ATTITUDE CONTROL OF FLEXIBLE COMMUNICATIONS SATELLITES

Brij N. Agrawal*
Naval Postgraduate School
Monterey, California 93940

Richard Gran†
Grumman Aerospace Corporation
Bethpage, New York 11714

Abstract

This paper investigates alternate control techniques for the attitude control of a three-axis stabilized flexible communications satellite consisting of a large reflector and a solar array. The control configurations consisted of three classes: Class 1 - sensors and actuators co-located on the central body, Class 2 - actuator on the central body and sensors distributed, and Class 3 - actuators and sensors distributed. Criteria are developed for modal truncation. The results indicate that Class 2 can cause instability and is not generally a desirable design approach. An experimental setup to study the effects of flexibility on attitude control performance during slew maneuvers and wheel desaturation is also discussed.

I. Introduction

The current trend in the design of communications satellites has been towards higher electric power and narrower antenna beam-width in order to reduce the size of ground station antennas. This trend in the design results in lower structural frequencies due to larger solar arrays and antenna reflectors. The decrease in the beamwidth calls for higher pointing accuracy which in turn calls for higher closed-loop bandwidth. Therefore, the current trend in the design of communications satellites results in some structural frequencies within control bandwidth, resulting in the potential for controllability/interaction interactions. Attitude control design for such spacecraft becomes a challenging problem. In the past decade, several new control techniques have been proposed for large flexible structures. The application practicality of these techniques for communications satellites, however, requires further work.

At INTELSAT, a study was undertaken to investigate analytically alternate techniques for attitude control of three-axis stabilized flexible spacecraft. At the Naval Postgraduate School, an experimental setup has been developed to experimentally investigate alternate control techniques for flexible spacecraft. This paper presents the results of this work.

II. Spacecraft Configuration

The spacecraft configuration used for the study1,2,3 is shown in Fig. 1. It is a three-axis-stabilized spacecraft. It consists of a central body which is assumed to be rigid. Attached to it are two flexible structures: one is a 10 m diameter deployable antenna reflector supported by two Astromast structures and the other is a solar array. A smaller antenna, 3 m diameter, is modeled as a concentrated mass. The feed of the 10 m diameter reflector is attached to the central body. The performance is measured by the pointing error of the reflector, resulting in beam pointing error, and the distance between the feed and the reflector, resulting in defocusing of the beam.

The three classes of control systems were investigated during the study.

Class 1 - actuators and sensors co-located at the central body

Class 2 - actuators at the central body but sensors at the central body and at the antenna

Class 3 - actuators and sensors distributed on the spacecraft so that the antennas may be controlled independent of the central body

The available actuators are three reaction wheels at the central body, a two-degree-of-freedom gimbal drive for the larger reflector, and a tension drive that applies a force between the centers of the astromasts that hold the reflector. The available sensors are to measure attitude and rates for the central body and the larger reflector, and the distance from the feed horn to the antenna reflector.

The major disturbances on the satellite are the solar array torques due to solar pressure, thruster torques, and white disturbance noise associated with the actuators.

III. Analytical Simulation

A finite element model of the spacecraft was developed using NASTRAN. Table I gives natural frequencies for the structural modes. The structural modes can be divided into four categories: uncontrollable modes, unobservable modes, stable interacting modes, and unstable interacting modes. Uncontrollable modes are not excited by any of the actuators. Unobservable modes are not sensed by any of the sensors. Stable interacting modes are both controllable and observable at the actuator/sensor locations with the identical mode characteristics at each location (the same slope for rotational actuating/sensing). Unstable interacting modes are both controllable and observable at the actuator/sensor locations with mode characteristics that are of the opposite sign. As an example, Fig. 2 shows categorization of some of the structural modes.

