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Abstract

Minimizing vibrations of a flexible spacecraft
actuated by on-off thrusters is a challenging task. This
paper presents the first study of Pulse-Width Pulse-
Frequency (PWPF) modulated thruster control using
command input shaping. Input shaping is a technique
which uses shaped command to ensure zero residual
vibration of a flexible structure. PWPF modulation is a
control method which provides pseudo-linear
operation for an on-off thruster. The proposed method
takes full advantage of the pseudo-linear property of a
PWPF modulator and integrates it with a command
shaper to minimize the vibration of a flexible
spacecraft induced by on-off thruster firing. Compared
to other methods, this new approach has numerous
advantages: 1) effectiveness in vibration suppression,
2) dependence only on modal frequency and damping,
3) robustness to variations in modal frequency and
damping, 4) easy computation and 5) simple
implementation. Numerical simulations performed on
an eight-mode model of the Flexible Spacecraft
Simulator (FSS) in the Spacecraft Research and
Design Center (SRDC) at US Naval Postgraduate
School (NPS) demonstrate the efficacy and robustness
of the method.

1. Introduction

Most modern spacecraft attitude control
systems employ several types of actuators including
internal momentum exchange devices (e.g.,
momentum wheels, reaction wheels, control moment
gyros) and thrusters. Thrusters must be used in
situations when disturbance torques exceed the control
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authority of momentum exchange devices. Thrusters
are capable of much faster reorientation maneuvers.
Proportional thrusters, whose fuel valves open
proportional to commanded thrust level are complex
and often leak fuel. Therefore, proportional thrusters
are rarely used in practical space applications. The
commonly used thrusters are the constant-amplitude
on-off type. On-off thrusters produce discontinuous
and nonlinear control actions. These control actions
may excite flexible modes of modern spacecraft,
which use large, complex, and light weight structures
such as solar array panels. Design an on-off thruster
control system to provide fine pointing accuracy while
avoiding interaction with the flexible structure poses a
challenging task.

Research towards this end has been mainly
focused into two areas. In one area, efficient methods
to convert continuous input commands to on-off
signals suitable for controlling on-off thrusters are
sought. This problem is often termed thruster control.
The other area focuses on modifying an existing
command so that it results in less or zero residual
vibration of a flexible spacecraft.

The two major approaches for thruster control
are bang-bang control (Skaar et al, 1986; Dodds and
Williamson, 1984) and pulse modulation. Bang-bang
control is simple in formulation, but results in
excessive thruster action. Its discontinuous control
actions often interact with the flexible mode of the
space craft and result in limit cycles. Therefore bang-
bang control is not commonly used. On the other hand,
pulse modulators are commonly employed due to then-
advantages of reduced propellant consumption and
near-linear duty cycle. In general, pulse modulators
produce a pulse command sequence to the thruster
valves by adjusting pulse width and/or pulse
frequency. Pulse modulators such as psuedorate
modulator (Millar and Vigneron, 1976), integral-pulse
frequency modulator (Clark and Franklin, 1969;
Hablani, 1994), and Pulse-Width and Pulse-Frequency
(PWPF) modulator (Bittner, 1982; Wie and Plescia,
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1984; Anthony et al, 1990) have been proposed.
Among these, the PWPF modulator holds several
superior advantages such as close to linear operation,
high accuracy and adjustable pulse-width and pulse-
frequency which provide scope for advanced control.
This modulator has been successfully used for thruster
control of several spacecraft such as INTELSAT-5,
INSAT and ARABSAAT.

Notch filtering and input shaping (Singer and
Seering, 1990) are two commonly used methods to
modify the input command in order to reduce
vibrations of flexible structures. Between these two
methods, input shaping has several superior
advantages including effectiveness in vibration
cancellation, robustness to variations in modal
frequency and damping ratio, and suitability for
multiple-mode system (Grain et al, 1996). Originally,
this method was designed for systems with
proportional actuators. Recently, it has been extended
to systems with on-off actuators (Pao and Singhose,
1995; Singhose et at, 1996). However, existing
approaches require complicated non-linear
optimization and often result in bang-bang control
action.

