Or-192(C) Mining Operations 2-0

Text: Classified official publications.
Prerequisite: Or-191(C).

Or-231(B) Advanced Fire Control 2-0
A study of fire control theory and fundamentals. Comparison of fundamentals of AA fire control systems. Dynamics of fire control systems. Theory of lead computing gunsights.

Text: Classified official publications.
Prerequisite: None.

Or-241(C) Guided Missiles I 2-0
General concepts and theoretical problems involved in guidance, launching, propulsion, warhead design, stabilization, and simulation of guided missiles. Tactical problems and limitations of guidance systems. Organization of guided missile program. Test ranges and instrumentation. Practical application as exemplified by the BAT.

Text: Classified official publications.
Prerequisite: None.

Or-242(B) Guided Missiles II 2-0
Continuation of Or-241(C). Concepts of FM-CW and doppler radar; types of servos; the ballistic trajectory as applied to guided missiles. Application of guided missiles principles and uses as exemplified by V-2, Loon, Terrier, Talos, Zeus, and Regulus. The Kingfisher-Petrel program.

Text: Classified official publications.
Prerequisite: Or-241(C).
Or-291(C) Mine Countermeasures I 3-0
Text: Classified official publications.
Prerequisite: None.

Or-292(C) Mine Countermeasures II 3-2
Text: Classified official publications.
Prerequisite: Or-291(C).

Or-294(A) Mine Warfare Seminar 2-0
Investigation and reports by students on assigned mine warfare topics. Occasional presentations and discussions by field representatives of mine warfare activities.
Text: None.
Prerequisite: Or-292(C).

Or-295(A) Thesis I 2-9
Thesis preparation and research in a designated mine warfare subject guided by appropriate staff and faculty members.
Text: None.
Prerequisite: None.

Or-296(A) Thesis II 2-6
Continuation of Or-295(A). Completion of research and thesis.
Text: None.
Prerequisite: Or-295(A).
PHYSICS

Ph Courses

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamics</td>
<td>Ph-113(B)</td>
</tr>
<tr>
<td>Analytical Mechanics</td>
<td>Ph-113(B)</td>
</tr>
<tr>
<td>Analytical Mechanics</td>
<td>Ph-142(B)</td>
</tr>
<tr>
<td>Analytical Mechanics</td>
<td>Ph-143(A)</td>
</tr>
<tr>
<td>Survey of Physics I</td>
<td>Ph-190(C)</td>
</tr>
<tr>
<td>Survey of Physics II</td>
<td>Ph-191(C)</td>
</tr>
<tr>
<td>Review of General Physics</td>
<td>Ph-196(C)</td>
</tr>
<tr>
<td>Optics</td>
<td>Ph-211(C)</td>
</tr>
<tr>
<td>Dynamics</td>
<td>Ph-212(B)</td>
</tr>
<tr>
<td>Geometrical and Physical Optics</td>
<td>Ph-240(C)</td>
</tr>
<tr>
<td>Polarized Light</td>
<td>Ph-241(B)</td>
</tr>
<tr>
<td>Geometrical and Physical Optics</td>
<td>Ph-250(C)</td>
</tr>
<tr>
<td>Electrostatics and Magnetostatics</td>
<td>Ph-311(B)</td>
</tr>
<tr>
<td>Electricity and Magnetism</td>
<td>Ph-341(C)</td>
</tr>
<tr>
<td>Electricity and Magnetism</td>
<td>Ph-351(A)</td>
</tr>
<tr>
<td>Electromagnetism</td>
<td>Ph-361(A)</td>
</tr>
<tr>
<td>Electromagnetic Waves</td>
<td>Ph-362(A)</td>
</tr>
<tr>
<td>Sound</td>
<td>Ph-410(B)</td>
</tr>
<tr>
<td>Fundamental Acoustics</td>
<td>Ph-421(A)</td>
</tr>
<tr>
<td>Applied Acoustics</td>
<td>Ph-422(A)</td>
</tr>
<tr>
<td>Underwater Acoustics</td>
<td>Ph-423(A)</td>
</tr>
<tr>
<td>Sonar Systems and Developments</td>
<td>Ph-424(A)</td>
</tr>
<tr>
<td>Underwater Acoustics</td>
<td>Ph-425(A)</td>
</tr>
<tr>
<td>Acoustics Laboratory</td>
<td>Ph-426(B)</td>
</tr>
<tr>
<td>Fundamental and Applied Acoustics</td>
<td>Ph-427(B)</td>
</tr>
<tr>
<td>Underwater Acoustics</td>
<td>Ph-428(B)</td>
</tr>
<tr>
<td>Longitudinal Waves in Fluids</td>
<td>Ph-441(A)</td>
</tr>
<tr>
<td>Underwater Acoustics</td>
<td>Ph-450(B)</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>Ph-530(B)</td>
</tr>
<tr>
<td>Kinetic Theory and Statistical Mechanics</td>
<td>Ph-540(B)</td>
</tr>
<tr>
<td>Kinetic Theory and Statistical Mechanics</td>
<td>Ph-541(B)</td>
</tr>
<tr>
<td>Thermodynamics and Statistical Mechanics</td>
<td>Ph-542(A)</td>
</tr>
<tr>
<td>Atomic Physics</td>
<td>Ph-610(B)</td>
</tr>
<tr>
<td>Atomic Physics</td>
<td>Ph-631(B)</td>
</tr>
<tr>
<td>Atomic Physics</td>
<td>Ph-640(B)</td>
</tr>
<tr>
<td>Atomic Physics</td>
<td>Ph-641(B)</td>
</tr>
<tr>
<td>Nuclear Physics</td>
<td>Ph-642(A)</td>
</tr>
<tr>
<td>Nuclear Physics Laboratory</td>
<td>Ph-643(A)</td>
</tr>
<tr>
<td>Introduction to Quantum Mechanics</td>
<td>Ph-721(A)</td>
</tr>
<tr>
<td>Physics of the Solid State</td>
<td>Ph-722(A)</td>
</tr>
<tr>
<td>Theoretical Physics</td>
<td>Ph-731(A)</td>
</tr>
<tr>
<td>Theoretical Physics</td>
<td>Ph-732(A)</td>
</tr>
<tr>
<td>Introductory Quantum Mechanics</td>
<td>Ph-740(A)</td>
</tr>
</tbody>
</table>

Prerequisite:
- Ph-141(B); Ma-183(B). (May be taken concurrently.)

Ph-143(A) Analytical Mechanics

3-0

Texts: Goldstein: Classical Mechanics; Slater and Frank: Mechanics.

Prerequisite: Mc-102(C).

Ph-190(C) Survey of Physics I

3-0

Text: Sears and Zemansky: College Physics.

Prerequisite: None.

Ph-191(C) Survey of Physics II

3-0

A continuation of Ph-190(C). A survey of wave propagation, sound, electricity and magnetism, atomic structure, the properties of light, and other electromagnetic wave phenomena.
Text: Sears and Zemansky: College Physics.
Prerequisite: Ph-190(C) or equivalent.

Ph-196(C) Review of General Physics 5-0
A short review of statics and dynamics. A survey of temperature, heat, kinetic theory, electricity and magnetism, wave motion and sound, and selected topics in light as time permits.
Text: Sears and Zemansky: University Physics.
Prerequisite: Ph-191(C) or equivalent.

