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Stability of Spinning Spacecraft with Partially Liquid-Filled Tanks
Brij N. Agrawal*

International Telecommunications Satellite Organization,
Washington, D.C.

This paper presents general stability conditions for a spinning spacecraft with partially liquid-filled tanks by
using Rumyanstev and Mclntyre methods. These methods are compared for accuracy and limitation by applying
them to a specific case of a spinning spacecraft with two partially liquid-filled tanks. The stability conditions
require that, for a stable motion, the spin to transverse moment of inertia must be greater than 1 + C, where C is
a positive definite function of the spacecraft parameters. Numerical spacecraft parameters are also used to
determine minimum inertia ratios, 1 + C.

Nomenclature
E = total energy
H = angular momentum
h = distance from tank center to the surface of the fluid
Iy = elements of inertia matrix of the spacecraft
7g = inertia elements of propellant about its own c.m.
7S = moment of inertia about the spin axis of the

spacecraft
L = distance of the tank center plane from system c.m.
M = mass of the spacecraft
m = mass of propellant per tank
q = generalized coordinates
R = tank radius
r{ = distance from spin axis to tank center
r2 = distance from spin axis to fluid surface
S = surface area of the fluid
U = potential energy
y0 = distance from tank center to c.m. of propellant tank
p = density of the fluid
tyjV.2 —spin axis tilt angles about the transverse (1 and 2)

axes, respectively
co = angular velocity about the spin axis

Introduction

THE stability and dynamics of spinning spacecraft have
been the subject of numerous papers.1'3 The motion of a

spinning spacecraft with liquid propellant is describedJ?y very
complex equations consisting of nonlinear ordinary dif-
ferential equations for the rigid spacecraft body and partial
differential equations for the liquid in the tanks supplemented
by appropriate initial and boundary conditions. In order to
solve these equations, several simplifying assumptions are
made. A significant simplification is possible if the only
question is stability. If a steady-state solution exists, it can
only be a rotation of the complete spacecraft, rigid body, and
propellant, like a rigid body. Otherwise, the relative motion
between the liquids and the walls of their containers would
lead to energy dissipation and thus to change in the motion.

For a perfectly rigid body, stable spin motion can occur
only about the axis of maximum or minimum moment of
inertia. For a body with flexible elements, the only stable spin
axis is the axis of maximum moment of inertia. This axis
provides a minimum energy state for a given angular
momentum. The stability condition can be stated as

where Is is the moment of inertia about the spin axis and /, is
the moment of inertia about the transverse axis.

In the above stability condition, the impact of liquid
motion on the inertia properties is neglected. This assump-
tion, however, will not be valid for a spacecraft with liquid
perigee and/or apogee motor where a significant portion of
the spacecraft mass may be liquid. By taking into account the
change in the moment of inertia of the spacecraft due to
propellant relative motion, the stability condition becomes

where C is positive definite and is a function of spacecraft
parameters. It is also found that the spacecraft dry imbalance
is amplified by propellant motion. This effect results in ampli-
fication of wobble and degradation of pointing performance.
Hence the propellant motion is important not only for stabil-
ity considerations but also for wobble amplification.

In this paper, the techniques for determining stable con-
ditions and wobble amplification factors for a spacecraft with
liquid propellant are analyzed. As an example, a spacecraft
with two propellant tanks is considered. Numerical examples
are also discussed.

Stability Conditions
Formulation of Stability Conditions

The stability conditions for a flexible spinning spacecraft
have been formulated by several investigators. The basic
approach is the same. Total energy is used as Liapunov
function and the spacecraft is assumed force-free, resulting in
constant angular momentum. In this paper, the stability
condition formulations by Rumyanstev4'5 and Mclntyre and
Miyafei6 are discussed.

Rumyanstev Stability Conditions
Rumyanstev has performed an extensive stability analysis

for rigid bodies containing fluid. Rumyanstev's method is
based on the system total energy £*, defined in the steady-state
motion as follows:

(1)

where the first term is the kinetic energy and the second term
is the potential energy. The potential energy, L7, is defined as
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(2)

where Ut corresponds to the effective forces applied to the
rigid body, U2 to the body forces acting on the fluid, and U*
to the surface tension forces.
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Fig. 1 Nominal state of two-tank propellant system. Fig. 2 Canted spin axis state of two-tank propellant system.