In this paper, a new approach integrating an
input shaper with a PWPF modulator to provide
vibration reduction for a flexible spacecraft is
proposed. The control object in this paper is the
Flexible Space Simulator (FSS) in the Spacecraft
Research arid Design Center (SRDC) at U.S. Naval
Postgraduate school. The FSS consists of a rigid
circular disk representing a spacecraft central body and
an attached "L"-shape flexible appendage representing
the antenna support structure. To realize this approach
on the FSS, a modal analysis is first performed to
identify the system modal frequency of the FSS. Next,
an in-depth analysis of the PWPF modulator is
conducted to recommend parameter settings. Then, a
command input shaper is designed and the shaped
command is modulated by the PWPF modulator for
thruster control. Lastly, robustness analyses are carried
out. Numerical simulations performed on an eight-
mode model of FSS demonstrate the efficacy and
robustness of the method.

2. The Flexible Spacecraft Simulator (FSS)

The Flexible Spacecraft Simulator (FSS)
simulates motion about the pitch axis of a spacecraft.
As shown in Fig.2.1, it is comprised of a rigid central
body and a reflector supported by a "L"-shape flexible
appendage. The center body represents the main body
of the spacecraft while the flexible appendage
represents a flexible antenna support structure. The

flexible appendage is composed of a base beam
cantilevered to the main body and a tip beam
connected to the base beam at a right angle with a rigid
elbow joint. The flexible appendage is supported by
one air pad each at the elbow and tip to minimize
friction.

Fig.2.1 The Flexible Spacecraft Simulator (FSS)
at U.S. Naval Postgraduate School

The flexible dynamic model used in this study
is derived for the FSS (Watkins, 1991 and Hailey,
1992) using the hybrid-coordinate formulation (Likins
and Fleischer, 1971). The equations describing the
motion of the rigid body and the flexible appendage
are

n

= T + T (2.2)

where 0 is angular position of the main body, q, is
modal coordinate for the z'th cantilever mode, 7ZZ is the
moment of inertia of the system, £>, is rigid-elastic
coupling for z'th mode, Tc is the control torque, Td is the
disturbance torque, ^ is the damping ratio of the z'th
mode, and o>, is the natural frequency for the z'th mode.

The rigid elastic coupling £>, is given by

where xp and yF are coordinates of a point on the
flexible structure, and (j>* and^/ are respectively the
x and y component of z'th modal vector at that point.

In discretizing the system via the finite element
method, the number of modes was truncated at eight to

1536



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

obtain a compromise between reasonable model
accuracy and computational feasibility. Obtaining
sufficiently low cantilever frequency is accomplished
by adding point masses at each node as shown in
Table 2.1. The base of the "L"-Shaped arm is defined
as node zero.

Table 2.1 Nodal Mass Distribution

Node
1,2,3

4
5,6,7

8

Point Mass (kg)
0.455
0.91
0.455
0.91

The model is placed into state space in
preparation for digital simulation using the
Matlab/Simulink software package. The state space
representation of the system equations is:

x = Ax + Bu

where the state vector, x, is defined as:

The output y is the vector of the states, hence C is a
18x18 identity matrix and it is assumed that the
feedback values of angular position and rate are
measured exactly.

To find the natural frequencies of the flexible-
appendage and rigid body system, a Matlab routine is
used. The cantilever and system frequencies are listed
in Table 2.2. Since low-frequency modes are generally
dominant in a flexible system, in this paper, the goal of
design is to suppress the low-frequency-mode
vibrations

Table 2.2 FSS Cantilever and System Frequencies

Mode

1
2
3
4
5
6
7
8

Cantilever
(Hz) (rad/sec)
0.183
0.452
2.41
4.23
8.42
12.3
16.6
21.0

1.150
2.840
15.20
26.61
52.92
77.18
104.2
132.0

System
(Hz) (rad/sec)
0.213
0.504
2.42
4.25
8.42
12.3
16.6
21.0"

1.34
3.16
15.23
26.72
52.94
77.31
104.2
132.1

3. The PWPF Modulator

The PWPF modulator produces a pulse
command sequence to the thruster valves by adjusting
the pulse width and pulse frequency. In its linear
range, the average torque produced equals the demand
torque input. Compared with other methods of
modulation, PWPF modulator has several superior
advantages such as close to linear operation, high
accuracy and adjustable pulse-width and pulse-
frequency which provide scope for advanced control.

