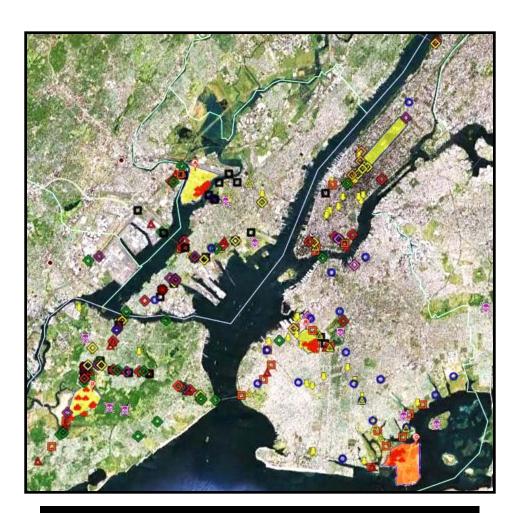


Improvised Explosive Device Network Analysis



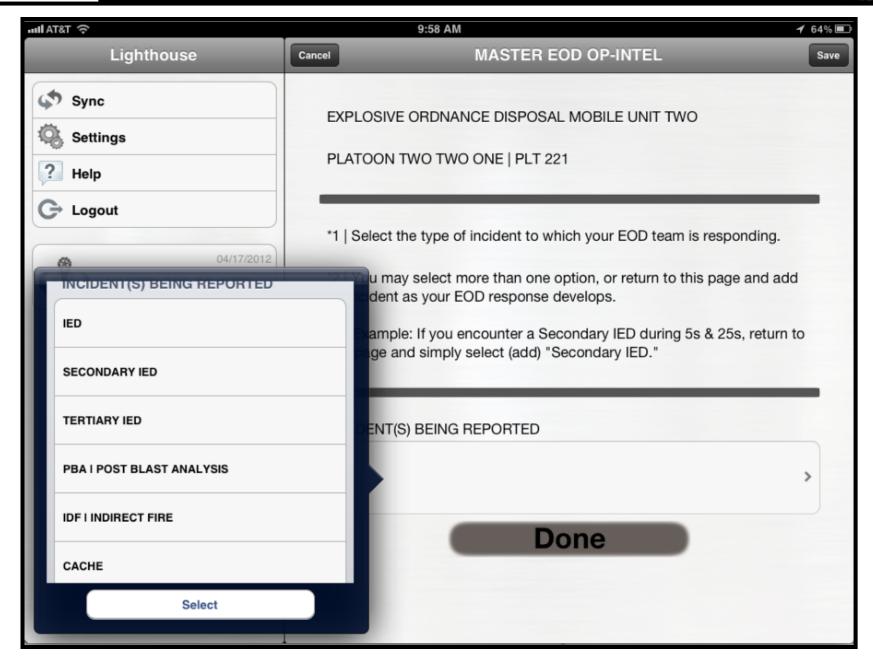
• IED^{NA} utilizes network analysis methods to fill gaps in the understanding and visualization of IED networks

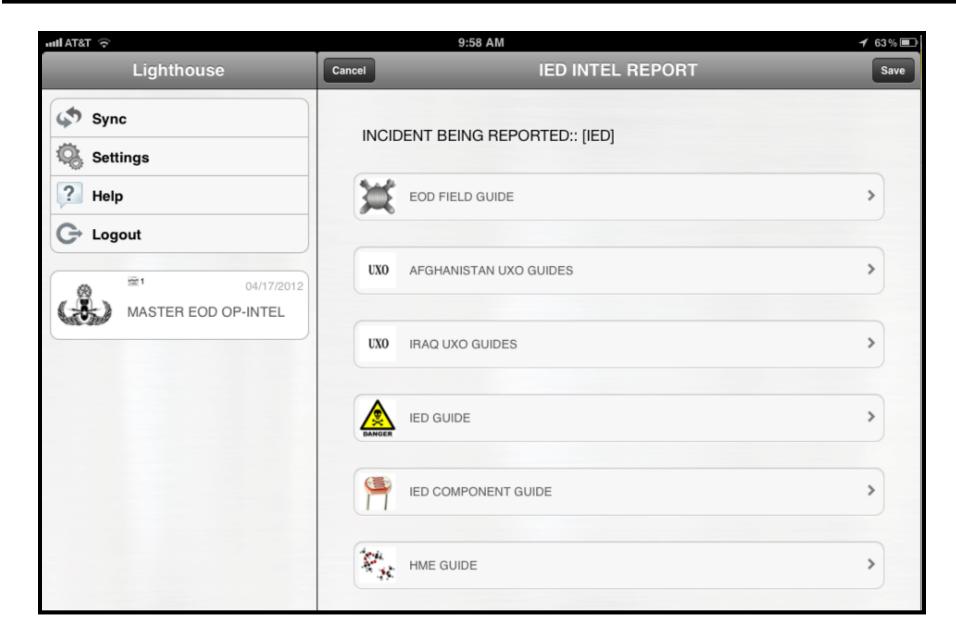
Typical network analysis of illicit networks focuses on the human participants

