INVESTIGATION OF OUTER LENGTH SCALE IN OPTICAL TURBULENCE USING AN ACOUSTIC SOUNDER

by

Jeffrey T. Douds

September 2004

Thesis Advisor: D.L. Walters
Co-Advisor: R.C. Olsen

Approved for public release; distribution is unlimited
The horizontal separations between convective thermal plumes, and features within a thermal plume, were determined through the use of an acoustic sounder, an anemometer and extensive data analysis. The mean, standard deviation, median and mode were calculated for the computed correlation lengths of the acoustic sounder data sampled in time intervals of 2, 5 and 10 minutes.

The data sampled at 2 and 5-minute intervals emphasized features within an individual thermal plume. The mean correlation distances found for 2 and 5-minute intervals were 81 meters ± 70 meters and 89 meters ± 72 meters, respectively. Their medians were 61 meters and 69 meters; and their modes were 41 meters and 50 meters, respectively.

The 10-minute time interval statistics used a low pass filter to emphasize larger scale features. The mean correlation length was 494 meters ± 373 meters, the median was 391 meters and the mode was 316 meters. These distances represent the distance between the center of a plume and the center of a quiet region adjacent to that plume.
ABSTRACT

The horizontal separations between convective thermal plumes, and features within a thermal plume, were determined through the use of an acoustic sounder, an anemometer and extensive data analysis. The mean, standard deviation, median and mode were calculated for the computed correlation lengths of the acoustic sounder data sampled in time intervals of 2, 5 and 10 minutes.

The data sampled at 2 and 5-minute intervals emphasized features within an individual thermal plume. The mean correlation distances found for 2 and 5-minute intervals was 81 meters ± 70 meters and 89 meters ± 72 meters, respectively. Their medians were 61 meters and 69 meters; and their modes were 41 meters and 50 meters, respectively.

The 10-minute time interval statistics used a low pass filter to emphasize larger scale features. The mean correlation length was 494 meters ± 373 meters, the median was 391 meters and the mode was 316 meters. These distances represent the distance between the center of a plume and the center of a quiet region adjacent to that plume.
TABLE OF CONTENTS

I. INTRODUCTION.. 1
 A. OBJECTIVE ... 1
 B. BACKGROUND .. 1
 1. The Acoustic Sounder .. 1
 2. Convective Turbulence .. 3
 3. Acoustic Sounder Measurement ... 5
II. OBSERVATIONS ... 9
 A. RESULTS ... 10
 B. DISCUSSION ... 23
III. CONCLUSIONS AND RECOMMENDATIONS ... 25
APPENDIX MATLAB CODE .. 27
LIST OF REFERENCES ... 35
INITIAL DISTRIBUTION LIST .. 37
LIST OF FIGURES

Figure 1. Model VT-1 phased-array doppler sodar system................................. 2
Figure 2. Acoustic sounder designed and built by Professor Donald Walters and Jay Adeff at the Naval Postgraduate School. 3
Figure 3. Plot of C_r^2 represented as intensity and vertical velocity as color between 20 and 150 meters over a 300 second interval (1 July 2001, from 1350 –1355 MST). .. 11
Figure 4. Figure 3 with the noise somewhat filtered out. The correlation time can be graphically seen as the distance between the center of a plume and the center of the quiet, adjacent area. 12
Figure 5. Autocorrelation plot of C_n^2 mean (1 July 2001, from 1350 –1355 MST). .. 13
Figure 6. 5th order Butterworth filter of with $W_n = 0.2$ applied to the autocorrelation plot of C_n^2 mean (1 July 2001, from 1350 –1355 MST). .. 14
Figure 7. Histogram of 2,5, and 10 minute sampled correlation distances for March 2001 to August 2002. ... 17
Figure 8. Histogram of 2-minute and 5-minute sampled correlation distances. 18
Figure 9. Histogram of 2-minute sampled correlation distance with mean, median and mode plotted... 19
Figure 10. Histogram of 2, 5 and 10-minute mean correlation distances......... 20
Figure 11. Comparison of the mean, median and mode for the 2, 5 and 10 minute intervals. ... 21
Figure 12. Comparison of the means as a group, medians as a group and modes as a group for the 2, 5 and 10 minute intervals............................. 22
Figure 13. Average correlation distance of the seasons, by hour, between the hours of 1000 and 1600 MST. ... 23
LIST OF TABLES

Table 1. Statistical summary of correlation distances for 2-minute interval length and $W_n = 0.2$. ... 15
Table 2. Statistical summary of correlation distances for 5-minute interval length and $W_n = 0.2$. ... 16
Table 3. Statistical summary of correlation distances for 10-minute interval length and $W_n = 0.02$. ... 16
ACKNOWLEDGMENTS

I would like to thank my wife, Solly, and my children, Tachiana and Ashley. Without their love, support, and companionship, this work would not have been possible. You're what it's all about.
I. INTRODUCTION

A. OBJECTIVE

Light propagation through the atmosphere is affected by atmospheric absorption, scattering and turbulence. Velocity fluctuations in the atmosphere mix regions of the air with different temperatures producing local changes in the refractive index. This optical turbulence induces phase and amplitude fluctuations in electromagnetic waves that propagate through the air. These fluctuations smear the ability to see detail in imaging systems or spread and induce scintillation in laser beams. The atmospheric optical fluctuations are not distributed uniformly in the atmosphere, but are concentrated in local convective regions during the day. Understanding the spatial scale of these regions is part of the process of mitigating their effects.

This thesis focused on measuring an atmospheric outer scale length known as the horizontal convective scale by computing the autocorrelation length of the acoustic sounder and anemometer data in order to estimate the lateral dimensions of the turbulent, detrimental events. The data analyzed in this thesis were generated by an acoustic sounder that was directed vertically into the atmosphere to collect turbulent atmospheric data and by an anemometer used to measure wind speed. These instruments were located at the Starfire Optical Range, New Mexico.