lî s. HO /C[̂  V5V"1 1 k.
•t.s+l

ft/1 .IJ
d-h d

IT (/,
System

Fig.3. 1 The PWPF modulator

As shown in Fig.3. 1. the PWPF modulator is
comprised of a Schmidt Trigger, a pre-filter, and a
feedback loop. A Schmidt Trigger is simply an on-off
relay with a deadband and hysteresis. When a positive
input to the Schmidt Trigger is greater than d (also
denoted as £„„), the trigger output is Um. Consequently,
when the input falls below d-h (also denoted as Eojj),
the trigger output is 0. This response is also reflected
for negative inputs. The Schmidt Trigger output, Um,
from the feedback loop, and the system input, r(t),
form the error signal e(f). The error is fed into the pre-
filter whose output fit) feeds the Schmidt Trigger. The
parameters of interest are the pre-filter coefficients km
and Tm, input gain Kp, and the Schmidt Trigger
parameters d, h, and Um.

3.1 Modulator Static Characteristics

With a constant input, the modulator has a
behavior which is independent of the system in which
it is used. The pulse width and period are usually fast
compared with the system dynamics so the input to the
modulator (the error signal feedback) changes slowly
and the static characteristics are a good indication of
how the modulator will work in most cases. Choosing
appropriate parameters so that the modulator has
desired static characteristics is the first step of attitude
control design using PWPF modulator.

On-time and off-time

If the input e(t) to the pre-filter is a constant, the
relationship between}(0 and e(t) can be represented by

(3.1)
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From Eq.(S.l), we have as / -»oo,

f(t -> oo) = kme (3.2)

The time taking the pre-fllter output to transit
from d to d-h is defined as the relay on-time or pulse
width, denoted by Ton or PW. Tm or PW can be solved
from Eq.(2.1) by setting/(0)=</ and/(Ton)=d-h,

km(r(t)-Um)-d
(3.3)

The off time is defined as the time taking the
pre-filter output from 0 to d. According to Eq.(3.1),
the off time denoted by Toff can be solved from
Eq.(3.1) by setting./(0)=0 an<lj(Toff)=d,

T — TLoff - ~T

h
(3.4)

Modulator Frequency

The frequency of the PWPF modulator is
defined as the inverse of the period of the PWPF cycle
and is given by the following equation,

(3.5)

i.e.
1

-Tmln {1 + km(r-Um)-d" km(r-Um)-(d-h)
(3.6)

Modulation Factor

The modulation factor of the PWPF controller
is the ratio of the relay on-time to the period and is
given by

MF=Ton/(Ton+Toff) (3.7)

i.e.,

MF = - (3.8)

Conditions for Pseudo-Linear Operation

The maximum input rmax for pseudo-linear
operation can be solved by equating the maximum
value of the prefilter output km(rmax -Um) to the
Schimitt Trigger off condition d-h,

i.e.,

or

(3.9)

(3.10)

The effective deadband of the modulator is
defined as the minimum input to the modulator so that
Ton>0. The rmin can be determined by equating the
prefilter output when the Schimitt Trigger output is
zero to the Schimitt Trigger on condition,

i.e.,

IT r"•m'min

rmin =dlkn (3.H)

It is clear that increase of km reduces the size of
deadband. It is reasonable to keep km>l to ensure the
on-threshold, d, is an upper bound on the deadband.

With the use of the input gain Kp, the effective
deadband is

(3.12)

The net effect of input gain Kp is altering the deadband
by scaling the input signal. When an input signal has a
large amplitude and does not fall inside the deadband,
a small Kp should be used to reduce thruster activity.
On the other hand, when the input signal has a small
amplitude and falls inside the deadband, a large Kp is
required to force the input out of the deadband. In this
case, a large Kp can maintain linearity of the
modulator and increase control accuracy. Using
appropriate Kp according to the magnitude of input
signals is an effective way to maintain modulator
linearity and reduce thruster activity. In this paper, a
two staged input gain Kp will be used as to be
discussed in a later section.

Minimum Pulse Width Determination

The effective deadband of the modular is
defined as the minimum input to the modulator for
which Ton>0. Substituting Eq.(3.10) into Eq.(3.4) gives
an expression for the minimum on-time, defined as the
minimum pulse width. The minimum pulse width is
usually dictated by relay operational constrains and is
given by

/m)} (3.13)

3.2 PWPF Modulator Design Analysis

The objective of this analysis is to recommend
appropriate PWPF modulator parameter settings for
general use; The recommended settings will be used
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later for design of a PWPF modulator to modulate the
command shaped by an input shaper. The design
analysis is done by comparing performance indices for
different modulator parameter settings with the help of
Matlab/Simulink.

