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The Need: Grid-Scale Energy Storage
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Grid-scale long-duration energy storage has become a “need to have”
vs a “nice to have” to enable a renewable grid.

Pahari, S., et al., RSC Advances, 2021, 11 (10), 5432-5443



The Need: Long-Duration Energy Storage
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Grid-scale long-duration energy storage is the key for
resiliency without excessive over-generation

Freeman, S., Agar, E. Under Review, 2023




The Solution: Redox Flow Batteries




The Solution: Redox Flow Batteries
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The Solution: Redox Flow Batteries

ost is @ major challenge (Dept. of Energy Target <$100 /kWh) }

. Performance

Higher Energy Density Higher Power Density

\ l \
Thrust 1 Thrust 2 Thrust 3

Electrolyte: Cell Potential  Electrolyte: Solubility Limitation Electrode: Tailored design for RFBs




he Problem: Intrinsic Solubility Limitation

Li-ion battery? <750 Wh-L"

' Redox flow batteries’ <100 Wh-L"
!L Hydrogen (lig) 2,300 Wh-L"

@
> n: number of transferred electrons
Energy density > E: the flow battery cell voltage
> (C: active species concentration

« Energy density is intrinsically limited by the solubility
- Difficult to yield disruptive improvements in energy density

- J

[1]1 X. Wei et al., ACS Energy Letters, 2017, 2, 2187-2204 7 of 34
[2] K. Gong, Q. Fang, S. Gu, S. Li, Y. Yan, Energy & Environmental Science, 2015, 8, 3515-3530.



Project 1: Overcoming the Active Material Solubility
Limitation via Indirect Redox Targeting Reactions
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oject 1: Indirect Redox Targeting Reaction

L LL Lo

Solid Charge %ﬂ L) Solid Charge
Storage Medium Negative . + _ Positive Storage Medium
(S2) \Electrolyte § | v +§‘. zz Electrolyte / (S4) -+ e-
~ doo HiE “
Sa9 | = I | [Se ,
e s I = e M, + e- M,
&y = J |
‘[ N Jl LJ—K\\JJJ In external tanks
— ) i ;=
"" - _A_ - - '\“ -+ S1 C— -+ S1+
. Redox-targeting- i
M, ~&- &= b e-
ased flow battery _._)_i . +
A . M,+S, — M, + S
M- (RTFB) operation 2 2 2 2
M,+S,— M,+ S, +S, — +S/

Redox mediator (M) shuttles charge between the flow cell and the solid
charge storage medium (S) in the tanks - combining high energy
density of Li-ion and scalability of RFBs

M. Zhou et al., Chem, 2017, 3, 1036-1049.
R.Yan, Q. Wang, Advanced Materials, 2018, 30, 1802406. 9of 34
X. Wang et al., Current Opinion in Electrochemistry, 2021, 29, 100743.



oject 2: Redox Mediated Water Electrolysis
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« Technology hybridization enables maximum utilization of renewable energy
- Overcome low energy density of conventional all vanadium RFBs

« Indirect water electrolysis will mitigate gas cross over issues

IRENA, Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.50C Climate Goal, 2020
IEA, Share of low-carbon sources and coal in world electricity generation, 1971-2021

10 of 34



oject 2: Redox Mediated Water Electrolysis
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Two in One Approach
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Electrochemical
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Typical RFB
Operation

Dennison, Chimia, 2015, 69, no. 12
Xianfeng Li, Joule 3, (2019), 2066-2067 11 of 34
Reynard and Girault, Cell Reports Physical Science (2021)



oject 2: Redox Mediated Water Electrolysis

Two in One Approach

A
a Y
Chemical Energy 2 g
Storage Electrochemical
Hydrogen Energy Storage
Fuel
In Redox
Indirect Water Med [ ators
Splitting
Typical RFB
Operation
2M, + 2H* 2H 2H,0 + 2M,* ——2M, + 4H~ +
el AT 2Hy0 + 2 I

Charged redox mediator (RM) is discharged chemically in separate external
reactors containing electrocatalyst - redox mediated water splitting

Dennison, Chimia, 2015, 69, no. 12
Xianfeng Li, Joule 3, (2019), 2066-2067 12 of 34
Reynard and Girault, Cell Reports Physical Science (2021)



ey Role : Redox Mediators

2H,0 + 252V
(vs SHE) = 0.99 V

ALL VANADIUM

Aqueous redox mediator in catholyte should have thermodynamic
potential above 1.23 V to drive water oxidation

Dennison, Chimia, 2015, 69, no. 12
Xianfeng Li, Joule 3, (2019), 2066-2067 13 of 34
Reynard and Girault, Cell Reports Physical Science (2021)



anganese as Redox Mediators

Transition Metal Redox Porential  Charging
RMs
Co3*/Co?* 1.81
Pb#/Pb2* 1.67
Ce4t/Ce3* 1.61
Br/Br, 1.60 Side
Mn3*/Mn2* 1.51 reaction
Cré*/Cr3+ 1.33
V5[4 0.99