B. BACKGROUND

1. The Acoustic Sounder

An acoustic sounder is a device designed to emit acoustic radiation and detect returns of that energy. This device has also been called a sodar (sonic detection and ranging). It is much like sonar, which detects objects underwater, except that sodar detects and measures properties of the air. One of the primary things that an acoustic sounder is good at is detecting and characterizing
turbulence in the air since the signal that the sounder emits is scattered back by turbulence.

Acoustic sounders are available commercially. An example of a commercial acoustic sounder is the Model VT-1 sodar developed by Atmospheric Research & Technology (ART) (Neal 2004). This unit is a self-contained, portable system and includes a phased-array acoustic transmitter and receiver with supporting electronics, a notebook computer and software for system configuration, operation and data storage. Figure 1 shows this sodar.

Figure 1. Model VT-1 phased-array doppler sodar system.
The acoustic sounder used to gather the data presented in this thesis was designed and built by Professor Donald Walters, Ph.D., professor of physics at the Naval Postgraduate School, Monterey, CA. Figure 2 shows a picture of this acoustic sounder. Acoustic sounders are not good at retrieving reliable data during rain and their internal components can be damaged by inclement weather. Notice the lid on the acoustic sounder which can be lowered during rain.

![Acoustic sounder designed and built by Professor Donald Walters and Jay Adeff at the Naval Postgraduate School.](image)

2. Convective Turbulence

Thermal convective cells, or plumes, are formed in the atmospheric boundary layer (the layer of air bounded by the surface of the earth and about 1-2 kilometers above the surface) during the day as the sun warms the earth.
These convective cells consist of heated, turbulent air and they concentrate the optical path degradation into near vertical columns. These plumes are, however, separated by regions of relatively low turbulence where the optical path is relatively quiescent. Measuring the size of these plumes of turbulent air, and the quiet regions between them, is a component of an atmospheric compensation design. In order to understand and use an acoustic sounder for turbulence measurements, the structure of turbulence and the interaction with optical and acoustic radiation is essential.

The following section, from equations 1 to 10, follows that done by Lim (2003).

To deal with the randomness of atmospheric turbulence, Kolmogorov used a statistical approach that relies on dimensional analysis to handle the spatial and temporal fluctuations (Max 2003). By assuming homogeneity and isotropy at least in a local volume, and if the random processes have slowly varying means, structure functions represent the intensity of the fluctuations of $f(r_1,r_2)$ over a distance between r_1 and r_2. Using the mean square differences, the structure function of $f(r_1,r_2)$ is:

$$D_1(r_1,r_2) = \left\langle \left(f(r_1) - f(r_2) \right)^2 \right\rangle. \quad (1)$$

According to Kolmogorov’s turbulence theory, turbulent eddies range in size from macroscale to microscale, forming a continuum of decreasing eddy sizes. Energy from convection and wind shear is first added to the system at the outer scale L_0 (10’s - 100’s of meters) before it cascades to a smaller scale l_0 (~1cm) where viscosity converts the energy to heat (Andrews 2001). By dimensional arguments and assuming an incompressible isotropic, homogeneous medium, Kolmogorov showed that the longitudinal structure function of the velocity is:

$$D_v(r) = C^2_v r^{2/3}, \quad l_0 < r < L_0. \quad (2)$$

The $r^{2/3}$ proportionality of the structure function in the inertial range ($l_0 < r < L_0$) applies to other structure functions such as temperature and refractive index. The refractive index structure function is:
where C_n^2 is the refractive index structure parameter, or the optical turbulence parameter (m$^{-2/3}$). Comparing equations (1) and (3), the refractive index structure parameter has the form:

$$C_n^2 = \frac{\langle(n_i - n_2)^2\rangle}{r^{2/3}}. \tag{4}$$

While C_n^2 is the critical parameter that describes optical turbulence, it is extremely difficult to measure C_n^2 directly using standard techniques since the index of refraction of the atmosphere is influenced by the atmosphere’s temperature, pressure, moisture and the wavelength of the electromagnetic wave. However, C_n^2 depends on the temperature structure parameter, C_T^2 which can be measured directly. C_T^2 has a mathematical form similar to C_n^2:

$$C_T^2 = \frac{\langle(T_1 - T_2)^2\rangle}{r^{2/3}}. \tag{5}$$

Though the refractive index depends on the dry-air wavelength, it is typical to ignore the wavelength dependence and assume a wavelength of 0.5µm (Beland 1996). The index of refraction is

$$n = 1 + 79 \times 10^{-6} P / T. \tag{6}$$

Taking the partial derivative of the air density with respect to the temperature and assuming isobaric density fluctuations, the optical turbulence parameter C_n^2 relates to the temperature structure parameter C_T^2 by

$$C_n^2 = \left(\frac{\partial n}{\partial T}\right)^2 C_T^2 = \left(79 \times 10^{-6} \frac{P}{T^2}\right)^2 C_T^2, \tag{7}$$

where C_n^2 is the optical turbulence parameter in m$^{-2/3}$, C_T^2 is the temperature structure parameter in K2m$^{-2/3}$, P is the air pressure in mbar and T is the air temperature in Kelvin.

3. **Acoustic Sounder Measurement**
The acoustic sounder uses acoustic waves scattered by temperature and velocity fluctuations to measure changes in the refractive index of the atmosphere. It transmits an acoustic signal into the atmosphere and, for energy backscattered at 180 degrees, detects variations in the thermal structure parameter C_T^2 (Tatarski 1971). Once C_T^2 is found, equation (7) provides the optical turbulence parameter C_n^2.

The power returned from the atmosphere was summarized by Neff (1975)

$$\frac{P_r}{E_r} = [P_t E_t] e^{-2\alpha R} \left[\sigma_0 \left(\frac{c \tau}{2} \right) \left(\frac{A}{R^2} \right) G \right],$$ \hspace{1cm} (8)

where $\frac{P_r}{E_r}$ is the received power (P_r is the measured electrical power and E_r is the efficiency of conversion from received acoustic power). $P_t E_t$ is the transmitted power (P_t is the electrical power applied to the transducer, E_t is the efficiency of conversion to radiated acoustic power). $e^{-2\alpha R}$ is the round trip loss of power resulting from attenuation by air where α is the average extinction coefficient (m⁻¹) to the scattering volume at range R (m). σ_0 is the backscatter cross section per unit volume and $\frac{c \tau}{2}$ is the maximum effective scattering volume thickness where c is the local speed of sound (ms⁻¹) and τ is the acoustic pulse length (s). $\frac{A}{R^2} G$ is the solid angle subtended by the antenna aperture A (m²) at range R (m) from the scattering volume, modified by the factor G that accounts for the non-uniform antenna illumination.

