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This paper presents the attitude determination method for the Bifocal Relay Mirror

Spacecraft Simulator. The simulator simulates three-axis motion of a spacecraft and has an

optical system emulating a bifocal space telescope. The simulator consists of three control

moment gyroscopes, rate gyros, two-axis analog sun sensor, and two inclinometers. The

five-foot diameter platform is supported on a spherical air bearing to offer a low-torque

environment. This paper demonstrates two attitude determination methods employing

the measurements from a two-axis analog IR sensor, two inclinometers, and a triaxial

gyroscope. The first method implements the conventional Kalman filter algorithm. The

second method uses a nonlinear observer derived from the Lyapunov’s direct method.

Analytical and experimental results are presented to validate the proposed algorithm.

I. Introduction

The Naval Postgraduate School (NPS) Three-Axis Spacecraft Simulator (TASS), which is shown in Fig. 1,
is designed for developing and validating acquisition, tracking, and pointing technologies for Bifocal Relay
Mirror Spacecraft (BRMS). The BRMS consists of single axis gimballed receive and transmit telescopes. The
telescopes are used to redirect the laser light from the ground (or space) to a distant target which necessitate
a tight pointing requirement.1

The TASS simulates spacecraft three-axis motion and has an optical system simulating a single space
telescope. The five- foot diameter TASS platform is supported on a spherical air bearing to offer a low-
torque environment. The simulator consists of three variable speed control moment gyroscopes as actuators,
rate gyros for angular rate, two-axis analog sun sensor and two inclinometers for attitude sensors. Detailed
description of the TASS hardware is given in Ref. 2.

This paper focuses on the development and validation of the attitude determination algorithm of the
TASS using two inclinometers, two-axis IR sensor, and a triaxial rate gyroscope. Although inclinometers
cannot be used in a spacecraft, they can still be employed in testbeds to get useful attitude information with
good accuracy at low cost. Also, if the light source is not far enough, the effect of transitional motion of the
IR sensor during the rotation of the testbed should be taken into account when calibrating the IR sensor.

Quaternion attitude parametrization offers a singularity-free method to represent three-dimensional rota-
tions using four-dimensional unit vectors. But the four elements of the unit quaternion cannot be estimated
independently because of the normality constraint.

It is a standard approach to include the gyro bias in the overall kinematics model and to estimate the
actual attitude by Extended Kalman Filter (EKF) techniques. The EKF, as an extension of the Kalman
Filter (KF) to nonlinear models, works satisfactorily when the linearized model exhibits sufficient accuracy.
Since the EKF utilizes a linearization at each step, the nonlinear normality constraint of the quaternions
cannot be rigidly enforced within the EKF computational structure. Various methods have been developed
to overcome this deficiency and are described in Refs. 3, 4, 5, and 6.

The nominal attitude determination method used for the TASS is a basic six-state attitude estimation
filter known as the Multiplicative EKF (MEKF).4 In the MEKF formulation of the TASS, the Modified Ro-
drigues Parameters (MRPs) are used as an unconstrained representation of the attitude error with quaternion
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Figure 1. NPS Three-Axis Spacecraft Simulator (TASS)

representing the reference attitude of the defined attitude error. The main advantage of using MRPs over
other three dimensional attitude parameterizations is that it has a singularity at 360◦.

In this research, we propose a different approach to estimate the attitude and gyro bias. The proposed
method, based on a Lyapunov observer, employs both the quaternion and the MRPs, and it fully exploits the
nonlinear structure of the attitude kinematics. Consequently, global convergence is analytically guaranteed,
which means that the system can recover from large errors.

In what follows, the sensor models are given, then the MEKF is reviewed. Next, a nonlinear Lyapunov
observer is derived. Finally numerical and experimental validation of the proposed algorithm is presented.