The Rumyanstev stability condition for the steady motion
of a rigid body with a fluid filled cavity requires that E has an
isolated minimum E0. The Rumyanstev condition also implies
that, in the absence of external forces, the system will have
minimum energy when in a stable condition.

Consider a rigid body with fluid in the propellant tanks as
shown in Fig. 1. The coordinate system (0, X1X2X3) is fixed
in the body with the origin at the center of mass (c.m.) of the
whole body and the coordinate axes along the principal inertia
axes of the body. During the steady-state motion, the body is
spinning about X3. The fluid surface under steady-state
motion is shown in Fig. 1. Figure 2 shows a perturbed motion
where the body is spinning about the X3' axis. The perturbed
motion from the steady-state motion is described in terms of
the generalized coordinates <?y.

Let us consider the change in E due to the perturbation
from the steady-state motion, <?7 =0. The perturbation can be
considered in two parts: displacement into the perturbed
position of the entire system as a single rigid body; and
deformation of the fluid configuration with respect to the
rigid body. In Fig. 2, the fluid deformation is shown by
hatching and is denoted by -rl.

The changes in E, / , and U can be written as follows:

(3a)

(3b)

(3c)

where A7 is the change due to the perturbed motion of the
entire system as a single rigid body, and A2 is the change due
to fluid deformation.

From Eq. (2), considering only U2, we get

(4)

} + AC/

FromEq. (1),

A£= 'AH2 ( [1/(ISO + A/5) ] -

+ At/ (5)

From Eq. (5),

2E=-1/2a2A2Is-p\ U2dT+(w2/2Is0)
JT ;

X[(A2 /5)^+2A7 /5 .A2 /5] . . .

+ u2(x;,x2',x3')]dT+... (6)
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and

(7)

The subscript 0 means that the quantity is calculated for the
unperturbed position of the system.

The following section concerns the determination of the
integral in Eq. (6), which is contributed by the fluid defor-
mation with respect to the rigid body. Let the integrand of Eq.
(6) be defined in terms of XltX2, X3 as

•„ X2, X3, q) =

+ U2(x;,x2',x3')
where*/-*,., </,..

For steady-state motion, the fluid surface has the form

<t>(X,, X2, X3, 0) = 'A [co2 (X] +XJ) ]

+ U2(X,,X2,X3)=C0

Under pertubed motion, the free surface is given by

/= (&J2II) (*

(9)

The only difference between Eqs. (9) and (10) is that /^ is
used in Eq. (9) and 75 in Eq. (10). By substituting X{ in terms
of A", and qj into Eq. (10), one obtains

>, (X,, X2, X3, qj) = C=C0 (11)

The difference between the functions </>/ and </> is deter-
mined as follows:

Ps) (X1'2+X2'2)]+U2(X1') X2', X3')

= '/2[(H2/I2
s0)(X1

f2+X2'2)][l-2(Ms/Is0)+. ...]

+ U2(X/,X2',X3')

=1/2U2(X1'2+X2'2)

+ U2(x1',x2',x3')-(u2/rs0)(x1'2+x2'2)tjs

(12)

Since the volume of the fluid bounded by the free surfaces,
Eqs. (9) and (10), will have the same volume, the volume of
the fluid undergoing deformation must be zero, i.e. ,

dr=0

In first approximation,

(13)

(14)

where Q denotes the region of the plane (Xlt X2) bounded by
the projections on this plane of the closed curve 5, and 5 is the
locus of the points of intersection of the fluid-free surface
under steady-state motion with the walls of the cavity. X30
and X31 denote, respectively, the values of the variable X3 for
the points on the surface Eqs. (9) and (11). For the integration
of Eq. (14), it is convenient to replace X3 with the following
new variable:

,, X2, X3, q) -C0 (15)

<t>(XlfX2,X30,0)+ -

(16)

(8) Using Eq. (12) for substituting <t> in terms of <t>,,

(17)

Substituting Eq. (15) into Eq. (14) yields

or

Similarly, in a first approximation,

*2l=P\ \ (ij
J JQ \ O<pQ \ O<p / Q

(19)

By substituting \LQ and \il from Eqs. (16) and (17),
respectively, into Eqs. (18) and (19), A2/ and AC can be
uniquely determined as linear functions of q^ It can be shown
that if

(20)

and

= 0
dgj

then A,/j = 0, A2/j = 0, and AC=0 in a first approximation.
The integrand of Eq. (6) can be written as

-p\
Jr,

;, X3')]dr

+'c«Sic (21)
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From Eq. (18), the last term in Eq. (21) is zero. Combining
Eqs. (3b), (6), (7), and (21) yields
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to K0 where
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x[(A2/5) '+2A7/ sA2/5]-. . . .