3.2.1 Static Analysis

Simulations are performed to study the impact
of parameters (Eon (d), Eoff (d-h), km and Kp) on the
PWPF static performance indices: modulation factor,
thruster firing frequency, thruster cycles, and total
thruster on-time. To maintain pseudo-linear operation
of the PWPF modulator and compromise this objective
with total thruster on-time and number of thruster
firings, we recommend the preferred range of
parameters as listed in Table 3.1. Details of
simulations and analysis can be found in Buck (1996).

Table 3.1 Static Analysis Results

Parameter
Modulator Gain, km

On-threshold, Eon (d)
Off-threshold, Eoff(d-h)

Input Gain, Kp

Recommended Setting
K*m<6.0

>0.3
<0.8</

2<K/,<10

3.2.2 Dynamic Analysis

To study the impact of input frequency and the
time constant on PWPF output phase lag and thruster
activity, simulations are conducted by applying unity
magnitude sinusoidal inputs to the PWPF modulator.
Input frequencies are varied from 1 to 150 rad/sec and
time constant are varyied from 0.01 to 0.4. Fixed
modulator parameters are shown in Table 3.2 and are
consistent with to the recommendations in Table 3.1.
The input gain is set to one.

Table 3.2 PWPF Parameters in Dynamic Simulation

Parameter
Km
d
h
um

Simulation Value
4.5
0.45
0.15
1.0

Phase lag

The result of the phase lag simulation is shown
in Fig.3.2. The value of phase lag, displayed on the
vertical axis, is represented in terms of the percentage
of a period of the input signal. For example, zero on
the vertical scale indicates no phase lag. A value of 0.5
indicates a phase lag of 50% of a input period.

Note that for tm less than 0.2, there is little
phase lag for all input frequencies. The plateau shown
by a phase lag of 400% indicates the region of zero
modulation factor. In this area, the time constant is too
large for the modulator to react to the high frequency
input. Note that for im greater than approximately 0.2,
the phase lag increases monotonically at low
frequency. This characteristics is a further reason to
maintain tm between 0.1 and 0.2 for all applications.

[o firing this region

150

nput frequency

Fig.3.2 Phase Lag of PWPF Output

Number of Firings

60 T

40

150
0.2

Time Constant 0

100

nput Frequency

Fig.3.3 Number of Thruster Cycles

Total Firing Time (s)

0.3 T

0.2

Time Constant 0 Input Frequency

Fig.3.4 Thruster On-Time

Thruster activity

Figs.3.3 and 3.4 show the effect of input
frequency on thruster activity. Based on the analysis of
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thruster activity, a minimum time constant value of 0.1
should be maintained to avoid both frequent thruster
firings (Fig.3.3) and excessive propellant use (long
thruster on-time) (Fig.3.4).

3.2.3 Fourier Transform Analysis

To better understand PWPF modulation,
Fourier transform of the output of a PWPF modulator
in pseudo-linear operation is performed and compared
with that of the input sinusoidal signal, as shown in
Fig.3.5. This figure indicates some minor frequency
component in the PWPF output beside the main
component (input frequency). These extra frequency
components generated by a PWPF modulator must be
taken in consideration when it is used to modulate the
command of an input shaper.

200

150

Amplitude

100

50

Input Frequency 2.5 Hz, T = 0.15

Reference Input

PWPF Output

Frequency (Hz)

0 20 40 60 80 100

Fig.3.5 Power Spectral Density Plots

3.2.4 Design Recommendation

The analyses performed in Section 3.2 and 3.3
reveal several consistent trends in PWPF parameter
selection. Few of the parameters are worth tuning and
the tunable range is relatively small. However, even
small modifications in the input gain and the time
constant can make a significant difference in achieving
the desired performance. Table 3.3 summarizes the
results and shows the recommended setting for each
parameter.

Table 3.3 Summary of PWPF Design Analyses

Km
Kr
tm

d
h

Static
Analy.