Ph-211(C) Optics 3-0
The principal topics are: reflection and refraction of light; lenses and lens aberrations; stops; optical systems; and dispersion.
Prerequisite: Ma-101(C). (May be taken concurrently.)

Ph-212(B) Physical Optics and Introductory Dynamics 3-3
A continuation of Ph-211(C). An analytical presentation of interference, diffraction, polarization, origin of spectra, optical behavior of radio waves, introductory dynamics.
Prerequisites: Ph-211(C); Ma-102(C). (May be taken concurrently.)

Ph-240(C) Geometrical and Physical Optics 3-3
Reflection and refraction of light, lenses, optical systems, dispersion, interference, diffraction, polarization.
Prerequisite: Ma-101(C) or 181(B). (May be taken concurrently.)

Ph-241(B) Polarized Light 1-3
Primarily a laboratory course in polarized light. The following experiments are included: polarization phenomena caused by transmission of light through crystals, polarization by reflection from dielectrics, reflection from metals and optical constants of metals, analysis of elliptically polarized light, wave plates, and optical activity.
Text: Lecture notes.
Prerequisite: Ph-240(C) or Ph-250(C).

Ph-250(C) Geometrical and Physical Optics 3-2
Reflection and refraction of light, lenses, lens systems, dispersion, interference, diffraction.
Prerequisite: Ma-101(C) or 181(B) (May be taken concurrently.)

Ph-311(B) Electrostatics and Magnetostatics 3-0
Coulomb's law, Gauss' law, dipoles, dielectric theory, polarization, harmonic solutions of Laplace's equation, electrical images, magnetic dipoles and shells, Ampere's law, magnetic field of current, magnetic theory. Both analytical and vector methods are used.
Prerequisites: Ma-103(B); Es-112(C).

Ph-341(C) Electricity and Magnetism 4-2
DC and AC circuits, elementary electrostatics, vacuum tubes, coupled circuits, filters, lines, vacuum tube circuits. The treatment emphasizes the physical aspects of these phenomena.
Texts: Harnwell: Principles of Electricity and Magnetism; NavShips 900,016; lecture notes.
Prerequisite: Ma-182(B). (May be taken concurrently.)

Ph-351(A) Electricity and Magnetism 5-0
Electrostatics, electromagnetic fields and potentials, dielectrics, Maxwell's equations, electromagnetic waves.
Text: Slater and Frank: Electromagnetism.
Prerequisites: Ph-143(A); Es-272(C).

Ph-361(A) Electromagnetism 3-0
Electromagnetic field theory; electrostatics, dielectrics, magnetic fields of currents; vector potential; magnetic materials; magnetomotive force; electromagnetic induction; Maxwell's equations; electromagnetic waves.
Text: Slater and Frank: Electromagnetism.
Prerequisites: Ma-104(A); EE-272(C), or equivalent.

Ph-362(A) Electromagnetic Waves 3-0
A continuation of Ph-361(A). Reflection and refraction of electromagnetic waves; wave guides; cavity resonators; electromagnetic radiation.
Text: Slater and Frank: Electromagnetism.
Prerequisite: Ph-361(A).
Ph-410(B) Sound

A brief survey of vibrating systems, and of the problems arising in connection with the radiation, transmission and reception of sound in air and in water.

Prerequisite: Ma-102(C).

Ph-421(A) Fundamental Acoustics

An analytical study of the dynamics of vibrating systems including free, forced, damped, and coupled simple harmonic motion, vibrations of strings, bars, membranes, and diaphragms. A development of the acoustic wave equation. Propagation of plane waves through pipes and between different media. Propagation of spherical waves, including radiation from pulsating sphere and circular piston.

Prerequisite: Ma-104(A).

Ph-422(A) Applied Acoustics

Prerequisite: Ph-421(A).

Ph-423(A) Underwater Acoustics

A continuation of Ph-422(A). An analytical treatment of the piezoelectric effect and the magnetostriiction effect with applications to sonar transducers and to crystal oscillators; transmission of sound in sea water, including problems of refraction, attenuation and reverberation. Physical principles and electronic circuits used in design and operation of modern sonar equipment. Experiments in acoustical measurements, sound beam and sonar equipment measurements, operation of sonar equipment.

Prerequisite: Ph-422(A).

Ph-424(A) Sonar Systems and Developments

Various types of sonar equipment and new developments are studied in the laboratory and in the classroom. Shock waves.

Prerequisite: Ph-423(A) or Ph-450(B).

Ph-425(A) Underwater Acoustics

A continuation of Ph-421(A). An analytic treatment of the propagation of underwater acoustic waves as influenced by boundary conditions, refraction, reverberation, and attenuation. Physical characteristics of sonar transducers. Psychoacoustics, acoustic impedance, shock waves, sonar systems and developments, experimental measurements in underwater acoustics. Laboratory includes experiments in underwater acoustic measurements, sonar beam pattern, and operational characteristics of sonar equipment.

Prerequisite: Ph-421(A).

Ph-426(B) Acoustics Laboratory

A laboratory course to accompany Ph-421(A). An experimental study of vibrating systems and acoustic radiations.

Text: None.
Prerequisite: Ph-421(A) concurrently.

Ph-427(B) Fundamental and Applied Acoustics

A study of the dynamics of vibrating systems and of the propagation of acoustic waves. Applications of basic acoustic theory to design of resonators, filters, loudspeakers, microphones, etc.

Prerequisite: Ma-103(A).

Ph-428(B) Underwater Acoustics

A continuation of Ph-427(B). A study of the transmission of sound in sea water including problems arising from refraction, absorption, reverberation, background noise, etc. Physical principles, electronic circuits, and transducers used in modern sonar equipment. Experiments in acoustical measurements, sound beam and sonar equipment measurements, operational characteristics of sonar equipment.

Prerequisite: Ph-427(B).

Ph-441(A) Longitudinal Waves in Fluids

COURSE DESCRIPTIONS—PHYSICS

Prerequisites: Ma-183(B); Ph-143(A).

Ph-450(B) Underwater Acoustics 3-2
An analytic treatment of the fundamentals of acoustics, with particular emphasis on sound radiation and transmission problems encountered in underwater acoustics.

Prerequisite: Ma-102(C).

Ph-530(B) Thermodynamics 3-0
Fundamental theory of thermodynamics and application to physical problems. First and second laws of thermodynamics, entropy, free energy, the phase rule, gaseous reactions, thermodynamics of dilute solutions, specific heats of gases, the Nernst heat theorem.

Text: Sears: Thermodynamics.
Prerequisites: Ph-113(B) or Ph-142(B); Ma-103(B) or Ma-183(B).

Ph-540(B) Kinetic Theory and Statistical Mechanics 3-0
Properties of an ideal gas, Maxwell-Boltzman distribution, mean free path, collision cross-section, non-ideal gases, viscosity, heat conductivity, diffusion; introduction to classical and quantum statistics, including Fermi-Dirac and Bose-Einstein statistics.

Texts: Kennard: Kinetic Theory of Gases; Sears: Thermodynamics; Lecture notes.
Prerequisites: Ph-113(B) or Ph-142(B); Ma-103(B) or Ma-183(B).

Ph-541(B) Kinetic Theory and Statistical Mechanics 4-0
Maxwell-Boltzman distribution, collision cross-sections, introduction to classical and quantum statistics, with application to radiant energy.