The system will be stable if A£ is positive definite.

(22)

Mclntyre and Miyagi Stability Conditions
For the derivation of stability criteria, Mclntyre and

Miyagi have used the concept of change in spacecraft balance
due to the deformation of flexible elements. The general
stability principal for a spinning body is stated as follows: the
spinning motion of a flexible body is stable if all small
displacements of the flexible elements tilt the spin axis so that
the combined elastic loads and the tilted centrifugal loads tend
to decrease the displacement.

The stability conditions are derived from the total energy £",
as defined in Eq. (1). In the perturbed position, the angular
momentum H is constant. The inertia matrix / and the
potential energy U are expanded about their steady-state
conditions and terms up to the second order are retained:

(23)

(24)

(25)

In the steady state,

/=/,= 0

0

0

0

I33 A

The perturbed state is defined by the generalized coordinates
Vj-

The stability condition is that a 2 * 2 symmetric matrix, K,
be positive definite, where

>0 (26)

The elements of the matrix K are defined as follows:

- A2I33

(27)

where q is an ^-dimensional vector of generalized coordinates,
a and b are ^-dimensional vectors, and T a nonsymmetric
matrix.

In the above discussion, it is assumed that the X3 axis is a
principal axis. Assume an imperfectly balanced rigid body
such that the steady-state spin axis tilt satisfies

*»=-/»/</«-'») *» = '»/('» -/n> (28)

It is shown that, for the flexible body, the tilt is given by

(29)

where K is given by Eq. (26). In the rigid body case, K reduces

0 33
>0

For the flexible body case, it is shown that

Hence the flexibility amplifies the spin axis tilt over that
which would exist if the body were rigid. Furthermore, the
amplification increases without limit as the stability bound-
ary, defined by Eq. (26), is approached.

Example
Consider a spacecraft with two propellant tanks as shown

in Fig. 1. During the steady motion, the spacecraft spins
about its maximum principal axis X3. In the perturbed state,
the spin axis is perturbed. It is assumed that there are no
external forces on the spacecraft. The body forces on the fluid
due to the force function U2, such as gravity or thrust, are
assumed to be absent.
Rumyanstev Method

Rumyanstev method is used in Ref . 4 to determine stability
conditions for a spinning spacecraft with a partially filled
circular ring. To apply the Rumyanstev method to this
example, some modifications and approximations are made.
It is assumed that the tanks are interconnected to allow liquid
to migrate from one tank to another.

Let /T/T ^be the^unk vectors along the axes Xlt X2, X3,
respectively, and V, f', £' be the unit vectors along the
perturbed axis X/, X2', X3 , respectively. Then

and

(30)

(31)

where \j, X2, and X5 are the cosines of the angles between P
and O, and £ respectively. In the steady-state motion, the
fluid surface is

(32)

The fluid-free surface equation of the perturbed motion in
the cylindrical coordinates is

-I- Xj ( \2j 4- XJ ) - 2r2sin0cos0X7 X2 - 2rX3

x (X7cos0 + X2sin0) (7-Xj -\2
2) l/2 ] (33)

where X7 and X2 can be considered as the generalized coor-
dinates of the perturbation.

Equation (14) in the cylindrical coordinates can be written
as

(34)

(35)

From Eqs. (32) and (33),
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and
d(t>

= -(a2r2X3(\,cosO+\2sm6) (36)

For the present symmetric configuration, it can be assumed
that Eq. (20) holds: i.e., A7/J = A2/J = AC=/i; =0 in the first
approximation.

