Pitfalls and Paradoxes in the History of Probability Theory
(predicting the unpredictable)

Michael Shlesinger
Office of Naval Research
Naval Postgraduate School
11 October 2019
YOU ARE HERE
If you have 5 dogs, 3 will be asleep.
Throwing the bones
Astrogali (knucklebones)

From Games, Gods, and Gambling, FN David

Al-zar (dice) becomes hazard

<table>
<thead>
<tr>
<th>Bone Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>upper bone</td>
<td>4</td>
</tr>
<tr>
<td>opposite side</td>
<td>3</td>
</tr>
<tr>
<td>flat lateral side</td>
<td>1</td>
</tr>
<tr>
<td>opposite side</td>
<td>6</td>
</tr>
</tbody>
</table>

4 stable sides

Greeks throws (4 bones)

1,3,4,6 Venus
1,1,1,1 Going to the Dogs

Romans throws (5 bones)

1,3,3,4,4 Zeus
I CHING
8 trigrams/ 64 pairs of trigrams

■■■■■■ five heaven/strength
■■■■■ earth/weakness
■■■■■ activity/thunder
■■■■■ bending/wind
■■■■■ pit/water/danger
■■■■■■■ Brightness/fire/elegance
■■■■■ Stop/mountain/firmness
■■■■■ Pleasure/joyful/collect water

Too many outcomes to check for the persistence of statistical ratios?

An oracle, not a mathematical exercise.
Galileo and Newton

Throw 3 dice. More likely to get a 10 than a 9. But there are six ways to make either number

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th># ways</th>
<th>9</th>
<th># ways</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 2 2</td>
<td>3</td>
<td>1. 3 3 3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5 2 3</td>
<td>6</td>
<td>2. 3 4 2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4 2 4</td>
<td>3</td>
<td>3. 3 5 1</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>6 3 1</td>
<td>6</td>
<td>4. 6 2 1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4 3 3</td>
<td>3</td>
<td>5. 5 2 2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5 4 1</td>
<td>6</td>
<td>6. 4 4 1</td>
<td>3</td>
</tr>
</tbody>
</table>

27 ways | 25 ways

6X6X6=216 total outcomes

Prob (10) = 27/216
prob (9) = 25/216

Would you make this bet, of a 10 before a 9, if you cannot afford to lose?

(risk-benefit analysis)
Throw a 6 with one die, …, advantage in undertaking to do it in 4 throws (odds in your favor)
Throw 2 sixes in 24 throws, …, a disadvantage (odds against you)

But \(4/6 = 24/36 \)

The start of the famous Pascal-Fermat letters 1654

SOLUTION

Probability (no six in 1 throw) = \(5/6 \)
Probability (no [6,6] in throw of 2 dice) = \(35/36 \)

\[P_{6} = \text{Prob(at least one 6)} = 1 - (5/6)^N \]
\[P_{[6,6]} = \text{Prob(at least one pair of 6’s)} = 1 - (35/36)^N \]

\[N=4, \ P_{6} = 0.5177 \]
\[N=24, \ P_{[6,6]} = 0.4914 \]
A gambler undertakes to throw a 6 with a die in 8 throws. If he quits after 3 unsuccessful throws, what art of his stake can he claim if the game stops?

Answer: $\frac{125}{1296}$

To win on the 4th throw is the sequence LLLW with prob $\left(\frac{5}{6}\right)^3\left(\frac{1}{6}\right) = \frac{125}{1296}$

A, B, C play a game. A needs 1 win, B and C need 2 wins. How should the stake be divided if the game is not continued?

Answer: A:B:C = 17:5:5

At most 3 more plays with $3^3 = 27$ possible outcomes
Bernoulli Trials

m successes in n trials

\[P_m = \frac{n!}{m!(n-m)!} p^m (1-p)^{n-m} \]

Flip a coin twice, probability no head, n=2, m=0

\[
\begin{align*}
\frac{2! \left(\frac{1}{2} \right)^2}{2! \left(\frac{1}{2} \right)} &= \frac{1}{4} \\
\text{Probability of not seeing an H} &= 1/4
\end{align*}
\]

D’Alembert wrote Probability of not seeing an H =1/3
Without looking, choose a draw and pick a coin at random, then look to see it is blue. What is the probability that the other coin in the draw is also blue?