Tatarskii (1971) expressed the backscatter cross section σ_0 at 180° as

$$\sigma_0 = \frac{\pi}{2} k^4 \frac{\Phi_\tau(2k)}{T_0^2},$$ \hspace{1cm} (9)

where $k = 2\pi / \lambda$ is the incident wavenumber, T_0 is the mean temperature, and $\Phi_\tau(2k)$ is the 3-D spectrum of turbulence. The cross section σ_0 represents the in-phase addition of backscattered
waves from temperature inhomogeneities spaced $\lambda / 2$ apart along the radial propagation direction. The temperature inhomogeneities can be represented by the temperature structure parameter C_T^2 Neff (1975) and the volume backscatter cross section for 180° returns becomes

$$\sigma_v = 0.0039 \ k^{1/3} \frac{C_T^2}{T^2}. \quad (10)$$

The acoustic volume scattering cross section is proportional to the temperature structure parameter and the acoustic wavenumber. This provides the optical structure parameter C_n^2 indirectly with high spatial and temporal resolution.
THIS PAGE INTENTIONALLY LEFT BLANK
II. OBSERVATIONS

The acoustic sounder was directed vertically into the atmosphere to collect atmospheric data from 1 March 2001 until 12 August 2002 at the Starfire Optical Range in Kirtland Air Force Base, New Mexico. It was located near the top, but on the south side of a 70 m hill. Operating with a 4 KHz, 10-millisecond acoustic pulse, the acoustic sounder sampled the temperature structure parameter C_T^2 between 5 and 150 meters (in height) every second. The optical structure parameter C_n^2 was later calculated from the measured C_T^2 values. The Doppler frequencies of the returned signals were also captured. An anemometer located 15m above the ground measured the wind speeds.

The raw data from the acoustic sounder and the anemometer were saved as data files. Computing the autocorrelation of the mean C_n^2 values between 20-50 meters versus time and multiplying by the wind speed gave an autocorrelation function versus distance. The acoustic sounder data consisted of C_n^2 profiles collected once a second between 20 and 150 meters above the ground with a range resolution of 1.7 meters. After computing a single mean C_n^2 value for the data between 20-50 meters, the autocorrelation function of these values for 2, 5 and 10-minute segments of data gave the autocorrelation function versus time.

The distance between the peak and the first minimum was computed by searching for the change in slope, after applying a 5th order, low-pass, Butterworth filter to the smooth the irregularities in the autocorrelation function. The distance between the peak and the first minimum in the autocorrelation function, versus time, multiplied by the wind speed gave the thermal autocorrelation length. This distance is physically represented as the distance between the center of an area of strong thermal activity and the center of the area of relatively little thermal activity adjacent to it. Using a Matlab program (Appendix A) the data from 1000-1600 (local time) was analyzed. This time interval was chosen because this is when convection is intense. The data from
other times would exhibit different scales and would not represent the strong turbulence situations.

The acoustic sounder data was a continuous, 24-hour stream and had to be organized into subsets in order to measure the convective scale lengths. The size of the subset chosen affects the measured scale length. For instance, a larger time scale would emphasize the distance between individual thermal plumes. A time scale of 10 minutes was chosen to measure this length. Smaller time scales would reveal features within a thermal plume. Time scales of 2 and 5 minutes were chosen to look for these features. The Matlab program displays this data in a color plot that depicts, in some sense, the plumes themselves. The program also uses an autocorrelation function in order to measure the time interval between the center of one plume and the center of the quiet region between it and the next plume.

A. RESULTS

As a representative sample of some of the data, the C_r^2 and Doppler frequencies measured over a 5-minute or 600-second interval (1 July 2001 from 1350-1355 hours, MST) are plotted in Figure 3 below. This figure shows a plot of the magnitude of C_r^2 represented in terms of intensity with the radial Doppler frequencies of ±4 m/s as color for a 600 second interval. In general, red regions are plumes of air (similar to convective cells) moving upwards, green regions have little vertical motion, and blue regions are moving downwards. The speckled area mostly above 50 meters in range in Figure 3 represents noise. This noise degrades the calculation of the correlation time. Further, the data between 0-20 meters was not valid (and is not depicted in the plot because of this). For these reasons, the data analyzed were restricted to lie between 20-50 meters in range.
A technique was devised in the Matlab code to effectively filter out a vast majority of the noise in the plots produced. Some noise remained in many cases, however, so even with this filtering method being employed, the data was still restricted to lie between the limits of 20-50 meters in range. Figure 4 shows the same data as Figure 3, but with some of the noise filtered out. Figure 4 also shows graphically what the correlation time represents. For this particular case, the Matlab program calculated a correlation time of 29 seconds. Only two areas are shown in the picture (for clarity) but the autocorrelation function actually produced a correlation time based upon the entire 300-second interval.
Figure 4. Figure 3 with the noise somewhat filtered out. The correlation time can be graphically seen as the distance between the center of a plume and the center of the quiet, adjacent area.

Figure 5 shows a plot of the autocorrelation function over the 300-second time interval. The Matlab program used this function to determine the correlation time. The program found the peak of the curve plotted below, found the first minimum to either side of the peak, and found the time between the peak and the first minimum. This time is the correlation time and corresponds to the area marked off in Figure 4.
Figure 5. Autocorrelation plot of C_n^2 mean (1 July 2001, from 1350 –1355 MST).

Although it is not so evident in the particular case depicted in Figure 5, often the autocorrelation plot would contain too much fine detail and needed to be smoothed out in order to find a consistent minimum. A 5th order Butterworth filter with a cutoff of $W_n = 0.2$ of the Nyquist frequency was used to accomplish this. Figure 6 shows the same plot as Figure 5, but with this Butterworth filter applied to it. The plot also depicts the correlation time for this case of 29 seconds.
Figure 6. 5th order Butterworth filter of with $W_n = 0.2$ applied to the autocorrelation plot of C_n^2 mean (1 July 2001, from 1350 –1355 MST).