Texts: Kennard: Kinetic Theory; Sears: Thermodynamics.
Prerequisites: Ma-183(B); Ph-143(A).

Ph-542(A) Thermodynamics and Statistical Mechanics 4-0
The principal topics are: equations of state, first and second laws of thermodynamics; introduction to classical and quantum statistics, including Fermi-Dirac and Bose-Einstein statistics; theory of fluctuations.

Text: Allis and Herlin: Thermodynamics and Statistical Mechanics; lecture notes.
Prerequisites: Ph-113(B) or Ph-142(B); Ma-103(B) or Ma-183(B).

Ph-610(B) Atomic Physics 3-0
Elementary charged particles, photoelectricity, X-rays, radioactivity, atomic structure, nuclear reactions.

Prerequisite: None.

Ph-631(B) Atomic Physics 4-0
Dynamics of elementary charged particles, Rutherford’s model of the atom and the scattering of alpha particles, special theory of relativity, black-body radiation, Bohr model of the atom, Schroedinger wave equation, dipole radiation, optical spectra, Zeeman effect, magnetic moments, Pauli’s principle, x-rays, photoelectric effect, natural radioactivity, the nucleus, artificial radioactivity.

Prerequisite: Ph-361(B) or equivalent.

Ph-640(B) Atomic Physics 3-3
Same as Ph-631(B) above, together with laboratory work.

Prerequisite: Ph-361(B) or equivalent.

Ph-641(B) Atomic Physics 3-3
Elementary charged particles, atomic structure, Bohr model of the atom, special theory of relativity, photoelectricity, X-rays and optical spectra.

Prerequisites: Ph-143(A); Ph-250(C).

Ph-642(A) Nuclear Physics 3-0
Nuclear structure, radioactivity, nuclear reactions and nuclear fission.

Text: Bitter: Nuclear Physics.
Prerequisite: Ph-740(A).

Ph-643(A) Nuclear Physics Laboratory 0-3
An experimental study of the phenomena, observational methods, and instruments used in nuclear physics.

Text: None.
Prerequisite: Ph-642(A). (May be taken concurrently.)
A General Line School class in Engineering. Practical operating courses such as these play an important part in supplementing an officer's former education and experience, and preparing officers for a variety of future duties.
A General Line School class in Navigation.
Typical General Line School training equipment, currently in temporary location in buildings of the Naval Auxiliary Air Station.
Model used in engineering classes at the General Line School.
Ph-721(A) Introduction to Quantum Mechanics 4-0

This course is designed to familiarize the student with the postulates and methods of Schroedinger's quantum mechanics, with application to such problems as the free particle, particle in a potential well, potential barriers, cold cathode emission, natural radioactivity, harmonic oscillator, free rotator, hydrogen atom and the one-dimensional potential lattice for the solid state.

Text: Lecture notes.
Prerequisites: Ph-142(B); Ph-640(B) or equivalent.

Ph-722(A) Physics of the Solid State 3-0

Properties of ionic crystals such as lattice energies, electrical conductivity, absorption, phosphorescence and fluorescence. The transistor. Properties of metals such as specific heats, electrical conductivity and magnetic susceptibility.

Prerequisite: Ph-721(A) or equivalent.

Ph-731(A) Theoretical Physics 3-0

Topics in theoretical physics selected to meet the needs of the student.

Text: None.
Prerequisite: Consent of instructor.

Ph-732(A) Theoretical Physics 3-0

Topics in theoretical physics selected to meet the needs of the student.

Text: None.
Prerequisite: Ph-731(A).

Ph-740(A) Introductory Quantum Mechanics 3-0

Schroedinger's wave mechanics, with application to such problems as the free particle, particle in a potential well, harmonic oscillator and the hydrogen atom.

Text: None.
Prerequisite: Ph-641(B) or equivalent.
SECTION III

THE GENERAL LINE SCHOOL

Director
George Kittrell FRASER, Captain, U. S. Navy
B.S., USNA, 1927; Graduate Aviation Ordnance; Engineering, USNPGS, 1938.

Assistant to the Director
Charles Coleman TIDWELL, Jr., Lieutenant Commander, U. S. Navy

Training Aids Officer
Gordon Leonard KALLENBERG, Lieutenant, U. S. Navy

NAVAL STAFF

COMMAND AND STAFF DEPARTMENT

Charles Edward ROBERTSON
Captain, U. S. Navy
Head of Department
B.S., USNA, 1933.

Preston Randolph BELCHER
Commander, U. S. Navy
Senior Administration and Leadership Instructor

Charles Dean DAVOL, Jr.
Lieutenant Commander, U. S. Navy
Administration and Leadership Instructor

Lloyd Webb BERTOGLIO
Lieutenant Commander, U. S. Navy
Senior Aviation Instructor

Robert John GERHARDT
Lieutenant Commander, U. S. Navy
Logistics Instructor
B.S., Northwestern Univ., 1942; M.A., 1949

Thomas Richard FONICK
Commander, U. S. Navy
Senior Military Law Instructor
B.S., Univ. of Washington, 1934.

Fred Yance BOYER
Commander, U. S. Navy
Military Law Instructor
LL.B., Univ. of Texas, 1942; LL.M., George Washington Univ., 1948.

Saul Myer WEINGARTEN
Lieutenant, U. S. Navy
Military Law Instructor
A.A., Antelope Valley College, 1940; A.B., Univ. of California at Los Angeles, 1942; LL.B., Univ. of Southern California School of Law, 1949; Coro Fellow, Coro Foundation, 1950.

OPERATIONAL COMMAND DEPARTMENT

Edwin Byron PARKER, Jr.
Commander, U. S. Navy
Head of Department
B.S., USNA, 1935.

John Joseph REIDY, Jr.
Commander, U. S. Navy
Senior Tactics Instructor

Robert Arnold NEWCOMB
Lieutenant Commander, U. S. Navy
Tactics Instructor
B.S., USNA, 1940.

Norman Allan SMITH
Lieutenant Commander, U. S. Navy
Tactics Instructor

William Michael ROBINSON
Lieutenant Commander, U. S. Navy
Tactics Instructor
B.S., USNA, 1942.

Orin Nicholas FORD
Lieutenant Commander, U. S. Navy
Tactics Instructor
A.A., Hartnell College, 1941.

William Park BAKER
Lieutenant Commander, U. S. Navy
Tactics Instructor
B.S., USNA, 1943.

Joseph Delos FULLER
Lieutenant Commander, U. S. Navy
Senior Communications Instructor

Earl Henry LEACH
Lieutenant Commander, U. S. Navy
Communication Instructor
B.S., Springfield College, 1936.
THE GENERAL LINE SCHOOL

Paul Henry BARKLEY
Lieutenant, U. S. Navy
Communication Instructor

Francis Vincent KENNEY
Commander, U. S. Navy
Senior CIC-ASW Instructor

William Ramsay TROTTER
Lieutenant, U. S. Navy
CIC-ASW Instructor

Derrill Plummer CROSBY
Lieutenant, U. S. Navy
CIC-ASW Instructor

John Newell CUMMINGS
Lieutenant, U. S. Navy
CIC-ASW Instructor

Carl William BURROWS, Jr.
Lieutenant, U. S. Navy
CIC-ASW Instructor
B.S., USNA, 1944.