1.0 < 6.0
2.0 < 10

N/A
>0.3

<0.&d

Dynamic
Analy.
N/A
N/A

0.1-0.2
N/A
N/A

Recommended
Settings
1.0 < 6.0
2.0 < 10
0.1-0.2
>0.3

<0.8d

Remark 1:

The PWPF parameter settings recommended in Table
3.3 can be used not only in this paper but also as
general guidelines for PWPF modulator design.

3.3 Verification of the Recommended Modulator
Parameters on FSS Slewing

To verify the PWPF parameter settings in Table
3.4, PWPF modulated thrusters are applied to the FSS
to perform a 10-degree slewing. Simulations with
input gains (Kp) from 1 to 30 and modulator time
constants (im) from 0.02 to 0.9 are performed to study
the impact of these two parameters on FSS slewing
performance. Values of parameters km, d, h, and Um are
given in Table 3.2. The results of the simulations are
shown in Figs.3.6-3.8 (rigid-body performance),
Figs.3.9-3.10 (thruster activity), and Figs.3.11-3.13
(flexible mode responses).

Time constant, Tm

As shown in Figs 3.6 - 3.13, the modulator time
constant directly impacts the rigid body performance
(maximum overshoot and settling time) and flexible
modal responses. It is verified that im < 0.2 since in
this range the rigid body has less overshoot (Fig.3.6)
and less settling time (Fig.3.7) while flexible modes
experience less vibration (Figs.3.11 and 3.13). For the
lower bound of Tm, Fig. 3.10 suggests that Tm>0.1 so
that frequent firing can be avoided while total on-time
almost remain at a constant level if \m < 0.2 is
simultaneously satisfied (Fig.3.9). These results are
consistent with Table 3.3.

Pre-filter gain, Kf

The input gain, Kp, is designed to bias the input
signal r(t) to keep it outside the deadband. The
effective deadband is determined by the product of km
and Kp, so varying Kp at a fixed value of km tailors the
deadband without incurring excessive thruster firings.
Note in Figs.3.6 - 3.8 show that Kp has little impact on
the rigid body performance. This reflects the fact that
once Kp is increased to the point where the signal is
beyond the deadband, further increases have little
effect on the rigid body response. The minimum value
of Kp=2 suggested here to guarantee desired
performance for most ranges of km is also in
accordance with the recommended value in Table 3.3.
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Maximum Overshoot

0.2 -i

20 0.5

Input Gain, K, 0 0 Time Constant

Fig.3.6 Slew Angle Overshoot of Rigid Body

Fig.3.13 shows that large values of input gain
excite specific flexible modes at certain values of the
modulator time constant. Figures of higher mode
responses (not included here due to space limitation)
also confirm this observation. In addition, high input
gain values cause an increase in the number (Fig.3.10)
and duration of thruster firings (Fig.3.9). To reduce the
thruster on-time and number of cycles suggests a
ceiling of 10 on Kp. This result is consistent with Table
3.3.

Set t l ing Time (s)

0.5

Time Cons tan t

Fig.3.7 Rigid Body Settling Time

Fig.3.9 Total Thruster On-Time

Number of Fir ings
150 T

100 -

0.5
Input Gain, Kf Time Constant

Fig.3.10 Total Thruster Cycles

Mode 1
x l O

10 -i

0.5

Time Constant

Fig.3.11 Response of Mode 1

Slew Error ( r ad )

0 01 T
x 10 Mode 2

o.s
I n p u t Gain . K,, 0 T i m e C o n s t a n t

Fig.3.8 Final Stage Slew Error of Rigid Body

20

Input Gain, K,

0.5

Time Constant

Fig.3.12 Response of Mode 2
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xlO Mode 3

Input Gain,

0.5
Time Constant

Fig.3.13 Response of Mode 3

4. Command Input Shaper

Input shaping is the technique of convolving a
sequence of impulses, an input shaper, with a desired
command to a flexible structure so that the "shaped
command" results in zero residual vibration. This
technique is developed based on linear systems theory.
A simple illustration of this technique is shown in
Fig.4.1. In this figure, the vibration caused by the first
impulse can be eliminated by applying an additional
impulse of an appropriate amplitude and phase. In this
section, some commonly used shapers are reviewed to
assist the design of the shaper for the FSS.