Depending upon the length of the data sample used to compute a function and the strength of the low pass Butterworth filter applied to the autocorrelation function, different values for the correlation time were found. Small time samples are sensitive to finer features of individual thermal plumes. One can visualize this by observing Figure 4 and realizing that as the sample time (the x-axis) becomes smaller, the number of distinct plumes in the sample will decrease and the individual features of any one plume will become more prominent. Conversely, for larger time samples, the correlation time between the plumes, or organized clusters, becomes evident. Also, reducing the bandwidth of the low pass Butterworth filter, by decreasing W_n, smoothes out the autocorrelation function thus emphasizing larger scale functions.

Because the correlation time can vary depending upon the sample time and the strength of the Butterworth filter choices, three sample lengths of 2 minutes, 5 minutes and 10 minutes were analyzed. The Butterworth filter for the
2 and 5 minute samples was set at $W_n = 0.2$ to maintain full scale structure and W_n was 0.02 for the 10-minute samples to reveal the major structures.

Multiplying the correlation time by the wind speed gave the correlation distance (the distance between thermal plumes for large time samples, or the distance between features of an individual plume for smaller time samples). As stated previously, an anemometer provided the wind speed data simultaneously with the sounder data. The output from the Matlab program was a list of correlation lengths for each day between the hours of 1000 and 1600 MST at intervals of 2.5, and 10 minutes. These lists of correlation lengths were then statistically analyzed and the results are presented in the following tables and figures.

There are three different standard statistical measures used to analyze a collection of data such as these: the mean, the median and the mode. Tables 1,2 and 3 present the mean, standard deviation, median and mode of the correlation distances as found by month for the three different time intervals measured.

<table>
<thead>
<tr>
<th>Date</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Median</th>
<th>Mode</th>
<th># Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 01</td>
<td>92</td>
<td>70</td>
<td>74</td>
<td>50</td>
<td>2446</td>
</tr>
<tr>
<td>Apr 01</td>
<td>78</td>
<td>63</td>
<td>62</td>
<td>50</td>
<td>2913</td>
</tr>
<tr>
<td>Jun 01</td>
<td>71</td>
<td>58</td>
<td>53</td>
<td>45</td>
<td>3043</td>
</tr>
<tr>
<td>Jul 01</td>
<td>81</td>
<td>65</td>
<td>60</td>
<td>45</td>
<td>4522</td>
</tr>
<tr>
<td>Aug 01</td>
<td>73</td>
<td>62</td>
<td>56</td>
<td>35</td>
<td>4124</td>
</tr>
<tr>
<td>Sep 01</td>
<td>70</td>
<td>59</td>
<td>51</td>
<td>35</td>
<td>3358</td>
</tr>
<tr>
<td>Oct 01</td>
<td>88</td>
<td>88</td>
<td>61</td>
<td>38</td>
<td>4110</td>
</tr>
<tr>
<td>Nov 01</td>
<td>69</td>
<td>57</td>
<td>50</td>
<td>35</td>
<td>2717</td>
</tr>
<tr>
<td>Dec 01</td>
<td>62</td>
<td>67</td>
<td>45</td>
<td>30</td>
<td>3111</td>
</tr>
<tr>
<td>Jan 02</td>
<td>70</td>
<td>60</td>
<td>54</td>
<td>35</td>
<td>3114</td>
</tr>
<tr>
<td>Feb 02</td>
<td>84</td>
<td>77</td>
<td>62</td>
<td>45</td>
<td>3320</td>
</tr>
<tr>
<td>Mar 02</td>
<td>91</td>
<td>72</td>
<td>69</td>
<td>45</td>
<td>3750</td>
</tr>
<tr>
<td>Apr 02</td>
<td>99</td>
<td>77</td>
<td>76</td>
<td>68</td>
<td>3619</td>
</tr>
<tr>
<td>May 02</td>
<td>92</td>
<td>74</td>
<td>68</td>
<td>45</td>
<td>3463</td>
</tr>
<tr>
<td>Jun 02</td>
<td>82</td>
<td>70</td>
<td>61</td>
<td>35</td>
<td>2230</td>
</tr>
<tr>
<td>Jul 02</td>
<td>84</td>
<td>69</td>
<td>64</td>
<td>35</td>
<td>2840</td>
</tr>
<tr>
<td>Aug 02</td>
<td>95</td>
<td>97</td>
<td>67</td>
<td>30</td>
<td>779</td>
</tr>
<tr>
<td>Entire Period</td>
<td>81</td>
<td>70</td>
<td>61</td>
<td>41</td>
<td>3145</td>
</tr>
</tbody>
</table>

Table 1. Statistical summary of correlation distances for 2-minute interval length and $W_n = 0.2$.