II. Sensors Model

For the TASS attitude determination, two inclinometers are mounted orthogonally to each other in the
testbed’s body x and z axis as shown in Fig. 2 to measure the direction of the gravity vector. The two-axis
IR sensor is placed near the edge of the testbed parallel to the body x axis vector. Since the IR sensor is not
situated at the center of the rotation point, the effect of the transitional motion of the sensor with respect
to the light source may have significant effect on the sensor reading.

In this section, we discuss in detail how we can extract gravity vector with two inclinometers then explain
a simple way to compensate the transitional motion of the IR sensor on the sensor reading.

A. Inclinometers

The inclinometers mounted on the TASS use capacitive liquid to measure the tilt angle of the platform
with respect to the gravity vector. The measuring range of the sensors is ± 30◦ with a linear angle output
accuracy of 0.2◦. The transverse axis sensitivity is about 1% of the angle reading at 30◦ tilt.7 Figure 3 shows
a diagram of an inclinometer fixed in the testbed that is tilted by +θI1. The vector L1 lies along the liquid
surface and it is perpendicular to the gravity vector. The right-handed sensor coordinate frame i1 is defined
by x̂I1, ŷI1, and ẑI1. The direction of the vector L1 can be expressed in the sensor frame I1 as

I1L =
[

1 − tan(θI1) 0
]T

(1)
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Figure 2. Testbed placement in the NPS lab

with the assumption that its x̂I1 component equals to one. Using a similar approach for the second incli-
nometer, the unit gravity vector can be found by taking the cross product between L1 and L2 as

Bĝ =B L1 ×
B L2/|L1 × L2| (2)

after converting L1 and L2 from the sensor frames (I1 and I2) into the testbed’s body frame B. With small
angle approximations, the L1 and L2 output angles correspond to roll and pitch, respectively.

B. IR Sensor

The IR sensor is mounted near the edge of the testbed and senses the 20 W lamp located at 110 cm above
the floor and 3 m away from the center (Ob) of the testbed body frame. A top view of the IR sensor and
the incident light with the testbed is shown in Figs. 4. From figure 4, we can see that the translational
displacement of the IR sensor cannot be neglected since s and s′ are not parallel with each other. The
relation between these two vectors can be expressed as

s′ = s + rIR (3)

where s is the vector from the sensor to the source light and rIR is the position vector of the IR sensor.
The vector from the testbed center of rotation to the source light is expressed as s′. For the attitude
determination, the physical quantity we need as an observation vector is the unity vector of s′ instead of the
measured vector s. Equation 3 can be rewritten as

s′ = Lŝ + rIR (4)

where L is a scalar representing the magnitude of the vector s and can be calculated by taking the norm on
both sides of Eq. 4 giving

|s′| = |Lŝ + rIR| (5)
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Figure 3. Inclinometer single-axis view

where the quantities ŝ, rIR and |ŝ′| are known. Then letting the known measured vector ŝ = [x, y, z]T and
the position of the IR sensor rIR = [a, b, c]T , the unknown magnitude L can be solved as

L = −
zc + yb + xa −

√

2zcyb + 2zcxa + 2ybxa + z2(−b2 − a2 + d2) + y2(−c2 − a2 + d2) + x2(−c2 − b2 + d2)

z2 + y2 + x2

(6)
Therefore the unit vector ŝ′ can be calculated using Eqs. 5 and 6.

III. Attitude Estimation Using Extended Kalman Filter

A widely used six-state attitude estimation method known as the MEKF4 is implemented for the attitude
determination of the TASS. In the MEKF of the TASS, Modified Rodrigues Parameters (MRPs) are used
as an unconstrained representation of the attitude error, with some quaternion representing the reference
attitude of the defined attitude error. The state vector of the MEKF consists of six elements, three for the
MRPs and three for the gyro bias.

