

Naval Postgraduate School Energy Academic Group Defense Energy Seminar Series July 25, 2023 Dual-Layer Energy Storage: Combining Redox Flow Batteries With Renewable Hydrogen Generation

Ertan Agar

Department of Mechanical Engineering Energy Engineering Graduate Program University of Massachusetts Lowell

https://agar-lab.com

The Need: Grid-Scale Energy Storage

Grid-scale *long-duration energy storage* has become a **"need to have" vs a "nice to have"** to enable a renewable grid.

The Need: Long-Duration Energy Storage

- 43 years of hourly weather data from NASA MERRA-2
- Massachusetts' electric supply and demand is investigated

Grid-scale *long-duration energy storage* is the key for resiliency without excessive over-generation

Freeman, S., Agar, E. Under Review, 2023

The Solution: Redox Flow Batteries

Ag Cd In Sn Sb Te I Xe

The Solution: Redox Flow Batteries

F. R. Brushett and Y-M Chiang et al., Joule. 2017, 1, 306-327.

The Solution: Redox Flow Batteries

Electrolyte: Cell Potential **Electrolyte:** Solubility Limitation **Electrode:** Tailored design for RFBs

he Problem: Intrinsic Solubility Limitation

	Redox flow batteries ¹	< 100 Wh∙L ⁻¹	
	Li-ion battery ²	< 750 Wh∙L ⁻¹	
	Hydrogen (liq)	2,300 Wh∙L ⁻¹	
	n: nu	mber of transferred elect	rons
Energy density ——	—► E: the	e flow battery cell voltage	
	→ C: ac	tive species concentratior	7

- Energy density is **intrinsically limited** by the **solubility**
- Difficult to yield disruptive improvements in energy density

[1] X. Wei et al., ACS Energy Letters, 2017, 2, 2187-2204
[2] K. Gong, Q. Fang, S. Gu, S. Li, Y. Yan, Energy & Environmental Science, 2015, 8, 3515–3530.

Project 1: Overcoming the Active Material Solubility Limitation via Indirect Redox Targeting Reactions

8 of 34

oject 1: Indirect Redox Targeting Reaction

Redox mediator (M) shuttles charge between the flow cell and the solid charge storage medium (S) in the tanks – **combining high energy density of Li-ion and scalability of RFBs**

oject 2: Redox Mediated Water Electrolysis

- Technology hybridization enables maximum utilization of renewable energy
- **Overcome low energy density** of conventional all vanadium RFBs
- Indirect water electrolysis will **mitigate gas cross over issues**

oject 2: Redox Mediated Water Electrolysis

oject 2: Redox Mediated Water Electrolysis

Charged redox mediator (RM) is discharged chemically in separate external reactors containing electrocatalyst – **redox mediated water splitting**

Dennison, Chimia, 2015, 69, no. 12 Xianfeng Li, Joule 3, (2019), 2066-2067 Reynard and Girault, Cell Reports Physical Science (2021)

Key Role : Redox Mediators

Aqueous redox mediator in catholyte should have **thermodynamic potential above 1.23 V** to drive water oxidation

Dennison, Chimia, 2015, 69, no. 12 Xianfeng Li, Joule 3, (2019), 2066-2067 Reynard and Girault, Cell Reports Physical Science (2021)

langanese as Redox Mediators

Possible Transition Metal RMs	Redox Potential vs SHE	Charging	
Co ³⁺ /Co ²⁺	1.81		
Pb4+/Pb2+	1.67		
Ce ⁴⁺ /Ce ³⁺	1.61		
Br ⁺ /Br ₂	1.60	Side	
Mn ³⁺ /Mn ²⁺	1.51	Reaction	
Cr ⁶⁺ /Cr ³⁺	1.33		The Real Property in the Party
V ⁵⁺ /V ⁴⁺	0.99		