15
Table 2
Statistical summary of correlation distances for 5-minute interval length and $W_n = 0.2$.

<table>
<thead>
<tr>
<th>Date</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Median</th>
<th>Mode</th>
<th># Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 01</td>
<td>99</td>
<td>76</td>
<td>79</td>
<td>70</td>
<td>985</td>
</tr>
<tr>
<td>Apr 01</td>
<td>84</td>
<td>64</td>
<td>67</td>
<td>50</td>
<td>1168</td>
</tr>
<tr>
<td>Jun 01</td>
<td>72</td>
<td>52</td>
<td>55</td>
<td>45</td>
<td>1222</td>
</tr>
<tr>
<td>Jul 01</td>
<td>88</td>
<td>59</td>
<td>72</td>
<td>50</td>
<td>1814</td>
</tr>
<tr>
<td>Aug 01</td>
<td>83</td>
<td>63</td>
<td>67</td>
<td>45</td>
<td>1650</td>
</tr>
<tr>
<td>Sep 01</td>
<td>79</td>
<td>69</td>
<td>58</td>
<td>45</td>
<td>1350</td>
</tr>
<tr>
<td>Oct 01</td>
<td>103</td>
<td>109</td>
<td>69</td>
<td>50</td>
<td>1649</td>
</tr>
<tr>
<td>Nov 01</td>
<td>80</td>
<td>65</td>
<td>62</td>
<td>45</td>
<td>1093</td>
</tr>
<tr>
<td>Dec 01</td>
<td>69</td>
<td>65</td>
<td>50</td>
<td>45</td>
<td>1252</td>
</tr>
<tr>
<td>Jan 02</td>
<td>80</td>
<td>63</td>
<td>64</td>
<td>45</td>
<td>1253</td>
</tr>
<tr>
<td>Feb 02</td>
<td>89</td>
<td>71</td>
<td>67</td>
<td>50</td>
<td>1333</td>
</tr>
<tr>
<td>Mar 02</td>
<td>99</td>
<td>73</td>
<td>76</td>
<td>50</td>
<td>1486</td>
</tr>
<tr>
<td>Apr 02</td>
<td>101</td>
<td>73</td>
<td>78</td>
<td>53</td>
<td>1452</td>
</tr>
<tr>
<td>May 02</td>
<td>101</td>
<td>78</td>
<td>78</td>
<td>45</td>
<td>1373</td>
</tr>
<tr>
<td>Jun 02</td>
<td>92</td>
<td>68</td>
<td>71</td>
<td>50</td>
<td>896</td>
</tr>
<tr>
<td>Jul 02</td>
<td>92</td>
<td>67</td>
<td>76</td>
<td>45</td>
<td>1133</td>
</tr>
<tr>
<td>Aug 02</td>
<td>109</td>
<td>106</td>
<td>82</td>
<td>60</td>
<td>311</td>
</tr>
<tr>
<td>Entire</td>
<td>89</td>
<td>72</td>
<td>69</td>
<td>50</td>
<td>1260</td>
</tr>
</tbody>
</table>

Table 3
Statistical summary of correlation distances for 10-minute interval length and $W_n = 0.02$.

<table>
<thead>
<tr>
<th>Date</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Median</th>
<th>Mode</th>
<th># Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 01</td>
<td>723</td>
<td>680</td>
<td>531</td>
<td>350</td>
<td>498</td>
</tr>
<tr>
<td>Apr 01</td>
<td>490</td>
<td>391</td>
<td>405</td>
<td>350</td>
<td>588</td>
</tr>
<tr>
<td>Jun 01</td>
<td>481</td>
<td>347</td>
<td>391</td>
<td>325</td>
<td>615</td>
</tr>
<tr>
<td>Jul 01</td>
<td>452</td>
<td>268</td>
<td>380</td>
<td>298</td>
<td>913</td>
</tr>
<tr>
<td>Aug 01</td>
<td>374</td>
<td>265</td>
<td>297</td>
<td>225</td>
<td>807</td>
</tr>
<tr>
<td>Sep 01</td>
<td>477</td>
<td>355</td>
<td>364</td>
<td>338</td>
<td>679</td>
</tr>
<tr>
<td>Oct 01</td>
<td>599</td>
<td>518</td>
<td>446</td>
<td>350</td>
<td>796</td>
</tr>
<tr>
<td>Nov 01</td>
<td>442</td>
<td>348</td>
<td>341</td>
<td>263</td>
<td>553</td>
</tr>
<tr>
<td>Dec 01</td>
<td>374</td>
<td>394</td>
<td>249</td>
<td>188</td>
<td>632</td>
</tr>
<tr>
<td>Jan 02</td>
<td>401</td>
<td>307</td>
<td>324</td>
<td>250</td>
<td>633</td>
</tr>
<tr>
<td>Feb 02</td>
<td>501</td>
<td>406</td>
<td>419</td>
<td>263</td>
<td>671</td>
</tr>
<tr>
<td>Mar 02</td>
<td>524</td>
<td>369</td>
<td>417</td>
<td>350</td>
<td>756</td>
</tr>
<tr>
<td>Apr 02</td>
<td>592</td>
<td>387</td>
<td>494</td>
<td>375</td>
<td>728</td>
</tr>
<tr>
<td>May 02</td>
<td>552</td>
<td>317</td>
<td>463</td>
<td>450</td>
<td>689</td>
</tr>
<tr>
<td>Jun 02</td>
<td>487</td>
<td>341</td>
<td>391</td>
<td>350</td>
<td>451</td>
</tr>
<tr>
<td>Jul 02</td>
<td>458</td>
<td>307</td>
<td>363</td>
<td>350</td>
<td>565</td>
</tr>
<tr>
<td>Aug 02</td>
<td>473</td>
<td>345</td>
<td>366</td>
<td>303</td>
<td>156</td>
</tr>
<tr>
<td>Entire</td>
<td>494</td>
<td>373</td>
<td>391</td>
<td>316</td>
<td>631</td>
</tr>
</tbody>
</table>
Figure 7 presents histograms of the mean correlation lengths (from Tables 1-3).

![Histogram of Correlation Distance](image)

March 2001 -- August 2002

Histogram of Correlation Distance

Because of the wide separation in Figure 7 between the peak of the 10-minute interval histogram with the other two it is difficult to see where the peaks of the two and five minute histograms lie. Figure 8 plots just the two and five minute histograms.
The statistical mean, median and the mode varied in a consistent manner. The shape of the histograms shows why this is so. The histograms all have very long tails. This fact skews the median, and especially the mean to the right of the most likely value, the mode. The mode is the most likely value to occur and as such is deemed the most significant for potential applications of this thesis. Figure 9 shows one example of a histogram with the mean, median and mode plotted on it. The tail of this histogram is actually much longer than shown – it extends to 1140 meters. It has been truncated in this plot in order to better show the difference between the mean, median and mode.
March 2001 -- August 2002
Histogram of Correlation Distance
(2-Minute Interval)

![Histogram of 2-minute sampled correlation distance with mean, median and mode plotted.](image)

Figure 9. Histogram of 2-minute sampled correlation distance with mean, median and mode plotted.