The first step in the design of the control system is the determination of which of the modes are significant. Since antenna pointing is a critical performance parameter, it must be used in evaluating the importance of any mode. Thus, the modes that are kept in the synthesis model are (a) the modes which are controllable and/or observable and which have the largest effect on antenna pointing and (b) the modes which are unstably interacting, even though they may...
Figure 1. Spacecraft Configuration

Table 1. Natural Frequencies and Mode Shapes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Frequency, Hz</th>
<th>O.M. kg m^2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.67e-05</td>
<td>1.00e+03</td>
<td>1.0000 Solar array - first sym bending</td>
</tr>
<tr>
<td>2</td>
<td>3.61e-05</td>
<td>2.00e+03</td>
<td>2.0000 Large antenna - first flexural</td>
</tr>
<tr>
<td>3</td>
<td>1.34e-04</td>
<td>1.00e+03</td>
<td>1.0000 Large antenna - 5 solar array - pitch</td>
</tr>
<tr>
<td>4</td>
<td>1.34e-04</td>
<td>2.00e+03</td>
<td>2.0000 Large antenna - roll</td>
</tr>
<tr>
<td>5</td>
<td>1.39e-04</td>
<td>1.00e+03</td>
<td>1.0000 Solar array - 1st anti torsion</td>
</tr>
<tr>
<td>6</td>
<td>1.396e-04</td>
<td>6.00e+02</td>
<td>6.0000 Large antenna pitch - solar array - 5 1st sym torsion</td>
</tr>
<tr>
<td>7</td>
<td>1.119e-02</td>
<td>1.00e+02</td>
<td>1.0000 Solar array - 1st anti bending anti roll</td>
</tr>
<tr>
<td>8</td>
<td>2.205e-02</td>
<td>2.00e+02</td>
<td>2.0000 Large antenna pitch - 5th bending</td>
</tr>
<tr>
<td>9</td>
<td>3.525e-02</td>
<td>2.00e+02</td>
<td>2.0000 Solar array - 2nd sym bending</td>
</tr>
<tr>
<td>10</td>
<td>4.465e-02</td>
<td>6.00e+02</td>
<td>6.0000 Solar array - 2nd anti bending</td>
</tr>
<tr>
<td>11</td>
<td>5.147e-02</td>
<td>9.00e+01</td>
<td>9.0000 Solar array - 2nd anti torsion</td>
</tr>
<tr>
<td>12</td>
<td>5.747e-02</td>
<td>9.99e+01</td>
<td>9.9900 Solar array - 2nd anti torsion</td>
</tr>
<tr>
<td>13</td>
<td>7.362e-02</td>
<td>1.040e+01</td>
<td>1.0400 Solar array - 1st inplane bending</td>
</tr>
<tr>
<td>14</td>
<td>5.406e-02</td>
<td>4.00e+01</td>
<td>4.0000 Astro mast - Cassegrain roll</td>
</tr>
<tr>
<td>15</td>
<td>1.152e-01</td>
<td>4.00e+01</td>
<td>4.0000 Solar array - 3rd sym bend</td>
</tr>
<tr>
<td>16</td>
<td>1.152e-01</td>
<td>4.00e+01</td>
<td>4.0000 Solar array - 3rd anti bend</td>
</tr>
<tr>
<td>17</td>
<td>1.188e-01</td>
<td>4.00e+01</td>
<td>4.0000 Astro mast - Cassegrain pitch</td>
</tr>
<tr>
<td>18</td>
<td>1.234e-01</td>
<td>4.00e+01</td>
<td>4.0000 Solar array - 3rd anti torsion</td>
</tr>
<tr>
<td>19</td>
<td>1.234e-01</td>
<td>4.00e+01</td>
<td>4.0000 Solar array - 3rd sym torsion</td>
</tr>
<tr>
<td>20</td>
<td>1.375e-01</td>
<td>3.00e+01</td>
<td>3.0000 Astro mast - Cassegrain roll</td>
</tr>
<tr>
<td>21</td>
<td>1.805e-01</td>
<td>4.00e+01</td>
<td>4.0000 Solar array - 4th bend</td>
</tr>
<tr>
<td>22</td>
<td>2.055e-01</td>
<td>2.00e+01</td>
<td>2.0000 Solar array - 4th anti bend</td>
</tr>
<tr>
<td>23</td>
<td>2.130e-01</td>
<td>5.00e+00</td>
<td>5.0000 Solar array - 4th anti torsion</td>
</tr>
<tr>
<td>24</td>
<td>2.130e-01</td>
<td>5.00e+00</td>
<td>5.0000 Solar array - 4th sym torsion</td>
</tr>
<tr>
<td>25</td>
<td>3.000e-01</td>
<td>1.00e+02</td>
<td>1.0000 Solar array - anti inplane bending</td>
</tr>
</tbody>
</table>
a) Mode 7, Frequency 0.058 unobservable at core and antenna, uncontrollable by torquer at core and at antenna.

b) Mode 13, Frequency 0.179 Hz observable, controllable, and unstably interacting for any sensor not at core mass.