Solution #1: You either picked draw #1 or draw #2, each has probability ½ so probability that the other coin is blue = ½.

Solution #2:
- Chose draw 1, coin on left, other coin is blue
- Chose draw 1, coin on right, other coin is blue
- Chose draw 2, coin on left, other coin is blue
- Chose draw 2, coin on right
- Chose draw 3, coin on left
- Chose draw 3, coin on right

Probability other coin is blue = 2/3
Bayes’ Theorem (1764)

Essay Towards Solving a Problem in the Doctrine of Chances

Thomas Bayes 1702-1761

\[P(A \cap B) = P(A|B)P(B) = P(B|A)P(A) \]

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

A can be a hypothesis
B can be data

\[P(A_i \cap B) = \frac{P(B|A_i)P(A_i)}{\sum_j P(B|A_j)P(A_j)} \]
Employing Bayes’ Theorem 1764

Urn with N white marbles and 1 red marble

$$P(W_1|R_2) = \frac{P(R_2|W_1)P(W_1)}{P(R_2|W_1)P(W_1) + P(R_2|R_1)P(R_1)} = 1$$

statistical inference
Following Pascal-Fermat (1654), Huygens (1657) wrote a book on the P-F correspondence and presented a problem set with answers.

These problems were solved in Jacob Bernoulli’s – *Ars Conjectandi*, published posthumously in 1713 with the help of his nephew, Nicholas Bernoulli. J. Bernoulli also treats the theory of permutations and combinations and applications to civil, moral, and economic questions.

The book was reviewed by Jacob’s brother John who called it – a monster which bears my brother’s name.

\[
P_m = \frac{n!}{m!(n-m)!} p^m (1-p)^{n-m}
\]

Bernoulli trials

B wins all \[\begin{array}{c|c|c}
\text{A wins trial} \\
\end{array} \]

\[\begin{array}{c}
\text{B wins all} \\
\end{array} \]

\[\begin{array}{c}
\text{-R} \\
\text{B wins trial} \\
\text{+R} \\
\end{array} \]

• Bernoulli numbers

• Duration of play N (first, *first* passage time)

\[<N(R)> \sim R^2 \quad \text{J. Bernoulli 1713} \]

\[<R^2(N)> \sim N \quad \text{A. Einstein 1905} \]
Abraham de Moivre (1667-1754)
(predicted his own date of death seven years in advance)

Imprisoned in France, (edit of Nantes revoked 1685) moved to England, but no real job, despite being the mathematical equal of Jacob Bernoulli and a close friend of Newton.

Worked out of Slaughter’s Coffee House (site of 1748 chess championship)
Doctrine of Chances (1718 dedicated to Newton, last edition 1756)
Annuities Upon Lives (1724)) first actuarial book

Introduced (1756 edition) central limit theorem for Bernoulli trials
Introduced generating functions to solve difference equations
In duration of play derives

\[(\cos \theta + i \sin \theta)^n = \cos n \theta + i \sin n \theta\]

introduced

\[
\log(n-1)! = \left(n - \frac{1}{2}\right) \log n - n + \log B + \sum_{r=1}^{\infty} \frac{(-1)^{r-1} B_r}{2r(2r-1)n^{2r-1}}
\]

\[
B = 1 - \frac{1}{12} + \frac{1}{360} - \dots
\]
De Moivre (1756) 3rd edition of The Doctrine of Chances
The First Limit Theorem

• For Bernoulli trials using Stirling’s approximation, continueum limit

“I conclude that if m or n/2 be a quantity infinitely great, then the hyperbolic logarithm of the ratio, which is a term distant from the middle by an interval \(l \), has to the middle term, is \(-2l^2/n\)”

Modern notation

\[P_\ell(n) \sim \exp\left(-\frac{2\ell^2}{n}\right) \]

The Gaussian

Johann Carl Friedrich Gauss
Robert Adrain introduced Gaussian limit distribution
Adrain 1808 (survey measurements)

Gauss 1809 (astronomical measurements)

ARTICLE XIV.

Research concerning the probabilities of the errors which happen in making observations, etc.

By Robert Adrain.