Figure 10 displays the mean correlation length, with error bars of plus and minus one standard deviation of the data set, for each of the time intervals, by month.
Figure 10. Histogram of 2, 5 and 10-minute mean correlation distances.
Figure 11 compares the mean, median and mode for the 2, 5 and 10 minute intervals. Note that the most likely value, the mode, is also the lowest value.

Figure 11. Comparison of the mean, median and mode for the 2, 5 and 10 minute intervals.
Another way to compare the data is examine the means as a group (for the three time intervals), the medians as a group and the modes as a group. Figure 12 depicts this.

Figure 12. Comparison of the means as a group, medians as a group and modes as a group for the 2, 5 and 10 minute intervals.
It was also of interest to see how the correlation length varied hourly over the course of the day, from 1000 to 1600 MST. The data for the 5-minute interval was chosen as a representative sample and the correlation lengths were calculated for each hour, by month. Then the months were grouped together into seasons: Winter = December, January, February; Spring = March, April, May; Summer = June, July, August; and Fall = September, October, November. The hourly changes in correlation length were then plotted for each season as well as a composite of all the data. This is presented in Figure 13.

Figure 13. Average correlation distance of the seasons, by hour, between the hours of 1000 and 1600 MST.

B. DISCUSSION

The mean, standard deviation, median and mode were calculated for the autocorrelation lengths of the average C_n^2 values for 20-50 meter vertical segments of acoustic sounder data grouped in 2, 5 and 10 minute time intervals.
These three statistical measures varied from each other because of the long tail shape of the histogram illustrated in Figure 9. While each statistical measure has value, the mode, which represents the most likely value, is the most representative value of the distance between a plume and an adjacent minimum.

As Figure 12 shows, the mean, median and mode of the 2 and 5 minute intervals match up quite well with each other while the 10-minute interval’s statistical values are much higher. This is most likely due to two factors. The first, and most dominant, reason for the discrepancy is that the bandwidth of the low pass Butterworth filter applied to the autocorrelation plot was much narrower for the 10-minute case. This was done to suppress the fine scale structure seen within a single plume and to reveal the separation between the plumes. This longer correlation time, of course, implies a longer correlation distance. The second reason that the correlation distance was found to be higher in the 10-minute sample was that for longer sample times, larger scale features of the thermal plumes were being correlated. A 10-minute segment was long enough to include several plumes, while for the 2 and 5-minute intervals, individual features within a plume were more prevalent.

Figure 13, which presents the average correlation lengths of the seasons, organized by hour, displays several interesting features. The overall trend of the data is that the distance tends to increase from approximately 1000 hours to 1500 hours and then goes down. In the morning as the sun rises higher in the sky, the ground warms up producing thermal plumes. These plumes grow in height and lateral extent as they carry more heat up into the boundary layer. The length decreases after 1500 hours as the solar radiation abates and the ground begins to cool. Spring has the highest correlation distances, which should be expected since the average wind speeds in the spring are higher than in the other seasons. Fall shows the steepest increase in correlation distance, while winter shows a slight decrease.
III. CONCLUSIONS AND RECOMMENDATIONS

The horizontal separation between convective thermal plumes, and features within a thermal plume, were determined from acoustic sounder profiles with the corresponding anemometer wind speeds and extensive data analysis. The mean, standard deviation, median and mode were calculated for the computed correlation lengths. The acoustic sounder produced a vertical C_n^2 profile once a second that was represented as a single C_n^2 average for the 20-50m altitude range. These averages were grouped into 2, 5 and 10 minute long sequences to compute an autocorrelation function. The times between the autocorrelation maxima and the first minima were found and multiplied by the average wind speed over that interval. The data sampled at 2 and 5-minute intervals most likely revealed features within an individual thermal plume. The 2 and 5-minute time interval statistics correlated very strongly with each other, and the mean correlation distance was 81 meters ± 70 meters and 89 meters ± 72 meters, respectively. Their medians were 61 meters and 69 meters; and their modes were 41 meters and 50 meters, respectively. These two time intervals also used the same strength Butterworth low pass filter in the Matlab program to determine the correlation time, which provided just enough smoothing to find a robust minimum in the autocorrelation function.

The 10-minute time interval statistics were significantly larger than the 2 and 5-minute cases. The mean correlation length was 494 meters ± 373 meters, the median was 391 meters and the mode was 316 meters. This was the result of using a narrower bandwidth Butterworth filter to smooth the autocorrelation function. This stronger filter was designed to filter out the smaller features within an individual plume and, therefore, find the distance between the center of a plume and the center of the quiet region adjacent to that plume (effectively finding the distance between thermal plumes). Another factor involved in the higher values for the 10-minute interval was the fact that the time interval was
longer: 10 minutes versus 2 or 5 minutes. This longer time interval allowed several thermal plumes to be correlated in the same data set.

The validity of this study should be verified using optical methods to determine the correlation lengths between and within thermal plumes. This would be important to do before any major applications utilizing the results obtained here were begun. If the results agree, then this acoustic sounder method could be a cost effective way to study thermal characteristics, and the resulting degradation in the optical environment, at other locations.
The following program is the code used to generate the data analyzed in this thesis.

% This program reads in acoustic sounder data and
% meteorological data collected at the Starfire Optical
% Range (SOR) and produces an output listing in successive columns:

% year of sample
% month of sample
% day of sample
% time of sample
% correlation time (unfiltered),
% correlation time (filtered)
% average windspeed (for time of sample)
% correlation distance (max to first min)
% correlation distance (max to global min)

% The video display mode must be set for 24 bits or more
% 25 Feb 98; 24 Oct 97, DLW

%***
% This file modified Aug/Sep 2004 by Jeff Douds *
%***

%***
% SOR VARIABLES ON DATA FILES (included for reference) *
% fdat(1)=floor(now); % days *
% fdat(2)=rem(now,1); % fraction of day *
% fdat(3)=Pres; *
% fdat(4)=Temp; *
% fdat(5)=Rel; *
% fdat(6)=atten2; *
% fdat(7)=Ct_cal; *
% fdat(8)=Pltrng; *
% fdat(9)=dt; *
% fdat(10)=Cn_sensor; *
% fdat(11:Pltrng+10)= CT^2 array in K^2 m^-2/3 *
% fdat(Pltrng+11:2*Pltrng+10)= Radial Doppler wind speed in m/s *
%***