Rapid Mn³⁺ **disproportionation reaction** leads to solid **MnO₂** precipitate

K., P. W. Atkins: Physical Chemistry, 1990, 94 (10), p. 1171-1171 Pang, S. C., et al., J. Electrochemical Society, 2000, 147 (2), 444 F.-Q. Xue et al., Electrochimica Acta 53, 2008, 6636–6642

langanese-based Redox Flow Battery

Current state of art performance for Manganese RFBs. **The** coulombic efficiency of RFB drops due to MnO₂ precipitation limiting the state of charge

roblem Statement : State of Charge Trade-off

16 of 34

Effect of Acid Concentration

Yi, Chan Pei, and Siti Rohana Majid, Semiconductors-Growth and Characterization (2018): 1193

Effect of Vanadium as Additive

- Capacitive currents at ~1.6 V during oxidation suggest oxide deposition
- **Two** broad **reduction peaks** for **one oxidation peak** for Mn²⁺ to Mn³⁺

CV experiments done at 100 mM of RM in 3M acid with Reference electrode Hg $|HgSO_4$. Counter Electrode – Pt wire. Potential are reported vs SHE, shifted by +0.64 Graphite Plate = 21.3 cm²

Effect of Vanadium as Additive

- **Positive shift in reduction potential** of Mn³⁺ to Mn²⁺
- Vanadium ion possibly induces steric effects to refrain oxo-bridge formation

CV experiments done at 100 mM of RM in 3M acid with Reference electrode Hg |HgSO₄. Counter Electrode – Pt wire. Potential are reported vs SHE, shifted by +0.64 Graphite Plate = 21.3 cm²

Visual Stability of Manganese with Additive

Stability of Redox Mediator

Electrochemical Performance

Hydrogen Generation

Immediately after Cyclic

10 mins after Cyclic Voltammetry

- Manganese dioxide settles after 10 minutes when without additive
- Vanadium ion suppresses the large particles of Manganese dioxide

Effect of Electrode Size

Stability of Redox Mediator

Electrochemical Performance

Hydrogen Generation

Ultramicroelectrode are robust tool to comment on diffusion layer and investigate electrode-electrolyte interface phenomenon

Ching, Stanton, et al., Journal of chemical education 71.7 (1994): 602 Hwang, S., et. al., IEEE Sensors Journal, 9, 609-615 Zoski, Cynthia G., ed. Handbook of electrochemistry. Elsevier, 2006.

Ultramicroelectrode Cyclic Voltammetry

Flattening of duck shaped faradaic response in reduction branch is specific to interplay between equimolar amounts of additive V^{5+} with RM i.e., Mn^{3+}/Mn^{2+}

CV experiments done at 100 mM of RM in 3M acid with Reference electrode Hg |HgSO₄. Counter Electrode – Pt wire. Potential are reported vs SHE , shifted by +0.64

Galvanostatic Cycling without Additive

Electrochemical Performance

Stability of Redox Mediator

Hydrogen Generation

Voltage cut-offs are hit immediately as the flow fields get blocked by MnO₂ particles - displaying a poor cycling performance without additive

Experiments were performed under Nitrogen blanket for 100 mM of redox mediator with carbon felts (5 cm²) as electrodes Current Density: 10 mA/cm², Flow Rate: 50 mL/min

Galvanostatic Pre-Conditioning with Additive

Experiments were performed under Nitrogen blanket for 100 mM of redox mediator with carbon felts (5 cm²) as electrodes Current Density: 10 mA/cm², Flow Rate: 50 mL/min

Galvanostatic Cycling with Additive

Even though the experimental SOC for Regime III is near as same as theoretical; it suffers from capacity fade possibly due to thicker electrode passivation and pore blocking from MnO₂ particles

Experiments were performed under Nitrogen blanket for 100 mM of redox mediator with carbon felts (5 cm²) as electrodes Current Density: 10 mA/cm², Flow Rate: 50 mL/min

Galvanostatic Cycling with Additive

Stability of Redox Mediator

Electrochemical Performance

Hydrogen Generation

Conditions	Nafion 212		FAP 450			
Conditions	Regime 1	Regime 2	Regime 3	Regime 1	Regime 2	Regime 3
Theoretical SOC	0 to 50%	25 to 75%	50 to 100%	0 to 50%	25 to 75%	50 to 100%
CE	89.7%	90.1%	85.4%	80.2%	84.7%	86.2 %
VE	91.4%	88.8%	92.3%	94.7%	94.5%	89.5%
EE	81.9%	80.1%	78.8%	75.9%	80.0%	77.2%

Better performance is observed with Nafion 212 as opposed to FAP 450 as it may allow the cross-over of vanadium ions for Mn³⁺ steric stabilization.