SEAMANSHIP AND NAVIGATION DEPARTMENT

Edward Frank STEFFANIDES, Jr.
Commander, U. S. Navy
Head of Department
B.S., USNA, 1931.

Philip Thompson GLENNON
Commander, U. S. Navy
Senior Navigation and Submarine Instructor
B.S., USNA, 1940.

William Gwynette SHORES
Lieutenant, U. S. Navy
Navigation Instructor

Alden Seymour RIKER
Lieutenant, U. S. Navy
Navigation Instructor

Frank Gordon REESE
Lieutenant, U. S. Navy
Navigation and Submarine Instructor
B.S., Univ. of Washington, 1944.

Burton Floyd John ALBRECHT
Lieutenant Commander, U. S. Navy
Meteorology Instructor
B.S., Arizona State College, 1941.

Harry Victor HARTSELL, Jr.
Lieutenant Commander, U. S. Navy
Seamanship Instructor

Kenneth J. CHAPMAN
Lieutenant, U. S. Navy
Seamanship Instructor

ORDNANCE AND GUNNERY DEPARTMENT

Roger Farrington MILLER
Commander, U. S. Navy
Head of Department
B.S., Univ. of California, 1931.

James Frederick Bennett JOHNSTON
Commander, U. S. Navy
Senior Ordnance and Gunnery Instructor
B.S., USNA, 1939.

Robert Wilson MILLER
Lieutenant, U. S. Navy
Ordnance and Gunnery Instructor
B.S., Pennsylvania State Teachers College, 1943.

Teddy Roosevelt FIELDING
Lieutenant, U. S. Navy
Ordnance and Gunnery Instructor

Thomas James MURRAY
Lieutenant, U. S. Navy
Ordnance and Gunnery Instructor

David Dean DITZLER
Lieutenant, U. S. Navy
Ordnance and Gunnery Instructor

ENGINEERING AND DAMAGE CONTROL DEPARTMENT

John Albert LEONARD
Commander, U. S. Navy
Head of Department
B.S., USNA, 1938.

William Wade GENTRY
Commander, U. S. Navy
Senior Naval Engineering Instructor
B.S., USNA, 1939; B.S., in M.E., USNPGS, 1948.

Arthur Ralph WAGGENER
Lieutenant Commander, U. S. Navy
Naval Engineering Instructor

Ross PETERS
Lieutenant, U. S. Navy
Naval Engineering Instructor

Preston Raymond RITTER
Lieutenant Commander, U. S. Navy
Senior Damage Control Instructor
B.S., in M.E., Polytechnic Engineering College, Oakland, 1941.
CIVILIAN FACULTY

Edmund Eugene LE BER
Lieutenant, U. S. Navy
Damage Control Instructor
B.S., Naval Architecture, Webb Institute.

Charles Golden TYLER
Lieutenant, U. S. Navy
Damage Control Instructor

CIVILIAN FACULTY

Roy Stanley GLASGOW, Academic Dean
B.S., Washington Univ., 1918; M.S., Harvard Univ., 1922; E.E., 1925.

ELECTRICAL ENGINEERING AND MATHEMATICS DEPARTMENT

Frank Emilio LACAUZA

Edward Markham GARDNER
Associate Professor of Electrical Engineering (1948) B.S. in Engineering, Univ. of London, 1923; M.S. in EE., California Institute of Technology, 1938.

John Dewitt RIGGIN
Associate Professor of Electrical Engineering (1946) B.S. in E.E., Univ. of Mississippi, 1934; M.S. in E.E., Univ. of Mississippi, 1936.

Raymond Kenneth HOUSTON
Associate Professor of Electrical Engineering (1946) B.S., Worcester Polytechnic Institute, 1938; M.S., 1939.

David Boysen HOISINGTON
Associate Professor of Electrical Engineering (1947) B.S. in E.E., Massachusetts Institute of Technology, 1940; M.S. in E.E., University of Pennsylvania, 1941.

Raymond Patrick MURRAY
Assistant Professor of Electrical Engineering (1947) B.E. in E.E., Kansas State College, 1937.

John Pershing PADDOCK

Darrel James MONSON
Assistant Professor of Electrical Engineering (1951) B.S. in E.E., Univ. of Utah, 1943; M.S. in E.E., Univ. of California, 1951.

William Everett NORRIS
Assistant Professor of Electrical Engineering (1951) B.S. in E.E., Univ. of California, 1941; M.S. in E.E., Univ. of California, 1950

Herbert LeRoy MYERS
Assistant Professor of Electrical Engineering (1951) B.S. in E.E., Univ. of Southern California, 1951.

* The year of joining the General Line School faculty is indicated in parentheses.
THE GENERAL LINE SCHOOL

OBJECTIVE

To supplement and broaden the professional knowledge of unrestricted line officers of the Regular Navy in order to increase their capabilities and to prepare them for duties afloat and ashore commensurate with their rank.

CURRENT AND FUTURE PROGRAMS

Current. The current six months curriculum is designed to supplement the educational background and professional knowledge of former Reserve and Temporary officers who have transferred to the Regular Navy and who have gaps in their naval experience resulting from limited or specialized assignments.

Future. It is anticipated that the future program, to be inaugurated in 1955, will provide a year's study for each unrestricted line officer after he has attained approximately six years of commissioned service. In addition to providing necessary supplementary knowledge as in the current program, this program will be designed to broaden his knowledge and mental outlook, and to foster his individual growth, initiative and problem-solving ability.

ADMINISTRATION

Responsibility for administration of the General Line School rests in the Director. Under the Director are the Naval Staff and the Civilian Faculty.

The Naval Staff consists of five officers who are heads of departments, and such additional officers as may be assigned to those departments as instructors. The Civilian Faculty consists of one Civilian Head of Department and the civilians assigned him in that department. The Civilian Faculty members are under the over-all supervision and administration of the Academic Dean, insofar as their academic work and performance are concerned. The Dean represents the Superintendent and the Director, with many of the functions usually resting in the Dean of a civilian college. The faculty members are civil service personnel, with special status.

The officer students of the General Line School are divided into sections for the purpose of administration and classroom assignments. The Senior Officer of each section is designated Section Leader with responsibility for exercising administrative control of the officers in his section. Each student section has an Officer Instructor assigned to it as Section Advisor. The Section Advisor provides a connecting link between the school administration and the students.

FACILITIES AND EQUIPMENT

The administrative offices of the General Line School are located in the West Wing of the former Del Monte Hotel. Here are the offices of the Director, heads of departments and instructors. These offices were formerly guest rooms of the hotel and have been converted to serve their present use. In the companion East Wing, similar rooms have been converted into classrooms; the Line School utilizes some of these rooms independently, and some are shared with the Engineering School. Most of the classrooms for the General Line School are located in Fleming Hall, a temporary building located to the east of the former hotel.

Laboratory and practical exercises are provided for at the Naval Auxiliary Air Station located approximately two miles from the main school grounds, bus transportation being provided for the students. One building houses the electrical and electronics laboratories and several rooms which have been equipped to simulate combat information centers of ships. In another building there are facilities for the practical navigation exercises in which the student utilizes the equipment normally used by a navigator at sea. A third building contains models and cutaways of engineering equipment and installations used aboard ship. Still another building provides facilities and equipment for the conduct of anti-submarine and seamanship training; these consist of simulated ships' bridges and devices in which two or more ships may be made to maneuver on a screen by means of projectors, their movements being controlled by the students.