Figure 2. Spacecraft Structural Modes

Table 2. Observability and Controllability of Structural Modes

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>Mod. No.</th>
<th>Observability</th>
<th>Table of Modes</th>
<th>Table of</th>
<th>Results R or D in 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>8</td>
<td>At Core</td>
<td>At Antenna</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>9</td>
<td>At Core</td>
<td>At Antenna</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>10</td>
<td>At Core</td>
<td>At Antenna</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>11</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>12</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>13</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>14</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>15</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>16</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>17</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>18</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>19</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>20</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>21</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>22</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>23</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>24</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>25</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>26</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>27</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>28</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>29</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>30</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
<tr>
<td>31</td>
<td>J</td>
<td>✓</td>
<td></td>
<td>U</td>
<td>D b n</td>
</tr>
</tbody>
</table>

NOTES:
1. For attitude sensors located in center body, modes 400 through 410
2. Will not excite solar array
3. Neutral because central torque is uniformly distributed on solar array about Y axis
not effect antenna pointing.

Next, the rigid body bandwidth required to achieve the desired pointing accuracy using the disturbance torques is determined. For the structural modes with 0.1\% damping, it is desirable to retain modes with natural frequencies up to 100 times the closed loop bandwidth. The controller design and the number of modes retained is iterated if the bandwidth becomes larger. Table 2 gives the observability and stability of structural modes and identifies whether a mode is retained or discarded.

It was found to be necessary to include actuator and sensor dynamics in control design. They can have destabilizing effect on the control system because of the phase shift included. In addition, the sensor noises are critical for proper determination of gains. The pointing errors can be normally minimized by selecting a high gain but since high gain amplifies sensor noise, there is a “best” gain to minimize pointing error.

The reduced state feedback control design algorithm developed by Rossi4 was used to determine feedback gains. If the designed control system is structured as shown in Fig. 3, then the algorithm can be used to determine the feedback and feed forward gains that optimize the performance index.

\[
J = \int \left[(Z^TQ_1Z + u^T R u) \right] \ dt
\]

where

- \(Z \) is the output (which is not necessarily the sensor)
- \(u \) is the control
- \(Q_1 \) is the weight on the output
- \(R \) is the weight on the control

The block diagram shown in Fig. 3 is structured so that the optimal design that results from minimizing performance index simultaneously gives both feedback and feedforward gains. The compensator that results is of order \(m \), where \(m \) is the number of integrations in the compensator at the bottom of Fig. 3. The optimal control develops the control signal \(u \) (the input to the actuators) and the control \(u \) (the input to the compensator integrals) so that the resulting feedback gains will be the \(K_o, K_{o1}, ..., K \) which directly determine the compensator zeros (the \(K_{o0} \) are the coefficients of the numerator transfer function matrix), and \(K_{o1}, K_{o2}, ..., K_{on} \) which directly determine the poles of the compensator. The minimization of performance index is with respect to the three sets of gains \(K_o, K_o, \) and \(K_o \). For this design, the output \(Z \) is a measure of the performance of the spacecraft, namely the pointing error of the antenna.

The weighting matrices \(Q \) and \(R \) in Eq. (1) are used to adjust the relative amount of control authority used. This is not important for the control \(u \), which is the compensator input, since this control does not have any saturation constraint, but the control \(u \), which drives the actuators, must be limited since the actuators have a maximum amount of control authority (reaction wheels cannot torque the vehicle when the motor speed reaches its maximum).