A quaternion is defined as

q(t) ≡

[

q13(t)

q4(t)

]

(7)

where the vector q13 is

q13(t) ≡







q1(t)

q2(t)

q3(t)






= n̂ sin

(

θ(t)

2

)

(8)

and the scalar q4(t) is

q4(t) = cos

(

θ(t)

2

)

(9)

where n̂ is a unit vector indicating the principal rotation axis and θ is the principal rotation angle. The
quaternion components satisfy the following normalization constraint:

qT q = q2

1
+ q2

2
+ q2

3
+ q2

4
= 1 (10)

A three dimensional MRPs vector is defined as

â(t) ≡
4q13(t)

1 + q4(t)
(11)

In the MEKF formulation, the true attitude quaternion q is represented by

q(t) = δq(â(t)) ⊗ qref (t) (12)

4 of 11

American Institute of Aeronautics and Astronautics



O

's

s

Testbed

Light Source

Rotation

IR
r

IR
n̂

IR Sensor

Figure 4. Testbed top view

where qref and δq(â(t)) are the reference and the error quaternion in the body frame, respectively. The
quaternion multiplication ⊗ is defined as4

q′ ⊗ q =

[

q′
4
q13 + q4q

′

13
− q′

13
× q13

q′
4
q4 − q′

13
· q13

]

(13)

The error quaternion δq(â(t)), which represents the error between the true and the reference attitude, can
be expressed in terms of MRPs as4

δq(â(t)) =
1

16 + a(t)2

(

8â(t)

16 − a(t)2

)

(14)

where a is the magnitude of the MRPs vector.
The quaternion kinematic equations of motion are given by

q̇(t) =
1

2

[

ω(t)

0

]

⊗ q(t) (15)

where ω is the angular velocity of the body frame. In the MEKF, â is chosen to keep â ≡ 0 during the
state propagation so that the quaternion qref represents an estimate of correctly normalized true attitude
estimate.

The gyroscope model is given by

ω(t) = ω̃(t) − b(t) − ηυ(t) (16)

ḃ(t) = ηµ(t) (17)

where ω̃(t) represents the gyro output, b(t) is the gyro bias, ηυ(t) and ηµ(t) are uncorrelated zero-mean
white noise processes.

The Kalman filter uses quaternion kinematics Eq. 15 with q = qref and

ω(t) = ω̂(t) = ω̃(t) − b̂(t) (18)

˙̂
b(t) = 0 (19)
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to propagate the filter state.
The error covariance propagation matrix P satisfies

Ṗ(t) = F [x̂(t), t]P(t) + P(t)F [x̂(t), t]
T

+ Q (20)

where F (t) and G(t) matrices are given by

F (t) =

[

−[ω̂(t)×] −I3×3

03×3 03×3

]

(21)

G(t) =

[

−I3×3 03×3

03×3 I3×3

]

(22)

(23)

and Q(t) is the process noise covariance matrix of the following form

Q =

[

σ2

υ 0

0 σ2

µ

]

(24)

where the terms σ2

υ and σ2

µ are the variances of ηυ and ηµ, respectively.
The measurement update is done with the two vector measurements from the IR sensor and the incli-

nometers. The sensitivity matrix is given by

H =

[

[

A(q)N ĝ×
]

03×3
[

A(q)N ŝ′×
]

03×3

]

q=qref

(25)

where A is the attitude matrix of the body frame with respect to an inertial frame. The vectors N ĝ and N ŝ′

are the inertial frame representations of the vectors ĝ and ŝ′.
Bad measurement data (large spikes), caused by disturbances from the testbed electrical components,

are removed by monitoring the filter innovation vector residual before they are processed by the filter.
For further details on the MEKF, refer to Refs. 3, 4, and 6.

IV. Nonlinear Gyroscope Bias Observer

In this section, a nonlinear attitude and bias observer is derived based on Lyapunov’s direct method. Like
the MEKF, this observer estimates attitude and gyro bias by employing both the quaternion and the MRPs.
It fully exploits the nonlinear structure of the attitude kinematics. As a consequence global convergence is
guaranteed at least analytically, which means that the system can recover from large errors.