The question which I propose to resolve is this: $\frac{a}{b}$ b B B b

Supposing AB to be the true value of any quantity, of which the measure by observation or experiment is Ab, the error being Bb, what is the expression of the probability that the error Bb happens in measuring AB?

Let AB, BC, &c. be several successive A B C c distances of which the values by measure are Ab, bc, &c. the whole error being Cc: now supposing the measures Ab, bc, to be given and also the whole error Cc, we assume as an evident principle that the most probable distances AB, BC, are proportional to the measures Ab, bc, and therefore the errors belonging to AB, BC, are proportional to their lengths, or to their measured values Ab, bc. If therefore we represent the values of AB, BC, or of their measures Ab, bc, by a, b, the whole error Cc by E, and the errors of the measures Ab, bc by x, y, we must, for the greatest probability, have the equation

\[\frac{x}{a} = \frac{y}{b}. \]

Let X and Y be similar functions of a, x, and of b, y, expressing the probabilities that the errors x, y, happen in the distances a, b; and, by the fundamental principle of the doctrine of chance, the probability that both these errors happen together will be expressed by the product XY. If now we were to determine the values of x and y from the equations $x + y = E$, and $XY = maximum$, we ought evidently to arrive at the equation $\frac{x}{a} = \frac{y}{b}$; and since x and y are rational functions of the simplest order possible of a, b and E, we ought to arrive at the equation $\frac{x}{a} = \frac{y}{b}$ without the intervention of roots, in other words by simple equations; or, which amounts to the same thing in effect, if there be several forms of X and Y that will fulfil the required condition, we must choose the simplest possible, as having the greatest possible degree of probability.

Let X', Y', be the logarithms of X and Y, to any base or modulus c: and when $XY = max.$, its logarithm $X' + Y' = max.$ and therefore $X' + Y' = 0$, which fluxional equation we may express by $X' \cdot x + Y' \cdot y = 0$; for as X' involves only the variable quantity x, its fluxion X' will evidently involve only the fluxion of x; in like manner the fluxion of Y' may be expressed by $Y' \cdot y$; and from the equation $X' \cdot x + Y' \cdot y = 0$ we have $X' \cdot x = -Y' \cdot y$; but since $x + y = E$ we have also $x + y = 0$ and $x = -y$ by which dividing the equation $X' \cdot x = -Y' \cdot y$, we obtain $X' = Y'$.

Now this equation ought to be equivalent to $\frac{x}{a} = \frac{y}{b}$ and this circumstance is effected in the simplest manner possible, by assuming $X' = \frac{mx}{a}$, and $Y' = \frac{my}{b}$; m being any fixed number which the question may require.

Since therefore $X' = \frac{mx}{a}$, we have $X' \cdot x = \frac{mx}{a} \cdot x$, and taking the fluent, we have $X' = \frac{mx}{a} \cdot x$.

The constant quantity a being either absolute, or some function of the distance a.

We have discovered therefore, that the logarithm of the probability that the error x happens in the distance a is expressed by $a' + \frac{mx^2}{2a} = X'$, and consequently the probability itself is

\[X' = \frac{(a' + \frac{mx^2}{2a})}{e}. \]

Such is the formula by which the probabilities of different errors may be compared, when the values of the determinate quantities e, a', and m are properly adjusted. If this probability of the error x be denoted by u, the ordinate of a curve to the abscissa x, we shall have $u = \frac{(a' + \frac{mx^2}{2a})}{e}$, which is the general equation of the curve of probability.
“I know scarcely anything so apt to impress the imagination as the wonderful form of cosmic order expresses by the “Law of Frequency of Error”. The law would have been personified by the Greeks and deified, if they had known of it, …, The larger the mob and the greater the apparent anarchy, the more perfect its sway.”

(~ 1889)
Louis Bachelier

Theory of Speculation

thesis for Docteur Sciences Mathematiques 1900
dedicated to H. Poincare

Fourier Heat equation (1807)

\[P_{z,t+\tau} = \int_{-\infty}^{\infty} P_{x,t} P_{z-x,\tau} \, dx \]

\[c^2 \frac{\partial P}{\partial t} - \frac{\partial^2 P}{\partial x^2} = 0 \]

Introduced the Chapman-Kolmogorov process

Discovered the radiation of probability. “Each price x during an element of time radiates towards its neighboring price”, but incorrectly uses \(c = \lim (x/t) \) as both tend to zero. The correct limit when change takes place at a finite velocity should arrive at the telegrapher’s equation

One needs to take the limit of small \(x \) and small \(t \), such that \(D = x^2 / t = \text{constant} \). This means the \(x/t \) does not converge to a limit, i.e., the velocity is not well defined. Bachelier did not perform the limit process correctly and his thesis was not well received.