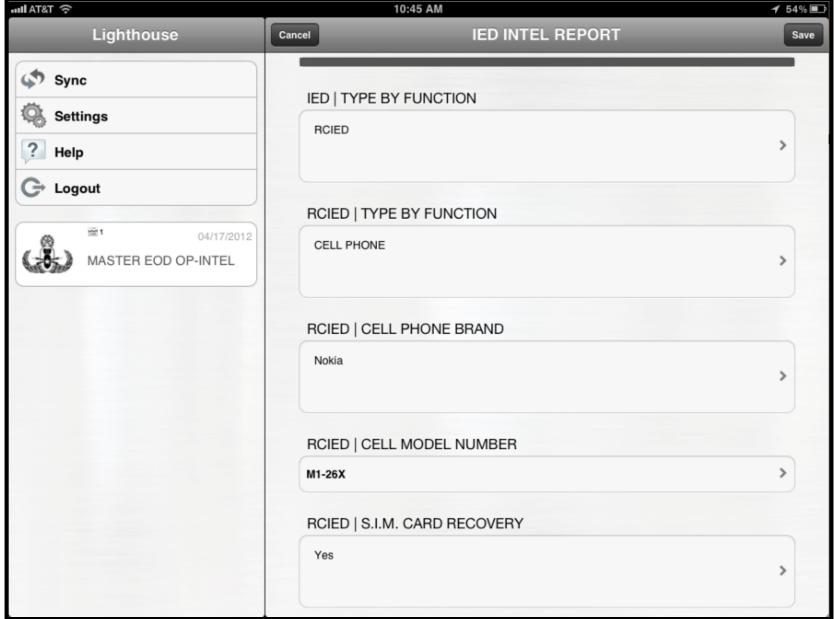
- In the case of IED networks these would be emplacers, financiers, bomb-makers, etc.
- This is problematic because the intelligence relied upon (HUMINT, SIGINT) is frequently incomplete and/or inaccurate because it is subject to deception efforts
- Typical intelligence sources are also much more demanding from the perspective of time
 - HUMINT sources need to be vetted
 - SIGINT sources need to be translated
 - Multiple sources are needed to be valuable for the end-user

A typical map of IED "atmospherics"

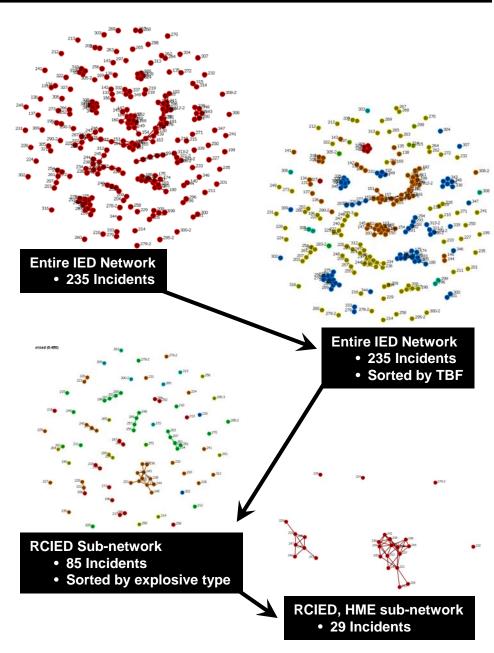
- How useful is this?
- How can I "attack the network?"