Ordnance and associated equipment is on display in a building on the main school grounds shared with the Engineering School.

Plans have been submitted for the construction of new buildings for the General Line School on the main grounds which will meet the need of a new Line School program to be inaugurated in 1955, at which time the West Wing will revert to its former use to house bachelor officers.

CURRICULUM AND INSTRUCTION

General. In view of the wide disparity in rank, background and experience of the officer students, the current curriculum is broad enough to meet the needs of officers deficient in any of the principal, vital areas of the naval profession. In view of the limited time available, each course is necessarily quite intense; the relative amount of time devoted to each course is a reflection of the analysis of student deficiencies and its relative importance to the average officer. Each student pursues the same curriculum regardless of past experience, except that non-aviators get some additional courses during the
periods allotted to aviators for flying. Extra instruction is afforded for student deficiencies in the basic sciences.

Practice Cruise. The formal curriculum is augmented by a practice cruise at sea, normally of one week's duration. The students embark in combatant type ships and are given the opportunity to observe the organization and technical details of the ship, and, where practicable, to take over the functions of the ship's personnel at various stations under supervision, while the ship performs routine evolutions.

<table>
<thead>
<tr>
<th>CURRICULUM</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command and Staff Department</td>
<td></td>
</tr>
<tr>
<td>Administration and Leadership</td>
<td>32</td>
</tr>
<tr>
<td>Military Law</td>
<td>40</td>
</tr>
<tr>
<td>Logistics</td>
<td>24</td>
</tr>
<tr>
<td>Aviation (for non-aviators)</td>
<td>24</td>
</tr>
<tr>
<td>Seamanship and Navigation Department</td>
<td></td>
</tr>
<tr>
<td>Seamanship</td>
<td>40</td>
</tr>
<tr>
<td>Navigation</td>
<td>80</td>
</tr>
<tr>
<td>Meteorology</td>
<td>16</td>
</tr>
<tr>
<td>Submarine</td>
<td>8</td>
</tr>
<tr>
<td>Operational Command Department</td>
<td></td>
</tr>
<tr>
<td>Naval Tactics</td>
<td>96</td>
</tr>
<tr>
<td>Combat Information Center/Anti-Submarine Warfare</td>
<td>56</td>
</tr>
<tr>
<td>Communications</td>
<td>40</td>
</tr>
<tr>
<td>Electrical Engineering and Mathematics</td>
<td></td>
</tr>
<tr>
<td>Mathematics Review</td>
<td>19</td>
</tr>
<tr>
<td>Mechanics Review</td>
<td>8</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>45</td>
</tr>
<tr>
<td>Electronics Survey</td>
<td>9</td>
</tr>
<tr>
<td>Engineering and Damage Control Department</td>
<td></td>
</tr>
<tr>
<td>Naval Engineering (Basic)</td>
<td>48</td>
</tr>
<tr>
<td>Naval Engineering (Augmented)</td>
<td>12</td>
</tr>
<tr>
<td>Damage Control (Basic)</td>
<td>48</td>
</tr>
<tr>
<td>Damage Control (Augmented)</td>
<td>12</td>
</tr>
<tr>
<td>Ordnance and Gunnerly Department</td>
<td></td>
</tr>
<tr>
<td>Ordnance and Gunnerly (Basic)</td>
<td>56</td>
</tr>
<tr>
<td>Ordnance and Gunnerly (Augmented)</td>
<td>24</td>
</tr>
</tbody>
</table>

ADMINISTRATION AND LEADERSHIP

OBJECTIVE

To provide a course of wide scope designed to stimulate interest and increase knowledge and capability in general administrative matters and in leadership, and thus to increase the effectiveness of students in their future assignments.

COURSE DESCRIPTION

The course concerns matters affecting the naval officer and his career, philosophy and techniques of leadership, personnel administration and general administration. Within these four general areas as many pertinent topics as practicable are presented in the limited time allotted. No attempt is made to give complete treatment to any topic; the idea is to highlight salient factors, alert students to the importance of matters of chief concern and provide them with information and means for more intensive and effective effort on an individual basis.

<table>
<thead>
<tr>
<th>SYLLABUS</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philosophy of Military Life</td>
<td>1</td>
</tr>
<tr>
<td>Customs and Traditions</td>
<td>2</td>
</tr>
<tr>
<td>Career Planning</td>
<td>1</td>
</tr>
<tr>
<td>Personal Finances</td>
<td>2</td>
</tr>
<tr>
<td>Performance, Promotion, Retirement</td>
<td>4</td>
</tr>
<tr>
<td>Leadership</td>
<td>5</td>
</tr>
<tr>
<td>Enlisted Training Programs</td>
<td>1</td>
</tr>
<tr>
<td>Enlisted Rating Structure</td>
<td>1</td>
</tr>
<tr>
<td>Classification</td>
<td>1</td>
</tr>
<tr>
<td>Personnel Accounting and Records</td>
<td>2</td>
</tr>
<tr>
<td>Personnel Policies; Manpower Utilization</td>
<td>2</td>
</tr>
<tr>
<td>Shipboard Organization</td>
<td>1</td>
</tr>
<tr>
<td>Foreign Relations; Protocol</td>
<td>1</td>
</tr>
<tr>
<td>Public Relations and Information</td>
<td>1</td>
</tr>
<tr>
<td>Welfare and Recreation Programs</td>
<td>1</td>
</tr>
<tr>
<td>Mess Administration</td>
<td>1</td>
</tr>
<tr>
<td>Correspondence and Directives</td>
<td>5</td>
</tr>
<tr>
<td>MILITARY LAW</td>
<td>32</td>
</tr>
</tbody>
</table>

OBJECTIVE

To teach the fundamentals of military law based upon the Uniform Code of Military Justice and the Manual for Courts-Martial, 1951 (including the Naval Supplement thereto), to the end that the administration of justice in the U. S. naval service will be sustained and strengthened.

COURSE DESCRIPTION

The student is instructed in rules and procedures of naval law, and in matters relating to the jurisdiction of naval courts-martial. The student is given practical experience by participation in moot summary and special courts-martial. The student is shown the advantages of a good knowledge of military law during his naval career, as well as the importance of military law in the proper administration of discipline and naval justice.
SYLLABUS

Introduction and Jurisdiction 2
Charges and Specifications 2
Legal Research Problem 1
Punitive Articles of Uniform Code of Military Justice 8
Rules of Evidence 8
Non-judicial Punishment and Preliminary Inquiries 3
Court Martial Procedure 13
Action on Court Martial Proceedings by Reviewing Authorities 2
Courts of Inquiry and Investigations 1

LOGISTICS

OBJECTIVE
To provide basic instruction in logistics, calculated to instill in the officer student a full appreciation of naval logistics in its present-day concepts.

The course is presented by lecture method and is developed as follows:

COURSE DESCRIPTION

A concept of logistics is derived by developing its meaning today and its importance in modern warfare.

The student is made aware of the important organization and commands involved and how they function.

The components of logistics are expanded subject by subject to give the student an understanding of logistic processes.

The operational or combat phases of logistics are discussed with emphasis placed upon logistics planning and execution as practiced in World War II and in Korea.