The reduced state algorithm gives a solution which depends on the initial conditions. The minimizing feedback gain is determined from a search. The algorithm for determining the minimum uses an explicit calculation of the gradient and Hessian tensors for \(J \), and the search is done in four steps. The first step is to compute the gradient and Hessian matrices and then to diagonalize the Hessian. Since the Hessian is symmetric, the diagonalization can be performed by an orthogonal transformation. In general the Hessian will not be positive definite; therefore, the negative eigenvalues are arbitrarily changed in sign to make the step direction correspond to a locally quadratic curve fit. Thus if \(H_0 \) represents the Hessian matrix at the zeroth iteration, this step consists of forming the following matrices:

\[
H_0 = \begin{bmatrix} V_1^T & V_2^T \end{bmatrix} \begin{bmatrix} D_1 & 0 \\ 0 & -D_2 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}
\]

where \(D_1 \) are diagonal matrices with positive entries \(V_1 \) and \(V_2 \) are the elements of the orthogonal transformation and

\[
H' = \begin{bmatrix} V_1^T & V_2^T \end{bmatrix} \begin{bmatrix} D_1 & 0 \\ 0 & D_2 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}
\]

The only difference between Eq. (2) and Eq. (3) is that \(H' \) in Eq. (3) is now positive definite.

The second part of the algorithm is the determination of the step direction for search. This is done by using the Taylor series for the cost as follows:

\[
J(K_o) = J(K_o) + (K_o - K_o)^T G + Q(K_o - K_o) + ... \]

where \(Q \) is the quadratic term in the Hessian \(H \)
\(K \) is the vector of gains that are being optimized
\(G \) is the gradient (in this case a vector)

The third part of the algorithm is the determination of this step from the approximate Hessian. From Eq. (4) the step direction is given by \(-H'^T G\). The fourth step before the process is repeated again is the determination of the step magnitude. This is accomplished using a one dimensional optimization so that \(s_o \) is the step direction determined above and "a" is the parameter that is determined by the one dimensional search so that \(J \) is minimized. The use of full state optimal solution gives a lower bound on \(J \) and thereby on "a". One of the important aspects of the algorithm is that its value is never permitted to cause the gains to result in an unstable solution. This is done by altering the one dimensional search if the step size is too big. Stability is tested as a by product of the gradient and Hessian calculations. The most interesting aspect of the optimization algorithm is the fact that the gradient and Hessian are developed from the same equations. These are Lyapunov type equations and are therefore solved using the same algorithm.

The overall algorithm flow is shown in Fig. 4. The program is referred to as SLOCOP. In practice we find that the solutions obtained from the reduced state feedback control designs are within 1 or 2% of the full state designs with orders of magnitude fewer gains. The important features of this design approach are that it allows one to incorporate the actuator dynamics and sensor dynamics, the noises on both the sensor and the disturbances exciting the structure, and the specifications in terms of a pre-specified model. If the latter is used, the model states are included in the dynamic description of the system (in the A matrix, the B matrix, and the measurement matrix) and are used to define the errors that are...
Figure 3. Reduced State Feedback Control Design

Figure 4. Constrained Optimal Control Algorithm
optimized in the performance index, but the feedback gains from
the model states are not used. The last feature that is important is
the explicit incorporation of the compensator dynamics. Fig. 3 shows
the way the compensator dynamics are included when it is desired to
design a notch filter for removing the influence of unstably interacting
modes.

In the design that we developed for the antenna pointing
control, we did not use a compensator. The logic behind this
approach is as follows:

(1) Determine the actuator and sensor
collection that makes the most sense so that
an uncoupled design with as few gains as
possible will result.

(2) Develop a design that uses only feedback gains
with no compensator and no cross feeds
between individual actuators.

(3) If, and only if, the design of (2) is not
adequate, add cross feeds to determine the level
of improvement that is achievable.

(4) If, and only if, the design of (3) is not
adequate, add compensation dynamics (using
analysis to determine where, and how large an
order, compensation is required).

The result of doing this on the spacecraft design was that
we did not have to go beyond the first step. We were able to achieve
pointing accuracies an order of magnitude below the desired level
without compensation, and by using an extremely simple structure.
The structure, shown in Fig. 5, uses feedback of the pitch roll and
yaw position and rate sensors to control, the pitch roll and yaw
(independently) actuators. The antenna line of sight actuator is
controlled from measurements that determine the position and rate of
change of the antenna to feed horn distance.

IV. Analytical Results

The Class 1 design used actuators and sensors at the
central body. The six gains were computed from SLOCP and the
resulting rms antenna pointing errors were 4.6×10^4, 3.3×10^4, $6.6
\times 10^4$ deg in yaw, pitch and roll respectively, and 11.38 mm rms in
defocus.