Hydrogen Generation

Stability of Redox Mediator Electrochemic

Electrochemical Performance

Hydrogen Generation

- 1. What is the maximum H₂ yield for a fixed capacity retention **?**
- 2. Which operating SOC window gives maximum H₂ yield **?**
- 3. What is the affect of Mn^{3+} disproportionation reaction on total H_2 yield ?

Regime I – Low SOC charging depth (0 to 50%) Regime II – Moderate SOC charging depth (25 to 75%) Regime III – High SOC charging depth (50 to 100%)

Hydrogen Generation

Stability of Redox Mediator Electrochemical Performance Hydrogenetics

Hydrogen Generation

Rudimentary set-up to collect Hydrogen gas

H₂ Evolution Reaction Electrocatalyst

Stability of Redox Mediator Electrochemical Performance Hydro

Hydrogen Generation

Commercial Pt Ink composition (40 wt% on Vulcan) i.e., 30 mg/g Pt + 10 mg/g Nafion

- 1. Pt Ink was drop casted & coated on Carbon Cloth (1 cm x 1 cm) using blade
- 2. Dried in oven at 50 °C overnight (no vacuum)

Carbon cloth weight	Carbon Cloth weight After overnight drying	Net weight of Platinum Ink	Platinum Loading
(mg)	(mg)	(mg)	(mg/cm ²)
61.8	148.6	86.8	~ 2.5

Chemical Discharge of V²⁺

After 30 cycles - 30 mL \sim 75% SOC V²⁺

Electrochemical Performance

Hydrogen Generation

Catholyte : 0.5 M Mn²⁺ with 0.5 M V⁵⁺ (60 mL) = 804 mA.hr Anolyte : 1 M V³⁺ (30 mL) = 804 mA.hr

Regime II : (25 to 75%) at 50 mA/cm² and 50 mL/min

30 of 34

Hydrogen Gas Chromatography

After 30 cycles - 30 mL ~ 75% SOC V²⁺ was obtained at **1.83** Volts

Future Work

Stability of Redox Mediator Electrochemical Performance Hyde

Hydrogen Generation

- 1. Develop a better way to coat Platinum ink on carbon cloth because
 - Complete discharge of 30 mL V²⁺ to V³⁺ takes about a **day**.
 - Catalyst delamination was observed
 - Kinetics is perhaps slow?
 - Flow rate dropped quickly < 10 mL/min within seconds.
- 1. Integrate the 3-way valves on positive side for OER for simultaneous water splitting
- 1. Install the in-line digital mass flow meter
- 1. Integrate Gas Chromotography for operando quantification

Key Findings

1) Proof of concept was developed using asymmetric cell cycling of V-Mn: <u>redox mediated water electrolysis concept provides a one stop</u> <u>solution for energy dense renewable systems</u>

2) Mn²⁺ is identified as the suitable catholyte redox mediator to drive water oxidation but is limited by disproportionation reaction

3) V^{5+} as an additive fine tunes the stability of Mn³⁺ in aqueous media

4) <u>Ultra microelectrode voltammetry</u> is a useful diagnostic tool to understand interface layer for complex redox systems

5) <u>True State of Charge</u> during pre-conditioning is altered by rapid MnO_2 formation and requires further optimization

Acknowledgements

E2STL Lab at UMass Lowell

- Shabdiki Chaurasia
- Sergio Freeman
- Shyam Pahari
- Sundar Rajan Aravamuthan
- Henning Hoene
- Dan Rourke
- Eylul Ergun
- Ashley Caiado

Collaborators at UMass Lowell

- Prof. Michael Ross
- Connor Sullivan

Funding

Naval Postgraduate School Energy Academic Group Defense Energy Seminar Series July 25, 2023 Dual-Layer Energy Storage: Combining Redox Flow Batteries With Renewable Hydrogen Generation

Ertan Agar

Department of Mechanical Engineering Energy Engineering Graduate Program University of Massachusetts Lowell

https://agar-lab.com