SYLLABUS

Organization 3
Determination of Requirements and Budgetary Aspects 3
Procurement and Distribution 7
Manpower and Petroleum 2
Transportation 3
Theater Logistics 3
Logistics Computations 3

AVIATION

OBJECTIVE
To give the non-aviation officer a broad concept of the mission, organization and objective of naval aviation; to create an appreciation of the significance and uses of naval aviation; to indicate the capabilities and limitations of naval aircraft.

COURSE DESCRIPTION

This course is presented primarily by lecture method augmented by moving pictures and includes discussion of all phases of naval aviation, its aircraft and their tactical employment in the science of naval warfare.

In keeping with the scope of the course no attempt is made to explore the more technical aspect of naval aviation but rather to present each topic to the student in the light of present employment, highlighting the capabilities and limitations so as to bring about a more concrete understanding of the role of naval aviation.

In addition to classroom presentation one hour of the syllabus is devoted to practice work in the Link trainer. Each student is placed at the actual controls of this synthetic flight simulator with the purpose of acquainting him with the technique and problems of piloting an aircraft.

SYLLABUS

History of Naval Aviation 1
Principles of Flight 1
Classes and Development of Aircraft
Carrier and their Operations 4
Patrol Aircraft and Their Operations 2
Lighter-than-Air and Utility Aircraft 1
Fundamentals of Helicopters and Their Employment 1
Aerial Mining 1
New Developments 2
Flights through the Weather 3
Aircraft in Amphibious Warfare 2
Aircraft in Anti-Submarine Warfare 3
Jet Propulsion and Flights 2
Problem of High Altitude and High Speed Flights 1

SEAMANSHIP

OBJECTIVE
To present a theoretical and background knowledge of seamanship and the rules of the nautical road.

COURSE DESCRIPTION

The seamanship course is divided into three parts: deck seamanship, rules of the road, and duties of
the officer of the deck. Deck seamanship covers duties of the first lieutenant, marlinspike seamanship, weight handling, boat stowage and handling, replenishment at sea, towing and ground tackle. Rules of the road include fog signals, meeting signals, lights, and emergency ship handling. Duties of the officer of the deck covers maneuvering in confined waters, rudder and screw effects, standard orders, mooring lines, formation steaming, and heavy weather steaming.

The above topics are covered in thirty-eight lecture hours. Two additional hours are spent in the ship-handling trainer. Additional practical application is obtained during the cruise.

SYLLABUS

<table>
<thead>
<tr>
<th>Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Deck Seamanship Evolutions</td>
</tr>
<tr>
<td>2</td>
<td>Duties of the Officer of the Deck</td>
</tr>
<tr>
<td>9</td>
<td>Shiphandling</td>
</tr>
<tr>
<td>16</td>
<td>Rules of the Nautical Road</td>
</tr>
<tr>
<td>2</td>
<td>Shiphandling Trainer</td>
</tr>
<tr>
<td></td>
<td>Total exclusive of cruise at sea 40</td>
</tr>
</tbody>
</table>

NAVIGATION

OBJECTIVE

To provide a practical and theoretical knowledge of marine navigation.

COURSE DESCRIPTION

The navigation course is divided into three phases: piloting, astronomy and celestial navigation. Piloting covers preliminary definitions, chart projections, use of HO and other publications, the magnetic compass, Loran and radar navigation. Astronomy covers the basic motions of the celestial bodies, terms, and definitions. Celestial navigation covers the use of the Nautical Almanac, HO 214, HO 249 and Rude star finder.

The course consists of 48 hours of classroom work, lectures, training films, and problems and 32 hours of practical works including solving problems and plotting.

SYLLABUS

<table>
<thead>
<tr>
<th>Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Mechanics: Definitions, Chart Projections, Publications</td>
</tr>
<tr>
<td>7</td>
<td>Tide and Current Tables, Light Lists, Nautical Almanac</td>
</tr>
<tr>
<td>3</td>
<td>Magnetic Compass, Exact Azimuths</td>
</tr>
<tr>
<td>5</td>
<td>Piloting, Loran, Use of Radar</td>
</tr>
<tr>
<td>14</td>
<td>Nautical Astronomy, Star Identification; Time</td>
</tr>
<tr>
<td>8</td>
<td>Complete Solution and Latitude Sights</td>
</tr>
<tr>
<td>3</td>
<td>Duties of Navigator, Voyage Planning</td>
</tr>
<tr>
<td>36</td>
<td>Practical Works</td>
</tr>
<tr>
<td></td>
<td>Total 80</td>
</tr>
</tbody>
</table>

METEOROLOGY

OBJECTIVE

To present sufficient theoretical and background knowledge concerning the subject of meteorology for interpretation of a weather map and weather conditions and to provide practical utilization of information so gained in application to ship and air operations.

COURSE DESCRIPTION

The first portion of this course is devoted to a study of the elements of the weather and the method of presentation of the weather elements on a weather map. This phase deals with the structure of the atmosphere, atmospheric heat processes, the evaporation-condensation cycle, and atmospheric pressure in relation to wind with the resulting primary, secondary, and local wind circulations. The second phase consists of a discussion of the air mass concept, the theory of fronts, the technique of weather map analysis, the phenomena of the tropical storm, and the inter-tropical front. The final phase covers selected basic principles of weather forecasting, weather application at sea, sources of weather information, and climatology. Practical-works utilized in the course are:

Plotting the station model
Interpreting a weather map
Drawing a weather map (embodies frontal and isobaric analysis)
Constructing a tropical storm danger sector diagram
Weather forecasting
Encoding a weather report.

Time allocated to various items of subject matter contained in course is as follows:

SYLLABUS

<table>
<thead>
<tr>
<th>Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Structure of the Atmosphere; the Weather Elements; the Station Model; Atmospheric Heat Processes</td>
</tr>
<tr>
<td></td>
<td>The Evaporation Condensation Cycle; Weather Map Construction; Clouds; Atmospheric Pressure and Winds; Primary Winds, Secondary Winds, Local Winds</td>
</tr>
<tr>
<td>3</td>
<td>Air Masses and Fronts; Cyclone Structure and Movement; Weather Map Analysis; The Inter-tropical Front; Tropical Storms</td>
</tr>
<tr>
<td>5</td>
<td>Principles of Forecasting; Sources of Weather Information; Weather Application at Sea; Climatology</td>
</tr>
<tr>
<td></td>
<td>Total 16</td>
</tr>
</tbody>
</table>
THE GENERAL LINE SCHOOL

SUBMARINES

OBJECTIVE
To provide a basic knowledge of the capabilities and limitations of submarines.

COURSE DESCRIPTION
The course covers the submarine force organization, construction and operation of submarines, new developments, and tactics, both offensive and defensive.

The above topics are covered in eight hours of class-room lecture. The students are given a three-hour trip on a submarine during which time they observe the activity at various stations in the boat.

SYLLABUS

Submarine Construction	3
Submarine Tactics and New Developments	5
Total	**8**

NAVAL TACTICS

OBJECTIVE
To familiarize the student with basic tactical doctrines for surface ship formations and dispositions, for certain special purpose operations, and to develop student proficiency in the use of the maneuvering board.