The Class 2 design used measurements at the antenna and
the actuators at the central body. The attitude and rate sensors were
mounted at the base of the reflector. The gains were calculated from
SLOCP and the resulting rms antenna pointing errors were $4.56
\times 10^4$, 4.3×10^4, 2.2×10^4 deg in yaw, pitch, and roll respectively,
and 2.2×10^4 mm in defocus.

The Class 3 design used measurement at the antenna and
distance between feed and antenna reflectors. The actuators are at the
central body, gimbal drive for reflectors, and tension drive between
astromasts. The resulting design gives rms pointing errors of $8.9
\times 10^4$, 1.6×10^4 and 5.8×10^4 deg in yaw, pitch and roll respectively,
and 2.2×10^4 mm in defocus.

It should be noted that in all three cases the designs give
control that exceed 0.1 degree rms pointing requirements by at least
an order of magnitude. The full state feedback solution with 180 gains
gave a solution of 8.2×10^4, 3×10^4, and 5.5×10^4 rad in yaw,

V. Experimental Simulation

At the Naval Postgraduate School, an experimental setup
was developed to validate the control techniques developed for
spacecraft configuration such as in Fig. 1. There were three primary
design criteria for the experimental setup. First, the system should be
easy to operate by graduate students without the aid of technicians.
Second, it should have the ability to expand to new research areas
such as space robotics and deployment of space structures. Third, the
cost of the experimental setup should be within budget constraints.

Considering these design criteria, three experimental
configurations were evaluated in depth: a spherical air bearing
providing three-axis simulation, a disk/rod system, and pitch axis
simulation on granite table with air pads. The spherical air bearing
configuration was not selected mainly because of high complexity in
design and operation due to gravitational effect, and cost significantly
above budgetary constraints. The disk/rod system, consisting of disks
connected by flexible rods, would have provided one axis simulation,
been simple to operate, and would have been within budgetary
constraints. This configuration was not selected because it could not
be easily expanded to other areas of research. The third configuration
of pitch axis simulation was selected because it met all three design
criteria.

Experimental Configuration

The experimental configuration is shown in Fig. 7. The
spacecraft simulator consists of a central rigid body representing the
spacecraft main body, and a flexible appendage representing a
reflector with a flexible support structure. The simulator is supported
on air pads to reduce friction. The whole system is supported on a
granite table. The central body is allowed to rotate about the vertical
axis and is prevented from translational motion by an air bearing. The
primary actuator is a reaction wheel located on the central body. The
angular position of the central body is determined by a rotary variable
differential transformer, (RVDT), and its angular rate by an angular
rate sensor. Figure 8 shows the hardware of experimental setup. The
fundamental cantilever frequency of the flexible structure is 0.13 Hz.

The mechanical system consists of the granite table of 1.82
m x 2.43 m x 0.267 m size and surface with a laboratory grade A
0.001” finish. The central body is 2.22 cm thick aluminum disk with a
0.76 m radius. The flexible arms are aluminum beams of 0.4 cm
thickness and 2.54 cm width. The length of the first arm is 0.67 m
and the length of the second is 0.61 m. The mass of each steel mass
intensity pair is 0.47 kg. Each air pad is capable of supporting
267N (60 lbf) load. The control systems consists of a VAX station
3100 Model 30, the AC-100 controller manufactured by Integrated
System Inc., and associate software. The development software,
which includes MATRIX, Auto Code, Interactive Animation, is used to
create the mathematical model and executes on the VAX station
under VM operating system. The controller has 16 channel analog
input, 16 channel analog output, and 32 parallel digital input/output.

The primary actuator for the present setup is a reaction
wheel. The wheel is a 0.26 m diameter, 2.22 cm thick steel disk. The
motor is a DC servo motor manufactured by PMI. The motor is a
Figure 5. Block Diagram of Control System Design

Figure 6. Nonlinear Simulations for Class 1 Control Design
Figure 7. Experimental Set-up Configuration

Figure 8. Experimental Set-up
Figure 9. Central Body Response to Thruster Impulse

Figure 10. Tip Deflection of Flexible Arm
The RVDT is a mode linearity. The angular rate is measured by a Watson Model ARC-C121-1A ARC with a range of \(\pm 40^\circ \) and 0.16% linearity. The angular rate is measured by a Waton Model with a range of \(\pm 30 \text{ deg/sec} \). The sensor works on the principle that the Coriolis force resulting from angular motion causes bending of the piezoelectric sensing elements.