Fig.4.1 Vibration Cancellation using Input Shaping

Consider a linear vibratory system of an
arbitrary order, the response of each of its modes to an
impulse is given by

xo=

(4.1)
where A is the amplitude of the impulse, co0 is the
undamped system natural frequency, C, is the damping
ratio for each of the modes, and t0 is the time of the
impulse input. The amplitude of the vibration due to a
sequence of impulses is given by

(4.2)

where

where Aj is the amplitude of the ^/'th impulse, co is the
system natural frequency, tN is the time of the final
impulse, and t} is the time of they'th impulse.

Zero Vibration (ZV) Shaper

In order to ensure there is zero vibration at the
end of the impulse train, each coefficient Bj in Eq.(4.2)
must be identically zero, resulting in two simultaneous
"Zero Vibration (ZV)" equations

j=i

j=i

(4.3)

Note that these equations are written in terms of
multiple impulses to cancel a single vibrational mode.
The shortest pulse train which can cancel a single
vibrational mode consists of a two-impulse sequence
initiated at t=0 with a unity magnitude initial pulse.
The amplitude and timing of the second pulse are
obtained by solving equations in (4.3) simultaneously.
Fig.4.2 shows the resulting impulse train. Note that the
impulse train amplitudes have been normalized to
unity gain. This procedure is necessary to ensure that
the shaper does not scale the original command.

1
l + K

K
l + K

"time

Fig.4.2 Two-Impulse ZV Input

The pulse train parameters are given by

(4.4)

Zero Vibration Derivative (ZVD) Shaper

While the ZV shaper provides the shortest impulse
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trains, it requires very good knowledge of the plant.
Singer and Seering (1990) showed that the ZV shaper
was robust for only small variations (± 5%) in modal
frequency. In order to enhance the shaper's robustness,
an additional set of constraint equations can be
obtained by differentiating both side of Eq.(4.3) with
respect to natural frequency, o>.

'sin!
7=1

7=1

=0 (4.5a)

= 0 (4.5b)

Satisfying the additional set of constraints
requires two additional variables in the form of an
additional impulse (A3 and t3). Solving the set of
equations yields the impulse train illustrated in Fig.4.3
and quantified by Eq.(4.4). This technique has been
shown to provide robustness for up to ±20%
variations in frequency (Singer & Seering, 1990).

2K
2K + K2

2K + K*
2K + K2

time
0 Ar 2Af

Fig.4.3 Three-Impulse ZVD Input

Zero Vibration Derivative Derivative (ZVDD) Shaper

If the vibration equations are differentiated once
again, the resulting vibration will be zero for a range
of frequencies above and below the system natural
frequency. The effect is to improve robustness
dramatically. As noted by various authors, the ZVDD
shaper allows plant uncertainties on the order of
±40% while retaining the zero vibration
characteristic. The additional constraint equations are
obtained by differentiating Eq.(4.5) with respect to co
and setting it to zero:

(4.6)

Once again, the additional set of equations
requires two more unknowns, A4 and t4, so that a total
of four impulses are needed in the train to cancel the
single vibrational mode. Fig.4.4 illustrates the impulse
train for a ZVDD shaper.

Remark 2

With the increase of number of pulses used in the
shaper, the shaped command will result in slower rigid
body response. Therefore, among ZV, ZVD, and
ZVDD shapers, ZV has the fastest rigid body response,
and ZVDD has the slowest response.

3AT
1+3K+3K* i

1
1 + 3A" + 3A"2+A'3

1

-K3

1 + 31
IK2

f K'
1 + ^>K + ̂ K2 + K^

AT 2&T

Fig.4.4 Four-Impulse ZVDD Input

Remark 3

For multi-mode flexible systems, the shaper aiming at
one fundamental mode may excite a higher mode. But
overall performance is still improved.

Constant Amplitude Pulse (CAP) Shaper

ZV, ZVD, and ZVDD shapers are designed for
systems with proportional actuators, and they cannot
be directly applied to systems with on-off actuators.
By imposing constraints of constant-amplitude
commands and maneuver requirements ZV, ZVD, and
ZVDD shapers are extended to Constant Amplitude
Pulse (CAP) Shapers (Pao and Singhose, 1995;
Singhose et al, 1996). Obtaining a CAP shaper often
involves complicated optimization. CAP shapers also
result in bang-bang control action.

Remark 4

Compared with CAP shapers, variable-amplitude
shapers like ZV, ZVD, and ZVDD shapers have the
advantage of simple computation.