Rapid Mn3* disproportionation reaction
leads to solid MnO, precipitate

K., P. W. Atkins: Physical Chemistry, 1990, 94 (10), p. 1171-1171
Pang, S. C., et al., J. Electrochemical Society, 2000, 147 (2), 444
F.-Q. Xue et al., Electrochimica Acta 53, 2008, 6636—6642
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anganese-based Redox Flow Battery
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Current state of art performance for Manganese RFBs. The
coulombic efficiency of RFB drops due to MnO, precipitation
limiting the state of charge




oblem Statement : State of Charge Trade-off

Stability of Redox Mediator  Electrochemical Performance Hydrogen Generation

B

MANGANESE VANADIUM

Higher yield of H,
at higher SOC
MnO, aggravates
at higher SOC

16 of 34



Effect of Acid Concentration

Stability of Redox Mediator

Manganese Pourbaix Diagram
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17 of 34
Yi, Chan Pei, and Siti Rohana Majid, Semiconductors-Growth and Characterization (2018): 1193



Effect of Vanadium as Additive

Stability of Redox Mediator
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Potential (V) vs SHE

e Capacitive currents at ~1.6 V during oxidation suggest oxide deposition
* Two broad reduction peaks for one oxidation peak for Mn?* to Mn3*

CV experiments done at 100 mM of RM in 3M acid with Reference electrode Hg |HgSO,.
Counter Electrode — Pt wire. Potential are reported vs SHE , shifted by +0.64 18 of 34
Graphite Plate = 21.3 cm?



Effect of Vanadium as Additive

Stability of Redox Mediator
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* Positive shift in reduction potential of Mn3* to Mn?*
e Vanadium ion possibly induces steric effects to refrain oxo-bridge formation

CV experiments done at 100 mM of RM in 3M acid with Reference electrode Hg |HgSO,.
Counter Electrode — Pt wire. Potential are reported vs SHE , shifted by +0.64 19 of 34
Graphite Plate = 21.3 cm?



Visual Stability of Manganese with Additive

Stability of Redox Mediator

10 mins after Cyclic

Immediately after Cyclic
Voltammetry

Voltammetry

A — Control, Pure Mn%*
B — Mn3* without Additive
C — Mn?* with Additive |
D — Mn3* with Additive

 Manganese dioxide settles after 10 minutes when without additive
 Vanadium ion suppresses the large particles of Manganese dioxide

20 of 34



Effect of Electrode Size

Stability of Redox Mediator

Planar diffusion fields (linear Overpotentials for 10 mM Ferrocene
diffusion) 1.2

CV response
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Ultramicroelectrode are robust tool to comment on diffusion layer and
investigate electrode-electrolyte interface phenomenon

Ching, Stanton, et al., Journal of chemical education 71.7 (1994): 602
Hwang, S., et. al., IEEE Sensors Journal, 9, 609-615
Zoski, Cynthia G., ed. Handbook of electrochemistry. Elsevier, 2006.



Ultramicroelectrode Cyclic Voltammetry

Stability of Redox Mediator

Carbon UME (11 micron) without Additive
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Flattening of duck shaped faradaic response in reduction branch is specific to
interplay between equimolar amounts of additive V>* with RM i.e., Mn3*/ Mn?*

CV experiments done at 100 mM of RM in 3M acid with Reference electrode Hg |HgSO,. 22 of 34
Counter Electrode — Pt wire. Potential are reported vs SHE , shifted by +0.64




Galvanostatic Cycling without Additive

Electrochemical Performance

25 100 mM Mn Based Posolyte without additive
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Voltage cut-offs are hit immediately as the flow fields get blocked by MnO,
particles - displaying a poor cycling performance without additive

Experiments were performed under Nitrogen blanket for 100 mM of redox mediator with carbon felts (5 cm?) as electrodes
Current Density: 10 mA/cm? ,Flow Rate: 50 mL/min

23 of 34



Galvanostatic Pre-Conditioning with Additive

Electrochemical Performance
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Rapid formation of MnO, particles in pre-charge
affects the true state of charge prior to constant current full cell cycling

Experiments were performed under Nitrogen blanket for 100 mM of redox mediator with carbon felts (5 cm2) as electrodes 24 of 34
Current Density: 10 mA/cm? ,Flow Rate: 50 mL/min



Galvanostatic Cycling with Additive

Nafion 212 at 10 mA/cm 2

Electrochemical Performance
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Nafion 212 at 10 mA/cm 2

Cycle Number

Even though the experimental SOC for Regime IIl is near as same as
theoretical; it suffers from capacity fade possibly due to thicker electrode
passivation and pore blocking from MnQO, particles