% METEOROLOGICAL DATA VARIABLES (in txt files) *
% col 1 = ABD temp (deg C) *
% col 2 = ABD dew point temp (deg C) *
% col 3 = ABD wind direction (deg) *
% col 4 = ABD wind speed (mph) *
% col 5 = ABD pressure (mb) *
% col 6 = ABD pyranometer *
clear all;
close all;
clc;

% Set Constants
color_scale=1/3/4; % (1/3)/5 For full scale of 5 m/
Ct_cor=1; % Empirical constant (use 2.3 before Feb 10 98)
lambda_o=0.5e-6; % Optical wavelength
romin=15; % ro minimum array index altitude (ie 5 = 4m)
ro_Pltmg=200; % ro plot maximum range
scale=2000; % colormap CT^2 scale factor

% User Inputs
time_samp=input('Enter sampling time in min = ');
nscans= time_samp*60; % max # of pulses displayed on plot
tstart=input('Enter time to start (use UTC, in whole hours, e.g. 17)');
tend=input('Enter time to end (use UTC, in whole hours, e.g. 23)');

% Derived Constants
nscan1=nscans-1;
ro_const=1000*2.1*(1.46*(2*pi/lambda_o)^2)^-0.6;

for j=1:12 %select the month (run through them all sequentially)
 switch j
 case 1
 month='Jan';
 case 2
 month='Feb';
 case 3
 month='Mar';
 case 4
 month='Apr';
 case 5
 month='May';
 case 6
 month='Jun';
 case 7
 month='Jul';
 case 8
 month='Aug';
 case 9
 month='Sep';
 case 10
 month='Oct';
 case 11
 month='Nov';
 case 12
 month='Dec';
 end
end
% loop to read in a month at a time day by day
for count=1:31
 if count<10
 count=['0',int2str(count)];
 else
 count=[int2str(count)];
 end

%assign names to the input files
sounder_file=['c:\SOR FOLDER\SOR DATA FILES\',month,' 2002\',count,'-',month,'-2002.bin'];
met_file1=['c:\SOR FOLDER\S2002\',month,'02\',count,month,'02data.txt'];

%open the input files
fid=fopen(sounder_file,'r');
met_file=load(met_file1);

%open the output file
outputfile=['c:\SOR FOLDER\Output\',month,'_2002_10_min_intervals_no_douds_filter.txt'];
fid2 = fopen(outputfile,'a');

%check for valid data files
ValidData=1; % 1 = yes, valid data; 0 = no, not valid data
if size(met_file)==[0,0] | fid==-1
 fprintf('The file %s does not exist.
',sounder_file); %output to data file
 ValidData=0; %flag for invalid data
end

if ValidData==1 %only enter this loop if two valid data files have been read

% read input parameters
 fdat=zeros([10 1]);
 fdat=fread(fid,10,'float32');
 Pltrng=fdat(8); % get vector length
 fsize=2*Pltrng+10; % actual file size
 frewind(fid);
 fdat=zeros([fsize 1]); % Output file data buffer
 fdat=fread(fid,fsize,'float32');

% Set Arrays
 i0=0:Pltrng-1;
 i1=1:Pltrng;
 n2=1:nscans;
 avg=zeros(size(i1));
 Cn2=avg';
 Cn2_row=zeros(Pltrng,nscans,1);
 Cn2_norm=zeros(Pltrng,nscans,1);
 color=avg;
img=uint8(zeros(Pltrng,nscans,3)); % plot array with 1m range bins
img2=uint8(zeros(Pltrng,nscans,3)); % plot array with 1m range bins (for 2nd color plot)
inten=avg';
 ravg=avg'; % Cn^2 running average
rgb=zeros(Pltrng,3); % Current data array
rgb2=zeros(Pltrng,3); % for second color plot
 vavg=avg;
 vdop=avg;
roi=zeros(1,nscans);

% Initialize first plot
 close('all','hidden')
 figure('Position',[430 50 400 300]);
 colormap(hsv);
 m=colormap;
 h1=image(img,'Erasemode','none');
 axis xy; % set plot for Cartesian coordinates
 xlabel('Time (sec)');
 ylabel('Range (m)');
 title('Filtered Data');
 ylim([20 150]); %don't display the bottom 20 meters since this data is not being used anyway

%Initialize second plot
 figure(2)
 set(2,'Position',[20 50 400 300]);
 colormap(hsv);
 m2=colormap;
 h2=image(img,'Erasemode','none');
 axis xy; % set plot for Cartesian coordinates
 xlabel('Time (sec)');
 ylabel('Range (m)');
 title('Unfiltered Data');
 ylim([20 150]); %don't display the bottom 20 meters since this data is not being used anyway

% Queing loop: this loop queues the data to begin reading at the tstart input
 fdat(2)=0;
 if size(fdat)==[fsize 1] %only enter the following loop if data has been read each time
 while ValidData==1 & (tstart>24*fdat(2)), %flag is to check that data has actually been read each time
 fdat=fread(fid,fsize,'float32');
 if size(fdat)==[fsize 1]
 else
 ValidData=0;
 end
 end
 end

% Main Data Acquisition Loop (goes until tend is reached)
for time=tstart:time_samp/60:tend,
 % Loop for each frame that is printed out
 for k=1:nscans
fdat=fread(fid,fsize,'float32');

if ValidData==1 & size(fdat)==[fsize 1] %only enter the following loop if data has been read each time
 Pres=fdat(3);
 Temp=fdat(4)+273.15;
 Cn_cal=Ct_cor*(79e-6*Pres/Temp^2)^2;
 avg=(fdat(11:Pltrng+10));
 inten=min(scale*sqrt(max(avg,0)),255);
 inten_unfiltered=inten;

 %the following for loop will black out the areas above where the avg
 %value was first <=0 and set the avg values above there to zero
 %the avg values at these points are already very close to
 %or less than zero
 flag=0;
 for counter=1:Pltrng
 if or((avg(counter)<0), (flag==1))
 inten(counter)=0;
 avg(counter)=0;
 flag=1;
 end
 end