Bachelier’s analysis would work for the telegraphers’ equation with constant velocity \(c \), and rate of change \(\lambda \) of direction and diffusion constant \(D = c^2 / \lambda \).
The First Poisson Process

Horse Kicking as Bernoulli Trials (1894)

\[P_k(n) = \text{probability of } k \text{ successes in } n \text{ trials} \]
\[= \frac{n!}{(n-k)!k!} p^k (1-p)^{n-k} = \frac{n(n-1)\cdots(n-k+1)}{k!} p^k (1-p)^{n-k} \]

Poisson noted that if
\[p \to 0, \quad n \to \infty, \quad \text{with } np \to \lambda \]
\[P_k(n) \approx \frac{n^k p^k}{k!} \exp(-np) \]
\[\approx \frac{\lambda^k}{k!} e^{-\lambda} \]

German Calvary, 14 Corps, 20 years of data of horse kicking fatalities

14X20 = 280 data points

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1875</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1894</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Poisson \(\lambda = 0.7 \)

140 cases no deaths
91 cases 1 death
32 cases 2 deaths

W. S. Gosset ("Student") counted yeast cells/unit volume for Guinness brewing and fit with the Poisson (1904).
The Lognormal Distribution
McAlister (1879)

Kolmogorov’s (1941) rock crushing for ore separator

On the logarithmically normal distribution law of particle sizes at the subdivision, Doklady Akademii Nauk SSSR 31 (1941)

\[
\begin{align*}
X_1 &= q_1 X_0 \\
X_2 &= q_2 X_1 = q_2 q_1 X_0 \\
\vdots \\
X_n &= q_n \cdots q_1 X_0 \\
X_{n-1} - X_n &= q_{n-1} \cdots q_1 (1-q_n) X_0 = (1-q_n) X_{n-1} \\
\sum_{n=1}^{N} \frac{X_{n-1} - X_n}{X_n} \rightarrow \int_{X_N}^{X_0} \frac{dx}{x} = \ln \left(\frac{X_0}{X_N} \right) = \sum_{n=1}^{N} (1-q_n) \\
f(x)dx &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{[\log(x)]^2}{2\sigma^2} \right) d\log(x)
\end{align*}
\]

The RHS is a sum of random variable and for large N it has a Gaussian distribution. If \(\ln (X_N) \) is normal, then \(X_N \) is lognormal
Shockley criteria for bonuses at Bell Labs

Figure 44 Cumulative distribution of logarithm of "weighted" rate of publication at Brookhaven National Lab. plotted on probability paper.®

Product of factors to publish, so judge success according to the logarithm of number of publications.
Early Classic Works on Probability

<table>
<thead>
<tr>
<th>Author</th>
<th>Title (Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pascal-Fermat</td>
<td>Pascal-Fermat Letters (1654)</td>
</tr>
<tr>
<td>Huygens</td>
<td>De Ratiociniis in ludo aleae (1657)</td>
</tr>
<tr>
<td>Montmart</td>
<td>Essay d’ analyse sur les jeux de hazard (1708)</td>
</tr>
<tr>
<td>Jacob Bernoulli</td>
<td>Ars Conjectandi (1713)</td>
</tr>
<tr>
<td>DeMoivre</td>
<td>Doctrine of Chances (1718)</td>
</tr>
<tr>
<td>Laplace</td>
<td>Theorie analytique des probabilities (1812)</td>
</tr>
</tbody>
</table>
Laplace
put the integral into probability

Expressed many problems in the form of picking tickets from an urn with R red and W white tickets, R/W fixed and R and $W \to \infty$

Given: Choose tickets
p were white
q were red

What is the probability that that in choosing more tickets that
m will be white
n will be red

\[
\frac{1}{1} \int_0^1 x^{p+m} (1 - x)^{q+n} \, dx
\]

\[
\frac{1}{1} \int_0^1 x^p (1 - x)^q \, dx
\]