To design the nonlinear observer consider Eq. 12. The reference quaternion qref is defined such that it
follows

q̇ref (t) =
1

2

[

ωref (t)

0

]

⊗ qref (t) (26)

where the reference body rate is now defined as

ωref (t) ≡ ω̃(t) − b̂(t) − ε(t) (27)

where ε is a 3 by 1 vector, which will be defined later. The MRPs (â) satisfy the following kinematic
equations:4

˙̂a = [(1 −
1

16
a2)I3x3 +

1

8
ââT ](ω − ωref ) +

1

2
â × (ω + ωref ) (28)

where ω is the true body rate.
Consider the Lyapunov function candidate of the form

V (â, b̃) =
1

2
αâT â +

1

2
βb̃T b̃ (29)
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where α and β are positive constants, and the gyro bias estimate error b̃ ≡ b̂−b. Then the time derivative
of the Lyapunov function V is given by

V̇ (â, b̃) = αâT ˙̂a + β ˙̃
bTb̃

= αâT [(1 −
1

16
a2)I3x3 +

1

8
ââT ](ω − ωref ) + β

˙̃
bTb̃ (30)

where Eq. 28 is substituted and âT [â × (ω + ωref )] = 0 is used. Using Eqs. 16 and 27, and neglecting the

noise ηυ, the vector (ω−ωref ) in Eq. 30 can be expressed as ω−ωref = b̃+ ε. Then we can rewrite Eq. 30
as

V̇ (â, b̃) = αâT [(1 −
1

16
a2)I3x3 +

1

8
ââT ](b̃ + ε) + β

˙̃
bTb̃

= α[1 +
1

16
a2]âT b̃ + α[1 +

1

16
a2]âT

ε + β
˙̃
bTb̃ (31)

If we choose

ε = −λâ (32)

˙̃
b = −

α

β
[1 +

1

16
a2]â (33)

where λ is a positive constant, then V̇ can be simply expressed as

V̇ = −λα[1 +
1

16
a2]a2 (34)

which is negative semi-definite.
Because V̇ ≤ 0, the observer is only stable in the sense of Lyapunov but not asymptotically stable.

To prove the asymptotic stability of the observer about â = 0 and b̃ = 0, we use theorem 8.5 of Ref. 8.
According to the theorem, asymptotic stability can be achieved 1) if the first k − 1 derivatives of V (x) is
zero when evaluated on the set Ω, which is the set of non-empty state vector satisfying x ∈ Ω =⇒ V̇ (x) = 0,
and 2) the kth derivative of V (x) is negative definite on the set Ω with an odd number k.

Therefore the set Ω can be calculated from Eq. 34 and is given by Ω = {(â, b̃)|â = 0}. The second
derivative of V is

V̈ = −λα[2 +
1

4
a2]âT [(1 −

1

16
a2)I3x3 +

1

8
ââT ](b̃ + ε) (35)

which is still 0 when evaluated at Ω = {(â, b̃)|â = 0}. Taking the time derivative of Eq. 35, the third
derivative of V can be written as

...
V = −λα

1

2
âT ˙̂aâT [(1 −

1

16
a2)I3x3 +

1

8
ââT ](b̃ + ε) − λα(2 +

1

4
a2) ˙̂aT [(1 −

1

16
a2)I3x3 +

1

8
ââT ](b̃ + ε)

− λα(2 +
1

4
a2)âT (−

1

8
âT ˙̂aI +

1

8
˙̂aâT +

1

8
â ˙̂aT )(b̃ + ε) − λα[2 +

1

4
a2]âT [(1 −

1

16
a2)I3x3 +

1

8
ââT ](

˙̃
b + ε̇)

(36)

Then evaluating Eq. 36 on the set Ω and simplifying gives

−2λα(b̃ + ε)T (b̃ + ε) (37)

which is negative definite for all Ω = {(â, b̃)|â = 0}. Therefore we can conclude that Eqs. 28 and 33 are

globally asymptotically stable with no noise. Assuming that the bias is nearly constant then
˙̃
b '