COURSE DESCRIPTION
This course is presented by classroom lectures and practical works augmented by movies and other training aids. The student is advised at the outset of the course that insufficient time will be provided to insure complete proficiency in tactical operations on its completion, but that an adequate foundation is offered to the student upon which to build his proficiency through his own application and detailed study at a later time. The course commences with a treatment of maneuvering board fundamentals, on completion of which the student should have gained an adequate knowledge upon which to study more advanced types of maneuvering board problems which will be presented later. The second phase of the course consists of a detailed treatment of general tactical instructions as developed in ATP 1 with any necessary reference to USF 2 by which time the student should have a knowledge of the tactical rules applied in naval maneuvers. He will then proceed to study advanced maneuvering board problems and will follow this with detailed consideration of destroyer-type tactics, fast carrier force operations, surface action, and amphibious operations.

SYLLABUS

Introduction to Course and Principles of War	1
Maneuvering Board	32
General Tactical Instructions	13
Screens	9
Scouting	9
Cruising Instructions	3
Destroyer Tactics	2
Carrier Task Force Instructions	10
Surface Action and Tactics	4
Amphibious Warfare	10
Mine Warfare	2
Naval Control of Shipping	1
Total	**96**

COMBAT INFORMATION CENTER and ANTI-SUBMARINE WARFARE

OBJECTIVE
To familiarize the student with current capabilities and limitations of shipborne Combat Information Center and anti-submarine warfare equipment; to acquaint the student with airborne Combat Information Center and anti-submarine warfare equipment, and to familiarize the student with their employment within the fleet.

COURSE DESCRIPTION
The course consists of 56 hours divided equally between anti-submarine warfare and Combat Information Center. The time is further divided between lectures and practical works with each receiving approximately the same number of hours. Throughout the course emphasis is placed on aircraft and shipboard organizations, capabilities and limitations of present day equipment, and a general understanding of fleet operational procedures and doctrine. The organization and duties of the Combat Information Center team and the anti-submarine warfare team are stressed. Procedures used in surface plotting, air plotting, air intercept control, radar navigation, shore bombardment, anti-submarine warfare attacks, and simulated task group operations are covered in both lectures and practical works. The basic theory, capabilities, and limitations of radar, surface and airborne submarine detection and attack equipments, electronic countermeasure and recognition systems are covered. Hunter-killer operations and the escort of convoy tactics are described in detail. Movies, training aids, and the equipment in mock-ups are used where applicable. The subjects are presented in the following order:

SYLLABUS

| Anti-Submarining Warfare Functions | 9 |
| Organization and Operation of ASW | 5 |

141
COMMUNICATIONS

Anti-Submarine Warfare Equipments; 14
Practical Works14
Combat Information Center Functions 9
Organization and Operation of CIC 5
CIC Equipment; Practical Works14

COMMUNICATIONS

OBJECTIVE

To acquaint the student with the relationship of communications to naval operation including the capabilities, limitations and functioning of naval communications and the responsibilities of command inherent thereto.

COURSE DESCRIPTION

The course is presented by classroom lectures and practical works. In all phases of the course, emphasis is placed on the importance of learning to use the reference texts or books correctly rather than memorizing the subject matter. Naval communication organization and functions including supervision of Navy post offices are described in detail. Standard communication procedure and doctrine for visual, radio telegraph and radio telephone procedure are stressed. Practical works are conducted in message drafting, visual signalling and voice-radio telephone procedure. The major aspects of security control, such as classification, custody, transmission, dissemination and security clearances are covered. The study of operational planning includes actual preparation by the students of sample operation plans, communication and frequency plans. Movies, where applicable, are used. The subjects are presented in the following order:

SYLLABUS

Communication Organization and Procedures	20
Security of Classified Matter	6
Operational Planning Methods and Procedures	7
Basic Rapid Communication and Frequency Plans	7

MATHMATICS REVIEW

OBJECTIVE

To provide a review course in order to equip the student for studies and duties requiring knowledge and use of mathematics.

COURSE DESCRIPTION

This course covers enough of the fundamentals of mathematics up to, but not including, the calculus to provide background for all technical subjects to be studied in the line curriculum, the following topics being stressed: slide rule, roots, exponents, factoring, graphs, vectors, and trigonometric functions.

SYLLABUS

Slide Rule	1
Arithmetical Fundamentals	2
Algebraic Fundamentals	5
Equations, Graphs, Applications	6
Trigonometric Fundamentals	5

MECHANICS REVIEW

OBJECTIVE

To provide a review course in order to equip the student for studies and duties requiring knowledge of and use of mechanics.

COURSE DESCRIPTION

This course covers basic units, velocity and acceleration, law of motion, power and energy, pressure and various types of forces.

SYLLABUS

Unit and Laws of Motion	3
Power, Energy and Moment of Inertia	3
Miscellaneous Forces	2

ELECTRICAL ENGINEERING

OBJECTIVE

To provide enough of the fundamentals of electrical circuits and machinery to aid the student in understanding the characteristics and operation of ship and aircraft electrical installations and equipment.

COURSE DESCRIPTION

Basic fundamentals of DC and AC circuits are studied as a preparation for the fields of electrical power, naval engineering, communications, CIC, and ordnance and gunnery; in DC and AC machinery, the students are acquainted with the operating characteristics of electrical equipment, such as shunt and compound generators, shunt, series, and compound motors, alternators, transformers, synchronous and induction motors. Laboratory exercises and problems are utilized wherever practicable.

SYLLABUS

| Resistance; Ohm's Law; Power, Energy; Voltage and Current | 4 |
| Voltmeter; Ammeter; DC Measurements | 4 |
Magnetism; Electromagnetism; Inductance;
Applications ... 4
Shunt Generator; Armature Reaction;
Characteristics 4
Shunt, Series, and Compound Motor;
Applications ... 4
Alternating Emf; AC Units; AC Power 4
RLC Circuits; Series Resonance 3
Parallel Circuits; AC Instruments 4
Polyphase Systems; Three Phase Power 4
Alternator; Characteristics; Applications 3
Transformers; Connections 2
Induction Motors; Synchronous Motors;
Applications ... 5

45

ELECTRONICS SURVEY
OBJECTIVE
To provide a survey of electronic devices in order to give the student an elementary knowledge of the fundamentals of electronics and associated equipment.

COURSE DESCRIPTION
This course, utilizing lectures and laboratory work, includes basic theory of electron emission and the operation of the principal common elements of electronic devices.

SYLLABUS

The Atom and Electron Emission 1
Rectifiers, Amplifiers, and their uses 4
Oscillators, Transmitters, and Receivers 4

9

NAVAL ENGINEERING
OBJECTIVES
To give the officer student a basic knowledge of the operation and maintenance of shipboard machinery installations and instruction in the proper administration of a ship's engineering department in order to prepare him for possible duties in the engineering department of a naval ship, or for duties as an executive officer or commanding officer.

COURSE DESCRIPTION
The Naval Engineering course consists of 48 hours of instruction for all officer students, and an additional 12 hours of instruction for non-aviators. The course covers the entire shipboard machinery installation with special emphasis being placed upon the main propulsion machinery, boilers, and auxiliaries associated with the boilers and propulsion machinery. In addition, distilling plants, diesel engines, refrigeration, electric power distribution and machinery out-
side of the regular engineering spaces are covered during the course. All instruction is of the lecture type. Extensive use is made of charts, drawings, sectionalized machinery, mock-ups and special training devices. Motion pictures, where applicable, are used throughout the course. The importance of safety precautions, check-off sheets and operating instructions is covered throughout the course. Engineering casualty control is emphasized. In so far as practicable, the instructors relate the material being taught to the experiences of the officer students.