Evaluating these integrals led Laplace to calculate many of the integrals seen in introductory calculus books.
Laplace (1749-1827)

Theorie analytique des probabilities

1st edition dedicated to Napolean-le-Grand/fidele sujet, Laplace
2nd edition, no dedication

Includes
- Generating functions
- Laplace transforms
- Method of steepest descent

\[
\int_0^\infty \cos(rx) e^{-a^2x^2} \, dx = \frac{\sqrt{\pi}}{2a} e^{\frac{r^2}{4a^2}}
\]

\[
\int_0^\infty \frac{\sin(rx)}{x} \, dx = \frac{\pi}{2}
\]

\[
\int_0^\infty \frac{\cos(ax)}{1 + x^2} \, dx = \frac{\pi}{2} e^{-a}
\]

Inaugural faculty at Ecole Polytechnique
Lagrange, Laplace, Monge, Fourier

Poisson
1 in 200 die from smallpox variolation (a type of smallpox innoculation)
14 in 200 die in invariolated population

Suppose 200 fatal diseases and 200 innoculations. Each innoculation has probability 1/200 to kill you. If you elect to take all 200 innoculations does that improve your odds to live or to die? D’Alembert wrote, “to enjoy the present and not trouble oneself about the future, is common logic, a logic half good, half bad”

Jenner introduces cowpox innoculation in 1796 and published results in 1798 (milkmaids have fair skin).
J. Bertrand’s Paradox (1888)
What is the probability that a randomly drawn chord, in a circle, will be longer than the side of an inscribed equilateral triangle?
Answer depends on the assumption of what random variable (angle, area, length, …) is uniformly distributed.

- Measured along circumference $p=1/3$ (choose points on circumference)
A DIFFERENT APPROACH

Method of choosing a random point leads to a probability of 1/4 for chord to be larger than side of the triangle.

Green circle has ¼ the area of the large circle.

If the randomly chosen point lies outside the green circle the chord will be shorter than the side of the triangle.

If the point is inside the green circle the chord will be longer than the side of the triangle.
Condorcet
Laplace
Poisson

Poisson (1837) *Recherches sur la probabilité des jugements en matière criminelle et en matière civile*
(book rejected by his peers, era of the philosophe was over)

all in Paris

St. Petersburg

Chebyshev (Ph. D 1849) Theory of Probability (1846)

Students: Markov (*Ischislenie Veroyatnostei*) (1900)

Lyapunov (limit theorems/characteristic functions)

French activity dormant until
J. Bertrand “Calcul de probabilites” (1879)
H. Poincare “Calcul de probabilites” (1896)
P. Levy “Calcul de probabilites” (1925)

“Theorie de l’addition des variables aleatoires” (1937)

Processes stochastiques et mouvement brownien (1948)

\[
P(\left| X \right| \geq t) = \int_{\left| x \right| \geq t} p(x) \, dx
\]

\[
\leq \int_{\left| x \right| \geq t} \frac{x^2}{t^2} p(x) \, dx
\]

\[
= \frac{1}{t^2} \int_{\left| x \right| \geq t} x^2 p(x) \, dx
\]

\[
\leq \frac{1}{t^2} \left\langle x^2 \right\rangle
\]

A. A. Markov, An example of statistical investigation of the text *Eugene Onegin* concerning the connection of samples in *chains* (1913)

\[p(V) \neq p(V|C)\]
Conventional Wisdom on Non-exponential Stochastic Processes

On renewal processes with non-exponential pausing times

“It is hard to find practical examples besides the bus running without a schedule along a circular route”

An Introduction to Probability Theory and It’s Applications Vol. 2 (footnote)
W. Feller

On Levy probability distributions with infinite moments

“It is probable that the scope of applied problems in which they play an essential role will become in due course rather wide”

Limit Distributions for Sums of Independent Random Variables
B. Gnedenko and A. Kolmogorov (1954)
St. Petersberg Paradox

(a Nicholas Bernoulli problem in Montmort’s book)

Flip a coin until a head (H) appears

<table>
<thead>
<tr>
<th>Possible sequences</th>
<th>P(W)</th>
<th>W(winnings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>½</td>
<td>1</td>
</tr>
<tr>
<td>TH</td>
<td>¼</td>
<td>2</td>
</tr>
<tr>
<td>TTH</td>
<td>1/8</td>
<td>4</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>T:::TH</td>
<td>1/2^n</td>
<td>2^n</td>
</tr>
</tbody>
</table>

(N tails)

<\text{W}> = \sum \text{Wp(W)} = 1\times\frac{1}{2} + 2\times\frac{1}{4} + 4\times\frac{1}{8} + \cdots

= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots

= \infty

What is the fair ante? Finite or infinite?