5. Integrated Input Shaper and PWPF
Modulator for Vibration Reduction

5.1 The PWPF Modulator

According to the recommended parameter
settings in Table 3.3, the parameters of the PWPF
modulator are chosen and listed in Table 5.1. This
modulator will be used to modulate the command
which have been modified by an input shaper.

A two-staged design of Kp is intended to bring
the PWPF modulator pre-filter output above the
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deadzone leval. When the input falls inside the
deadzone a large value is used. Otherwise, the
recommended minimum value is used.

Table 5.1 PWPF Parameters

Parameter
Km

KP

T™
d
h

Value
1.25

2.0, input > dlkm

5.0, input < d/km

0.15
0.45
0.15

Remark 5

The PWPF modulator parameter settings in Table 3.3
are general recommendations. The PWPF modulator
parameters used in this case (shown in Table 5.1) can
generally remain the same even when the modulator is
used for a different shaper.

5.2 The Input Shaper

As shown in Section 3.3.3, the PWPF
modulator does not exactly replicate the input
command frequency. This motivates the use of a
ZVDD shaper for increased robustness with respect to
frequency. Since the goal is to suppress vibrations of
low frequency modes, a 4-mode ZVDD shaper is
chosen.

Utilizing the design method presented in
Section 4, equations (4.3), (4.5), and (4.6) are used to
generate the pulse trains for the ZVDD shaper. The
resulting four impulse sequence for each mode is
given by

\AiMode;: J 1 1
0 A7 3AJ

(5.4)

where K and AT are defined in 4.4 and the sequence is
unity normalized by

X nn = 1 + 3K + 3K2 + K3

The resulting ZVDD pulse trains for modes 1-4
oftheFSSare

Model:

Mode 2:

Mode 3:

Mode 4:

AJ

AJ

AJ

AJ

["0.1274 0.3773 0.3726 0.1227]
[ 0 1.9563 3.9127 5.8690 J

0.1274 0.3773 0.3726 0.1227]
0 0.8273 1.6547 2.8420J

fO.1274 0.3773 0.3726 0.1227]
[ 0 0.1719 0.3437 0.515eJ

["0.1274 0.3773 0.3726 0.1227]
[ 0 0.0980 0.1960 0.2940 J

Note that the amplitudes are same due to same
damping assumed for all modes. The above four
impulse trains are convolved to generate the 4-mode
ZVDD input as shown in Fig.5.1. For comparison
purpose, the unshaped step command is presented in
this figure as well. Using the shaped command a
longer settling time for the rigid body is expected.

Sl.w A.gl . <d.e )

4 M o d e Z V D D

Fig. 5.1 Step and 4-mode ZVDD Commands

5.3 Vibration Reduction Using PWPF Modulated
Input Shaper

The PWPF modulator proposed in Section 5.1
is used to modulate the 4-mode ZVDD shaped
command proposed in Section 5.2. The primary goal is
to reduce lower modes vibration of the FSS during a
slewing. As associated with an input shaper, worse
performance in higher modes maybe expected, but
should be in a limited range. Simulations are done to
analyze the impact of the control with PWPF
modulated input shaper on rigid body performance and
flexible mode responses. The block diagram
illustrating the FSS control system is shown in Fig.5.2.
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Fig.5.2 The Flexible Spacecraft Simulator with PWPF Modulated Input Shaper

Fig.5.3 shows the lower-mode excitations
resulting from a ten-degree slew maneuver. With all
modal damping ratios of 0.004, the lower-mode
flexible response is essentially undamped for the
duration of the simulation when unshaped step
command is used. Using a four-mode ZVDD shaper
with the PWPF modulator results in excellent
cancellation of the targeted modes. Reductions in
modal excitations of up to 95% are achieved in the
first two modes (Fig.5.3a and 5.3b) and approximately
50% in the third mode (Fig.5.3c). Vibration of mode 4
remain at about the same level (Fig.5.3d).

Increased vibrations are found in modes five
and higher (Fig.5.3e - 5.3h). Worse performance in
higher modes can be considered as the cost to achieve
vibration reduction in lower modes. The increased
vibration in higher modes is consistent with other

research (Pao and Singhose, 1995). However, in this
research, higher modes excitation caused by a shaper
designed a lower mode is very limited. Therefore, it
can be concluded that vibration reduction using an
input shaper and a PWPF modulator is effective for
flexible spacecraft with on-off actuators.