˙̂
b can be

used to estimate the bias with Eq. 33. Note that the attitude errors represented by MRPs can be obtained
from Eq. 12 with the assumption that q ' q̃ where q̃ is the quaternion measurement converted from the
two vector observations. In this paper, we use the deterministic TRIAD algorithm9 to determine an attitude
from the gravity and the sun vector. In the TRIAD, the unit gravity vector is used as the first basis since
it is more accurate then the sun vector which is from the IR sensor. Note that when noises are present in
the measurements, estimated values still converge to the region around the true values within error-bounds
which are related to the noise upper bounds.
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V. Simulation and Experiment Results

In this section, several numerical simulations and experiments have been done to validate the MEKF and
the Lyapunov observer in the presence of noise in the sensors data. The TASS has a Northrop Grumman
Litton LN-200 IMU consisting of three fiber optics rate gyroscopes and a coarse two-axis analog sun sensor
consisting of four photo-transistors.

A 20 W halogen source light is placed on the wall 3 m away from the TASS center of rotation. The
gyro measurement data are simulated using Eqs. 16 and 17 with the noise standard deviations of σupsilon =
0.0195◦/s1/2 and σµ = 0.0057◦/s3/2. Initial gyro bias of b(t0) = [4.3 3.2 2.3]T ∗ 10−4(rad/s) is used. For
the simulations, a Gaussian white noise of σ = 0.001 has been added to the measurement of the gravity and
the sun vector. The initial estimate for the attitude quaternion has been set to q = [0 0 1 0]T (whereas the
true attitude is q = [0 0 0 1]T ) and the bias has been set to b = [0 0 0]T . Data sampling interval of 0.025 s
has been chosen for all sensors with a 4th order Runge-Kutta method for the numerical integration method.
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Figure 7. Effect of α
β

changes on the Lyapunov observer estimate

Figures 5 and 6 show the comparisons of bias and attitude estimate computed using the MEKF and the
nonlinear Lyapunov observer. For the Lyapunov observer, Λ and α

β of Eqs. 32 and 33 are chosen to be 0.1
and 0.005, respectively. We can see from the figures that the Lyapunov observer estimate accurately follows
the estimate of the MEKF after 200 s.

The effects of changes in the values of α
β and λ on the estimation performance have been shown in Figs. 7

and 8, respectively. We can see from Fig. 7 that as α
β increases the bias estimate becomes more sensitive to

the sensor noise. From Fig. 8, we can see that the value λ should be kept small to get a good performance
in the presence of sensor noise.

For the experiments, standard deviations of the Gaussian white noises σ = [0.002 2 × 10−6 0.001]T

(gravity vector) and σ = [0.001 0.0099 0.0358]T (sun vector) are used to tune the MEKF. Figure 9 shows the
result of the bias estimate using both the MEKF and the Lyapunov observer. We can see from this figure
that the estimated values for both algorithms are consistent.
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VI. Conclusion

In this paper the attitude determination method for the NPS Bifocal Relay Mirror Spacecraft Simula-
tor has been shown. The simulator simulates three-axis motion of the spacecraft. The nominal attitude
determination approach is the MEKF based on the modified Rodrigues parameters (MRPs) as an uncon-
strained representation of the attitude error. The MEKF uses measurements from the two-axis analog IR
sensor, two inclinometers, and gyroscopes. A method to extract the gravity vector from inclinometers has
been shown with a compensation method for the effect of transitional motion of the IR sensor due to the
rotation of the testbed. As an alternative for the MEKF method, a Lyapunov based nonlinear observer
has been derived which provides a globally asymptotically stable algorithm. The nonlinear observer works
well even in the presence of noises and large initial errors. In addition, it is easy to operate since we have
only a few observer parameters to tune compared to the MEKF. Moreover the algorithm is very simple and
computationally inexpensive. Numerical and experimental validations have been shown for both attitude
determination algorithms. The main drawback of the nonlinear observer is that it needs high data sampling
frequency.
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