This problem is discussed by Daniel Bernoulli in the Commentarii of the St. Petersburg Academy in the 1720’s
Levy Flights

Random walks with infinite variance (scale invariance)

\[X = X_1 + X_1 \]

\[p(x) = \frac{n-1}{2n} \sum_{j=0}^{\infty} n^{-j} \left(\delta_{x,b^j} + \delta_{x,b^{-j}} \right) \]

\[\tilde{p}(k) = \int_{-\infty}^{\infty} e^{ikx} p(x) dx = \frac{n-1}{n} \sum_{j=0}^{\infty} n^{-j} \cos(b^j k) \]

\[\langle x^2 \rangle = \sum_{j=0}^{\infty} x^2 p(x) = \infty \text{ if } b^2 > n \]

Levy flight

Random process

Nonlinear dynamical process

Both cases exhibit fractal structure

\[\cos(b^j k) = \frac{1}{2\pi i} \int \Gamma(s) \cos\left(\frac{\pi s}{2} \right) b^{-js} |k|^{-s} ds \]

\[\tilde{p}(k) = \frac{1}{2\pi i} \left(\frac{n-1}{n} \right) \sum_{j=0}^{\infty} \Gamma(s) \cos\left(\frac{\pi s}{2} \right) b^{-js} |k|^{-s-n^{-j}} ds \]

\[\tilde{p}(k) = \frac{1}{2\pi i} \int \frac{|k|^{-s} \Gamma(s) \cos(\pi s / 2)}{1-n^{-1}b^{-s}} ds \]

the integrand has simple poles at \(s = 0, -2, -4, \ldots \)

and at \(s = -\frac{\ln n}{\ln b} \pm 2\pi i m / \ln b, \ m = 0,1,2,\ldots \)

\[\lim_{k \to 0} \tilde{p}(k) = 1 - |k|^\beta Q(k) + O(k^2) \approx \exp\left(-|k|^\beta\right) \]

where \(Q \) is periodic in \(\ln k \) with period \(\ln b \)

\[\beta = \frac{\ln n}{\ln b} < 1 \]

Zaslavsky map

\[u_{n+1} = (u_n + K \sin(v_n)) \cos\left(\frac{2\pi}{q} \right) + v_n \sin\left(\frac{2\pi}{q} \right) \]

\[v_{n+1} = -(u_n + K \sin(v_n)) \sin\left(\frac{2\pi}{q} \right) + v_n \cos\left(\frac{2\pi}{q} \right) \]

\(q = 4 \)
References

History of the Theory of Probability
I. Todhunter, Chelsea Pub (1865)

Games, Gods, and Gambling
F. N. David, Hafner Pub. (1962)

The Doctrine of Chances
A. DeMoivre, Chelsea Pub. (3rd edition, 1756)

Probability and Statistical Inference in Ancient and Medieval Jewish Literature,
Rabinovitch, U. Toronto Press (1973)

M. G. Kendall, Biometrika 43, 1 (1956)

The Wonderful World of Random Walks,
E. W. Montroll and M. F. Shlesinger,
Bayesian Inference

Flip a coin, get a head H, (or n H's in a row) is this a fair coin?

$h =$ probability to get a head

No information, assume $0 < h < 1$ uniformly distributed

$$
\langle h \rangle = \frac{\int_0^1 h p(nH|h)p(h)dh}{\int_0^1 p(nH|h)p(h)dh}
$$

$$
= \frac{\int_0^1 hh^n dh}{\int_0^1 h^n dh} = \frac{n+1}{n+2}
$$

Bayesian estimate after one coin toss

$$
\langle h(n=1) \rangle = \frac{2}{3}
$$