Hence Eq. (22) can be rewritten as

Since the potential energy C/is zero,

E='A(H2/I33)

where

1*33 = J//M +/22M + '* ( / -

Using Eqs. (39-41) results in

(37)

(38)

(39)

(40)

To determine the integral in Eq. (37), contributed by the
fluid deformation, consider the/th tank and a point P on the
fluid surface in the center plane. The distance between P and
the center of the tank, /, is given by

(41)p = r} + r$ - 2r1 r2cos(0 - 0JO)

Let the extreme values of X3 on the fluid surface at an angle
6beX3 .J m\

•'max

= -L+ [2r7r2cos(0-0yo) -cosa]l/2

X3 . = -L- {2r1r2cos(0-0j0) -cosa] 1

The integral in Eq. (37) is

(42)

(43)

Substituting Eqs. (35), (36), (42), and (43) in the above
equation yields

(45)

Substitution of X3 and X3m[n from Eqs. (42) and (43),
respectively, into Eq.mt^5) and integration over 6 determines
A2£". The integration is simplified considerably if it is
assumed that the height of the fluid surface is constant and
equal to the average height. Assuming it to be 2hs results in

(46)

Substituting Eq. (46) into Eq. (45) and noting that dw = ?r/2
and 620 = 3ir/2 yields

fOjQ+oi
J 0 / - a

+ (\2
2/2) (l-cos20)+siri20\I\2]de

- V3pu2r2hs(3L2 +h2) (\2 [a

+ X2
?[a+(sin2a/2)]J

Combining Eqs. (40) and (47) results in

(47)

X(3L2+h2)}}\2
2} (48)

For stability, A£ should be positive definite. Thus the
stability conditions are

where

I33>[I22+A2]

A j = (4/3)pr2
2hs [a- (sin2a/2) ] (3L2 +H2

S)

A2 = (4/3)pr2
2hs [a+ (sin2o:/2) ] (3L2 + h2)

(49)

(50)

(51)

In the above derivation, it is assumed that the fluid surface
height is constant. Assuming a circular fluid surface s of
radius Rs, the equivalent height is given by the following
equation:

a p Rj
d<9

-a J -

RjCOs(v/2-6/a)

Rscos(ir/2 -0/a)

From Eq. (52),

p a
X2dX3=\

J -a -h

or

where s =

X2
3dX3 (52)

(53)

(54)

Mclntyre and Miyagi Method
The Mclntyre method is based on the study of the change in

spacecraft balance due to the deformation of flexible
elements. This method requires a closer look at the defor-
mation of the fluid in the tanks.

The situation for a slightly canted spin axis is shown in Fig.
2. The fluid rotation about the tank center is described by the
angles a,, a2, /3;, and 02. The fluid level in tank 1 is lower, as
this tank's lower distance from the canted spin axis forces
some propellant through the manifold into tank 2. To
describe this effect, the fifth variable is taken to be the change



JULY-AUGUST 1982

in the distance from the tank center to the fluid surface in tank
1 . The generalized coordinates are defined as follows:
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and

q, = l/2 (a, q2 = l q3 = ¥2 (0, 133>ll,+
2mL2y0

(2my0/M)
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(62)

(55)

To determine the matrix K in Eq. (26), T, a, and b must be
determined.

The changes in the inertia matrix due to propellant motion
are

In summary, the stability conditions for a spinning
spacecraft with two propellant tanks, as shown in Fig. 1, are

and
= —2mLy0q4 A7/53 =0

or

or

-2mrIy0(q2+q2)-2pS(r-1+h)q2
5

(56)
where

where, from Rumyanstev,

A, = (4/3)pr2hs [a-(sin2a/2) ] (3L2 + h2)

A2 = (4/3)pr2
2hs [a + (sin2a/2) ] (3L2

and from Mclntyre and Miyagi

(63)

(64)

(65)

(66)

s\i -

and a0 is the distance along the y axis from the tank center to
the c.m. of the small element of fluid which has migrated
between tanks. 2

The other parameters in Eq. (56) are defined in the
nomenclature. From Eq. (56), —————————————

a= •>

0

0

-2my0L

0

b=*

-2Kt I

0

0

^ -2pSL(r1+a0) ^

h r =

" 2K, 0 0

0 2Kj 0

0 0 2mrly0

0 0 0 2 m

0 0 0

rj + (2my0/M)

2pSL2r2
1+ l+(2PSr2/M)