Currently in Phase I, the experimental setup will be expanded in the future. In Phase II, piezoelectric sensors will be added on the flexible arm to provide active control. Phase III will have position sensors on the arm and a motor on the reflector support to provide angular control of the reflector. In Phase N, thrusters and liquid tanks will be added to the control body. Phase V will expand the experimental setup to include space robotics by adding motors and angular position sensors on the flexible arm joints. Phase VI will investigate the deployment of space structures.

Analytical Simulation

The equations of motion for the experimental setup are derived by using a hybrid-coordinate system, consisting of physical coordinates for the rigid body and modal coordinates for the flexible arm. The equations are:

\[
\mathbf{I}_b \ddot{\theta} + \mathbf{b} \mathbf{D} \mathbf{q}_r = \mathbf{T} \quad (5)
\]

\[
\ddot{\mathbf{q}}_i + 2\xi_i \omega_i \dot{\mathbf{q}}_i + \omega_i^2 \mathbf{q}_i + \mathbf{D} \mathbf{q}_i = \mathbf{0} \quad (6)
\]

\[i = 1, \ldots, n\]

Where \(I_b \) = moment of inertia of the undeformed system about rotational axis; \(\theta \) = angular position of the central body; \(h \) = angular momentum of the reaction wheel; \(D \) = rigid-elastic coupling for the ith mode; \(q_i \) = modal coordinate for the ith mode; \(\xi_i \) = fraction of critical damping for the ith mode; \(\omega_i \) = natural frequency of the ith mode; and \(n \) = number of modes for the analysis.

By defining the state vector in the form

\[
\mathbf{X} = [\theta, q_r, \ldots, q_r, \dot{q}_1, \dot{q}_1, \ldots, q_n, \mathbf{b}] \quad (7)
\]

The second order Eqs. 6 and 7 are written in standard state variable form

\[
\mathbf{X} = \mathbf{A} \mathbf{X} + \mathbf{B} \mathbf{U}
\]
\[
\mathbf{Y} = \mathbf{C} \mathbf{X}
\]

where \(U \) is input vector and \(\mathbf{Y} \) is output vector. Matrices \(A \), \(B \) and \(C \), completes the description of the equations in the state space form.

Analytical simulations were performed for three maneuvers: thruster impulse of 0.1 N.m.s, 5° bias maneuver, and 30° slew maneuver. For these maneuvers, both Class 1 and Class 2 control techniques were used. For Class 1, control proportional derivative (PD) control is used by feeding back the central body angular position and angular rate for the control torque of the momentum wheel. For Class 2 control, linear-quadratic-gaussian or LQG compensator is used. It is formed from a linear regulator and a Kalman filter estimator. The regulator design assumes full-state feedback. The MATRIX computer program is used for this analysis. The results from this study indicates that for thrust impulse and 5° bias maneuver Class 1 control provides acceptable performance. However, for slew maneuver, Class 2 control gives better performances. Further work is necessary to optimize the control system for slew maneuver. As an example Fig. 9 shows the response of the control system due to thruster impulse and Fig. 10 shows tip deflection of the flexible arm.

VI. Conclusions

Based on the analytical results from this study, guidelines have been developed in the attitude control design of flexible communications satellites. The structural modes that are controllable and unobservable and stably interacting are discarded. Also, the modes that stably interact are discarded if their contributions to the performance measure are small. The modes that unstably interact must always be retained. The control design must consider actuator and sensor dynamics and sensor noises. The reduced state of feedback control design algorithm provides good control performance.

For the flexible spacecraft under study, Class 1 design, which is the most robust design approach possible, satisfies the pointing requirements. Class 3 design is used to develop a fix for failure. Of Class 1 approach, Class 2 control design can cause stability problems and is not generally a desirable approach.

The experimental setup to validate control techniques for flexible spacecraft has been developed. The current design simulates Class 1 control where sensors and actuators are located on the central body. In the near future, it will be expanded to simulate Class 2 and Class 3 control configurations. It will be also expanded to study space robotics and deployment of space structures.

VII. References

6. Oakley, C.M. and Canon, R.J., "Theory and Experiments in Selecting Mode shapes for Two-Link Flexible