SYLLABUS

Basic Course

Thermodynamics and the Eng. Plant 4
Boilers and Related Auxiliaries 9
Turbines and Related Auxiliaries 13
Fundamentals of Engineering Plant 8
Distilling Plants, Diesel Engines, Etc. 7
Electrical Installations 3
Administration and Operational Procedures ... 4

48

Augmented Course

Organization, Records and Reports 3
Gyro Compass and Degaussing 3
Control Instruments 2
Engineering Trends and Developments 3
Compressed Air Systems 1

12

DAMAGE CONTROL
OBJECTIVES
To give the officer student a basic knowledge of the principles of damage and casualty control, stability of ships, radiological defense, biological warfare defense and chemical warfare defense; to instruct the officer student in the methods of operation, administration and maintenance of the Damage Control Department, and material assigned to it.

COURSE DESCRIPTION
The Damage Control basic course is divided into three parts: shipboard organization and the material preparedness for damage and casualty control; the principles of stability of ships and analysis of impaired stability with corrective measures necessary to restore stability; radiological, biological and chemical defense. The entire course of instruction of these parts of the course covers 48 hours, with all officer students receiving 4 hours of instruction per week for 12 weeks. Non-aviators are given an additional 12 hours of instruction, consisting of 1 hour of instruction per week. All instruction is of the lecture type. Extensive use is made of charts,
drawings, models, and motion pictures. Administration of a damage control organization and its proper functioning is emphasized. Required shipboard records and procedures such as weight and moment book, hull reports, etc., are covered throughout the course.

SYLLABUS

Basic Course

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Damage Control</td>
<td>1</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>1</td>
</tr>
<tr>
<td>Stability and Buoyancy</td>
<td>14</td>
</tr>
<tr>
<td>Analysis of Damage and Corrective Measures</td>
<td>5</td>
</tr>
<tr>
<td>Practical Damage and Casualty Control</td>
<td>8</td>
</tr>
<tr>
<td>Gas, Biological and Radiological Warfare</td>
<td>19</td>
</tr>
<tr>
<td>Defense</td>
<td></td>
</tr>
</tbody>
</table>

Augmented Course

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warship Construction and Design, Material Upkeep</td>
<td>2</td>
</tr>
<tr>
<td>Stability</td>
<td>4</td>
</tr>
<tr>
<td>Analysis of Stability</td>
<td>3</td>
</tr>
<tr>
<td>Nucleonics, Radiological Warfare, Etc.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

ORDNANCE AND GUNNERY

OBJECTIVES

To present a course in Ordnance and Gunnery, including surface, air, and underwater aspects in order to prepare the officer student for duties directly or indirectly involving armament and its utilization.

COURSE DESCRIPTION

The course is presented to the student by classroom lectures, supplemented by the use of textbooks and pamphlets, motion pictures, and classroom training aids. The basic course of 56 hours is given to all students, and covers the theory of the naval gunfire control problem and its application in certain fundamental fire control systems; the various types of naval shipboard and aircraft armament and its control; the care and handling of ammunition, safety precautions, and the organization and administration of the shipboard gunnery department. The inspection and observation in operation, of guns and fire control installations is afforded the student during a short cruise aboard ship. Atomic weapons are covered by a series of special lectures.

An augmented course of 24 hours for non-aviators is designed to offer instruction in and provide discussion time for the consideration of the duties of the gunnery officer afloat.

Problems concerning the precommissioning period, commissioning, shakedown, the training cycle and the regular navy yard overhaul are discussed. The situation is that of an average gunnery officer successfully meeting the problems in a typical combatant ship organization.

SYLLABUS

Basic Course

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Ordnance and Gunnery</td>
<td>1</td>
</tr>
<tr>
<td>Ammunition and Safety Precautions</td>
<td>6</td>
</tr>
<tr>
<td>Guns and Assemblies</td>
<td>9</td>
</tr>
<tr>
<td>Elements of Fire Control</td>
<td>7</td>
</tr>
<tr>
<td>Fire Control Systems and Equipment</td>
<td>4</td>
</tr>
<tr>
<td>Employment of Shipboard Fire Control Systems</td>
<td>5</td>
</tr>
<tr>
<td>Underwater Ordnance</td>
<td>5</td>
</tr>
<tr>
<td>Aviation Ordnance</td>
<td>5</td>
</tr>
<tr>
<td>Rockets and Guided Missiles</td>
<td>5</td>
</tr>
<tr>
<td>Organization, Administration and Training</td>
<td>3</td>
</tr>
<tr>
<td>Examinations and Practical Work</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>56</td>
</tr>
</tbody>
</table>

Augmented Course

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precommissioning Problems of the Gunnery Officer</td>
<td>2</td>
</tr>
<tr>
<td>Gun Mounts and Directors</td>
<td>2</td>
</tr>
<tr>
<td>Planning of the Training Program</td>
<td>2</td>
</tr>
<tr>
<td>Safety Precaution Instructions</td>
<td>1</td>
</tr>
<tr>
<td>Ammunition Handling Instructions</td>
<td>1</td>
</tr>
<tr>
<td>Landing Party Organization</td>
<td>1</td>
</tr>
<tr>
<td>Battery Alignment Problems</td>
<td>3</td>
</tr>
<tr>
<td>Formal Shipboard Inspections</td>
<td>3</td>
</tr>
<tr>
<td>Spotting Procedure and Drill</td>
<td>1</td>
</tr>
<tr>
<td>Required Exercises and Reports</td>
<td>1</td>
</tr>
<tr>
<td>Computation of Initial Ballistics</td>
<td>2</td>
</tr>
<tr>
<td>Post Firing Analysis</td>
<td>2</td>
</tr>
<tr>
<td>Yard Overhaul Preparations</td>
<td>1</td>
</tr>
<tr>
<td>Small Arms</td>
<td>1</td>
</tr>
<tr>
<td>Pistol Range</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>
Index to Buildings at U. S. Naval Postgraduate School

1. Lecture Hall, Building No. 237
2. Electronics, Physics, Chemistry, Metallurgy, and Aerology, Building No. 232
3. Electrical Engineering, Building No. 233
4. Mechanical and Aeronautical Engineering, Building No. 234
5. Mathematics, Drafting Classrooms, Building No. 235
6. Administration, Open, Closed and General Mess, BOQ, Building No. 220
7. Administrative Offices General Line School and BOQ, Building No. 222
8. Postgraduate School Laboratories and Offices, Building No. 221
9. Powers Hall, Academic Classrooms, Building No. 300
10. Fleming Hall, Academic Classrooms, Building No. 301
11. Dressing Rooms and Solarium, Recreation, Buildings No. 209, No. 210
12. Superintendent's Quarters, Quarters A
13. Married Officers' Quarters, Quarters M, L, and K
14. Married Officers' Quarters, Quarters B through J and N
15. Interim Laboratories, Buildings No. 223 through No. 229
16. Public Works Shops and Power Plants
17. Enlisted Men's Barracks
18. Criscuolo Hall, Recreation, EM, Building No. 211
19. Aerology Classrooms, Building No. 206
20. Navy Exchange Service Station, Buildings, No. 407, No. 408 and No. 409