 %the following algorithm will look for noise beginning in the upper
 %region and working its way down. As it finds noise, it will set avg
 %and inten to zero
 noise=1;
 for j=150:-1:2 %look from the to of the column down to the bottom
 if noise==1; %avg value too high ==> noise; set to zero
 avg(j)=0;
 inten(j)=0;
 elseif avg(j)==0 %%avg value=0 is inconclusive, so check the next pt down the column
 noise=0; %once avg value drops below threshold level, back out of the loop
 %and stop changing avg and inten values. This will preserve the valid
 %high avg numbers at the bottom of the columns.
 end
 end

 % Doppler processing
 vdp=transpose(fdat(Pltrng+11:2*Pltrng+10));
 color=max(min(color_scale*vdp+0.333,0.666),0); % Clip red & blue
 color=round(color*63+1); % Color table index
 rgb(i1,:)=m(color(i1),:);
 for l=1:3,rgb(:,l)=inten.*rgb(:,l);end

 % Shift plot and display
 img(:,1:nscans-1,:)=img(:,2:nscans,:);
 img(:,nscans,:)=uint8(round(rgb));
ravg=0.6*ravg+0.4*avg;
 Cn2=Cn_cal*avg;
 Cn2_row(:,1:nscans-1)=Cn2_row(:,2:nscans);
 Cn2_row(:,nscans)=Cn2(1);
 row_avg=mean(Cn2_row,2);
 for i_col=1:nscans,
 Cn2_norm(:,i_col)=Cn2_row(:,i_col)-row_avg(:);
 end

 %Produce data for 2nd color plot
 rgb2(1:,:)=m2(color(1,:),:);
 for l=1:3,rgb2(:,l)=inten_unfiltered.*rgb2(:,l);end

 % Shift plot and display
 img2(:,1:nscans-1,:)=img2(:,2:nscans,:);
 img2(:,nscans,:)=uint8(round(rgb2));
end %if loop to check if fdat had data in it
end % loop for each frame that is printed out

if size(fdat)==[fsize 1] %only enter the following inner loop if data has been read each time

 % prepare the output for the color graph and draw it
 set(h1,'CData',img)
 drawnow

 % prepare the output for the color graph and draw it
 set(h2,'CData',img2)
 drawnow

 % find the correlation time between limits in array below
 Cn2_ab = mean(Cn2_norm(20:50,:)); %Find mean of Cn2 (finds the mean value of each column)
 cor_ht1 = xcorr(Cn2_ab); %Find correlation time

 % Filter the data
 [b,a] = butter(5,0.02); %5th order, Wn=0.2
 corfilt = filtfilt(b,a,cor_ht1);

 % Check for first min to max
 N=nscans;
 last=cor_ht1(nscans);
 while ((corfilt(N-1)<last) & (N>2)),
 last=corfilt(N-1);
 N=N-1;
 end
 time_0=nscans-N;

 % Check for global min
 [Y1,I1] = min(corfilt(1:nscans));
 time_1 = nscans-I1;
% Find the corresponding time in the met data file
met_tstart_1=time*10000; %decimal format (e.g. 17.8333)
hours=double(int8(met_tstart_1/10000)); %leaves only the minutes and seconds, still in base 10 format
minutes=double(int8(met_tstart_2/100)); %extracts the minutes
seconds=double(met_tstart_2 - (double(int8(met_tstart_2/100))*100)); %extracts the seconds and converts to time format
met_tstart=(hours*10000) + (minutes*100) + seconds; %time in the correct format for the .txt met file
J=min(find(met_file(:,11)>=met_tstart)); %finds the row in the met file where the time starts

sum_wndspd=0;
for i=J:J+(time_samp – 1)
 sum_wndspd=sum_wndspd + met_file(i,7); %add the windspeeds over the sample to then calculate an average
end
avg_wndspd=sum_wndspd/time_samp; %using the 3.5m windspeed, not the ABD windspeed

% calculate the correlation distance

cor_dist_first=0.44704*avg_wndspd*time_0; %0.44704 = conversion factor for mph to m/s; distance from max to first min
cor_dist_global=0.44704*avg_wndspd*time_1; %distance from max to global min

figure(3);
set(3,'Position',[20 430 400 320]);
plot(corfilt);
title('Butterworth Filter on the Correlation of Mean');

figure(4);
set(4,'Position',[430 430 400 320]);
plot(corfilt);
title('Butterworth Filter on the Correlation of Mean');

tm=datevec(fdat(1)+fdat(2)); % pulls out the year, month, day from the SOR data file

% output to screen
fprintf('
Year	Month	Day		UTC Time	Corr Time 1		Corr Time 2		Avg Wndspd		Corr Dist 1		Corr Dist 2');
fprintf('
%g	 %g	 %g	 %02.0f:%02.0f:%02.0f	 %4.0f	 %4.0f	 %8.2f	 %8.2f	 %8.2f
',tm(1),tm(2),tm(3),hours,minutes,seconds,time_0,time_1,avg_wndspd,cor_dist_first,cor_dist_global);

if tm(1)==2001 | tm(1)==2002 %some bad data has the incorrect date, this will filter that data out by not printing it
 % output to data file
 fprintf(fid2,'%g	 %g	 %g	 %8.4f	 %02.0f:%02.0f:%02.0f	 %4.0f	 %4.0f	 %8.2f	 %8.2f	 %8.2f
',tm(1),tm(2),tm(3),time,hours,minutes,seconds,time_0,time_1,avg_wndspd,cor_dist_first,cor_dist_global);
end

end %inner if loop to check if fdat had data in it
%
pause;
end % Main Data Acquisition Loop

fclose(fid); % close current SOR file

end %if statement for valid data obtained
end % for loop to read in a day at time for the whole month

end %for loop to select the month

fclose(fid2); % Close output file
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, VA

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, CA

3. Professor Donald L. Walters
 U.S. Naval Postgraduate School
 Monterey, CA

4. Professor Christopher Olsen
 U.S. Naval Postgraduate School
 Monterey, CA