Experiments were performed under Nitrogen blanket for 100 mM of redox mediator with carbon felts (5 cm2) as electrodes

Current Density: 10 mA/cm? ,Flow Rate: 50 mL/min

25 of 34



Galvanostatic Cycling with Additive

Electrochemical Performance

Nafion 212 FAP 450
Conditions
Regimel Regime2 Regime3 Regimel Regime2 Regime 3
Theoretical
SOC Oto50% | 25to75% 50to 100%| O0to50% | 25to75% 50 to 100%
CE 89.7% 90.1% 85.4% 80.2% 84.7% 86.2 %
VE 91.4% 88.8% 92.3% 94.7% 94.5% 89.5%
EE 81.9% 80.1% 78.8% 75.9% 80.0% 77.2%

Better performance is observed with Nafion 212 as opposed to FAP 450 as
it may allow the cross-over of vanadium ions for Mn3* steric stabilization.

Experiments were performed under Nitrogen blanket for 100 mM of redox mediator with carbon felts (5 cm?) as electrodes
Current Density: 10 mA/cm? ,Flow Rate: 50 mL/min

26 of 34



Hydrogen Generation

Hydrogen Generation

1. What is the maximum H, yield for a fixed capacity retention ?
2. Which operating SOC window gives maximum H, yield ?
3. What is the affect of Mn3* disproportionation reaction on total H, yield ?

Aoua!D!IH dlquin|o)
PIRIAFH |Ble_ PIBIA ‘H e}
L 2 .0
ﬁ *

v

Cycle Number Total H, Yield

Regime | — Low SOC charging depth (0 to 50%)
Regime Il - Moderate SOC charging depth (25 to 75%)
Regime Ill — High SOC charging depth (50 to 100%)



Hydrogen Generation

Hydrogen Generation

H, gas leak
detector

Anolyte with
Pt coated on
carbon cloth b\

-

Rudimentary set-up to collect Hydrogen gas

Electrocatalyst - 40 wt% Pt on Vulcan coated on Carbon Cloth 28 of 34



H, Evolution Reaction Electrocatalyst

_I_—.J:.

Hydrogen Generation

Commercial Pt Ink composition (40 wt% on Vulcan)
i.e.,, 30 mg/g Pt + 10 mg/g Nafion

1. PtInk was drop casted & coated on Carbon Cloth (1 cm x 1 cm) using blade
2. Dried in oven at 50 °C overnight (no vacuum)

Carbon Cloth
Carbon weight Net weight of Platinum

cloth weight  After overnight  Platinum Ink Loading
drying

(mg) (mg) (mg) (mg/cm?)
61.8 148.6 86.8 ~2.5

Electrocatalyst — 40 wt% Pt on Vulcan coated on Carbon Cloth 29 of 34



Chemical Discharge of V*
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Hydrogen Generation

Catholyte : 0.5 M Mn: with 0.5 M V= (60 mL) = 804 mA.hr
Anolyte :1MV3* (30 mL) =804 mA.hr

Regime Il : ( ) at 50 mA/cm2and 50 mL/min
Regime II: Nafion 212 at 50 mA/cm 2
***** ********** o
Py * *
& 80 h ,,,,,,,,,, Theoretical capacity,at 50% SOC_
>
(o]
o
o o0f CE=93.2%
'-g VE = 89.8 %
‘s 40} EE=83.6 %
=
=
o 20
o *x CE
Charge Capacity
Discharge Capacity
0 » » »
After 30 cycles - 30 mL ~ 75% SOC V2* 0 10 20 30

Cycle Number 30 of 34
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After 30 cycles - 30 mL ~ 75% SOC V?#*
was obtained at 1.83 Volts

Hydrogen Gas Chromatography

Peak Intensity

Hydrogen Generation

Regime ll : Qualitative
14000 ——
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Hydrogen Generation

1. Develop a better way to coat Platinum ink on carbon cloth
because
- Complete discharge of 30 mL V?* to V3* takes about a day.
- Catalyst delamination was observed
- Kinetics is perhaps slow?
- Flow rate dropped quickly < 10 mL/min within seconds.

1. Integrate the 3-way valves on positive side for OER for
simultaneous water splitting

1. Install the in-line digital mass flow meter

1. Integrate Gas Chromotography for operando quantification



1) Proof of concept was developed using asymmetric cell cycling of V-
Mn: redox mediated water electrolysis concept provides a one stop
solution for energy dense renewable systems

2) Mn?* is identified as the suitable catholyte redox mediator to drive
water oxidation but is limited by disproportionation reaction

3) V°* as an additive fine tunes the stability of Mn3* in aqueous media

4) Ultra microelectrode voltammetry is a useful diagnostic tool to
understand interface layer for complex redox systems

5) True State of Charge during pre-conditioning is altered by rapid
MnO, formation and requires further optimization

33 of 34
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