Remark 6

If lower modes must be completely eliminated, the
multiple-mode shaper (like the 4-mode ZVDD shaper
proposed here) does the job at the cost of some
excitation of higher-frequency modes. On the other
hand, if excitation of higher modes must be avoided
and lower-mode vibration should be reduced but not
eliminated, a single-mode or two-mode ZVDD shaper
can be used.
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Fig.5.3 FSS Slewing with PWPF Modulated ZVDD Shaper
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5.4 Robustness Analysis

Consider that in practice modal frequency can
be generally obtained within ±20% error. The first
simulation is run with ±20% errors in all 4 modal
frequencies of the 4-mode ZVDD shaper and the
results are compared with that of the case with exactly
known modal frequencies. The rigid body responses
are shown in Fig.5.4 and the first two mode responses
are shown in Fig.5.5. Fig.5.4 reveals that error in
modal frequency slightly changes the settling time,
however it has little impact on the final stage error.
Fig.5.5a shows the case of -20% frequency error is
very close to the nominal case while the case of +20%
frequency has a slightly increased vibration. Either
case is robust with the error in modal frequency.
Fig.5.5b also illustrates that +20% frequency
variations in all four modes have very limited
influence on mode 2 vibration. Modes 3 and 4 shows
the same trend (figures not shown due to space
limitation).

robust to frequency variations.

0.2

0.15

Slew angle (rad)

Step Command

0.05

Time (s)

10 15 20

Fig. 5.4 Rigid body response with + 20% modal
frequency uncertainty

In order to further study the robustness,
simulations are run using frequencies varying from
0.2eo,, to 2.0(0„ and damping ratios varying from 0.1^
to 2.QC, for all 4 modes of the 4-mode ZVDD shaper.
Flexible mode responses in terms of their average
absolute displacement are shown in Figs5.6a - 5.6h.
Several observations are made here.

First, vibration increases caused by +20%
modal frequency error are small for the first four
modes (Figs5.6a - 5.6d). Modes 6 (Fig.5.6) and 8
(Fig.5.8) are sensitive to under estimated frequency.
Since the first four modes are dominant modes and
their vibration are well suppressed within ±20%
modal frequency error, we conclude that the method is

xlO
+20% ZVDD Responses step Response

x lO

5 10 15 Time, s 20
(a) Mode 1

Step Response +^0% ZVDD Responses
If.

Zero Error Response -20% ZVDD Responses

10 15 Time, s 20
(b) Mode 2

Fig.5.5 ZVDD shaper robustness to 20% modal
frequency uncertainty

Second, Fig 5.6 reveal that the ZVDD shaper is
almost insensitive to variations in damping.

Third, use of a PWPF modulated shaper for
vibration control achieves well-behaved modal
responses even for modal frequency errors of 100%.

The above three observations verify the
robustness of the proposed vibration reduction
method. In summary, integrating the techniques of
command input shaping and PWPF modulation
combines the advantages of variable amplitude input
shapers and PWPF modulators. It provides a simple,
effective, and robust method to suppress vibration on
flexible spacecraft.
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Fig.5.6 4-Mode ZVDD Shaper with Modal Frequency Uncertainty and Damping Uncertainty
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6. Conclusion
This paper presents the first study of PWPF

modulated thruster control using the technique of input
shaping. The control object is the Flexible Space
Simulator (FSS) at U.S. Naval Postgraduate school.
An analytical model of the flexible spacecraft
simulator is developed to identify system frequencies.
A detailed analysis of the PWPF modulator is
performed to study the impact of modulator
parameters on its performance. The PWPF modulator
analyses reveal a narrow but effective tuning range for
some modulator parameters. Subsequent investigations
using a two-stage input gain validate the effectiveness
of this technique. Use of the recommended design
parameter ranges avoids excessive phase lag,
minimizes thruster cycles and keeps propellant use to a
minimum. A command input shaper is designed and
integrated with the PWPF modulator. Robustness
analyses are performed to show the insensitivity of
PWPF modulated input shapers to frequency and
damping uncertainty. Numerical simulations
performed on an eight-mode model of the Flexible
Spacecraft Simulator (FSS) demonstrate the efficacy
of the variable amplitude shaped command with
PWPF modulation.
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