0

0

0

r1y0 + 4(my0)2/M

0

^o/

(fiO(05

0

0

0

0

-2pS(rj+h) _

(57

Substituting Eq. (57) into Eq. (26), the stability matrix K
becomes

K=

i33-r22-2K1- 2pSL(r + a0)2

2mL2y0
33 n r, + (2my0/M)

(58)
Assuming h-a0 and substituting [K] from Eq. (58) into

Eq. (29), the wobble angles become

*/= 33-22

I33-[l22+2K,+
2pSL2r2

*io (59>

!+(2pSr2/M)

and

/«-
2mL2y0

r20 (60)

r7 + (2m^0/M)

and the stability conditions are

2p5L2r2
55 22 7 !+(2pSr2/M) (61)

Discussion
In these stability conditions, the terms containing L2 in A2

correspond to the contribution of propellant migration
between tanks. The effect of propellant migration is basically
dependent on two spacecraft parameters: distance of the tank
center plane from spacecraft c.m., L, and surface area of the
fluid, s.

During the derivation of the stability conditions, several
approximations are made to simplify the analysis. In the
Rumyanstev method, the height of the fluid is assumed to be
constant. In the Mclntyre and Miyagi approach, the fluid is
assumed to be a rigid body rotating like a pendulum about the
tank center. The fluid surface is also assumed to be flat in-
stead of a curved surface. This will introduce greater errors
for a spacecraft with smaller distance between spin axis and
tank center. These approximations contribute to the dif-
ference in the above stability conditions. One important
difference is that the parameter y0, the distance from tank
center to c.m. of propellant in the tank, is an important
parameter in the Mclntyre/Miyagi method because the fluid is
assumed to be rigid and rotating like a pendulum about the
center, as discussed earlier. However, this parameter does not
influence the stability condition in the Rumyanstev method
because only the fluid surface tilt is considered.

Numerical Examples
In these examples, transfer orbit configurations are

analyzed. The first example refers to a spacecraft with a solid
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Table 1 Stability conditions
Minimum inertia ratio,

Example

Tank fill
fraction, Rumyanstev

method
Mclntyre/Miyagi

method
First .

Second

30
50
70

25
50
75

.0306

.0294

.0226

.1217

.1166

.0801

.0312

.03145

.0255

.1053

.1099

.0678

apogee motor and the second to a spacecraft with a liquid
apogee motor.
First Example

The following spacecraft parameters are assumed:

p =103kg/m3

rt =0.8 m
L =0.3 m
R =0.35 m
M =2500kg
122 =2000kg-m2

The stability conditions, determined for three different tank
fill fractions (30, 50, and 70%)/by both the Rumyanstev and
Mclntyre/Miyagi methods, are given in Table 1.

Second Example
For this example, the following spacecraft parameters are

assumed:

L
R
M

= 103 kg/m2

= 1.2m
= 0.3 m
= 0.6 m
= 2500 kg

I22 =2000 kg/m2

The stability conditions, determined for three different tank
fill fractions (25, 50, and 75%) by both the Rumyanstev and
Mclntyre/Miyagi methods, are given in Table 1.

A comparison of the stability conditions from these two
methods in Table 1 indicates that, for the given sets of
spacecraft parameters, the difference is generally small (less
than 10%). However, the difference could be significant for
certain spacecraft parameters, such as a large y0, which in-
fluences one method more than the other.

Conclusions
* The Liapunov method is used in the derivation of the

stability conditions for a flexible spinning spacecraft. Dif-
ferent approaches and approximations used by investigators
to calculate the change in moment of inertia due to liquid
propellant motion have resulted in different stability con-
ditions. For the spacecraft parameters given as examples, the
differences in the stability conditions by the Rumyanstev and
the Mclntyre/Miyagi methods are generally small. However,
for certain spacecraft parameters, such as a large distance
from tank center plane to c.m. of the propellant in the tank,
the difference could be significant.

The stability conditions are derived for a single spinner.
This method can be extended to a stable dual-spin con-
figuration, where the rotor spin moment of inertia exceeds the
transverse inertia. In this case, the spin inertia of the rotor will
represent the total spin inertia. Frequently, the system c.m.
motion is neglected in analyzing the stability of a spinning
body. In such cases, the stability boundaries are somewhat
narrower, since the c.m. movement has a relieving effect.
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