- IED^{NA} focuses on the <u>physical</u> components of the individual IEDs and what these components can tell/show us about the IED network(s)
- To enable this analysis, we built a mobile IED INTEL collection application that allows for real-time on-scene data collection that:
 - Structures Collected IFD data
 - Automatically generates IED incident report(s)
 - Reduces operating burden on EOD **Technicians**
 - Allows for rapid Tactical Level Intel feedback of IED operating environment
 - Allows C-IED forces to isolate targets of interest and develop network attack strategies



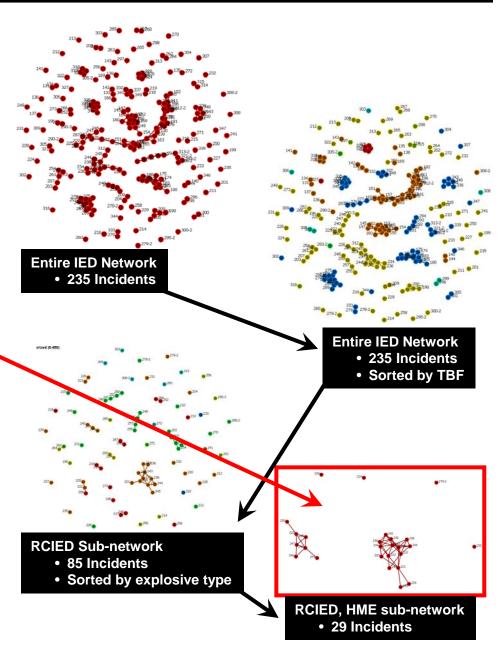

IEDNA Overview

ID	\$349
INCIDENT BEING REPORTED:	IED
GRID MGRS OF INCIDENT EX: 38SMC0123456789	18TWK8167895900
IED ROUTE NAME	PENNSYLVANIA
RESOURCES THREATENED TARGETED	C.F. PERSONNEL
IED LOCATION	ROADSIDE HIDDEN MSR (MAIN SUPPLY ROUTE)
VICTIM C.R.E.W. SYSTEM	PYTHON
VICTIM C.R.E.W. STATUS	ON DURING ATTACK/DISCOVERY
EOD C.R.E.W. SYSTEM	PYTHON
IMPACT ON UNIT MANEUVER(S) MISSION(S)	ASR CLOSURE
IED TYPE BY FUNCTION	VOIED
VOIED TYPE BY FUNCTION	CRUSH SWITCH
VOIED CRUSH SWITCH METHOD OF EMPLOYMENT	SURFACE LAID [ACROSS ROAD]
VOIED CRUSH SWITCH MATERIAL	MCPS
VOIED CRUSH SWITCH LENGTH	50 FT
EOD APPROACH	ROBOTIC
EOD ROBOTICS EMPLOYED	TALON
IED EXPLOSIVE COMPONENTS	MORTAR
IED MORTAR TYPE BY FUNCTION	(HE) HIGH EXPLOSIVE
IED MORTAR SIZE(S)	160mm
IED MORTAR FUZE(S)	NONE NOSE-WELL PRIMED W/EXPLOSIVES
IED MORTAR NOMENCLATURE	F852
IED MORTAR COUNTRY OF ORIGIN	RUSSIAN
IED MORTAR QUANTITY	2
IED MORTARS DAISY-CHAINED?	Yes
IED SWITCH TYPE BY FUNCTION	PRESSURE
IED INITIATOR - DETONATOR	COMMERCIAL BLASTING CAP, DETONATING CORD
IED BLASTING CAP TYPE BY FUNCTION	ELECTRIC
IED BLASTING CAP LENGTH	65mm
IED BLASTING CAP CRIMP INTEL	3 Ring Compression
IED BLASTING CAP LEAD WIRE INTEL	RED GREEN
IED DET-CORD COLOR	RED
IED POWER SOURCE	9-VOLT BATTERY
IED POWER SOURCE BRAND [i.e. Duracel, Camelion, etc.]	ENERGIZER
EOD R.S.P.	B.I.P

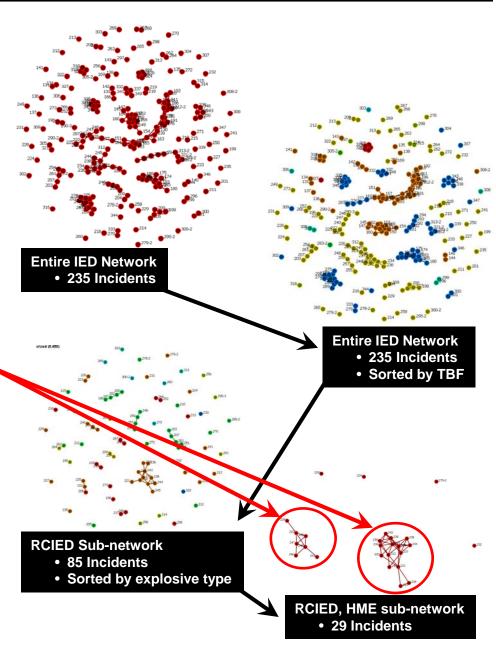


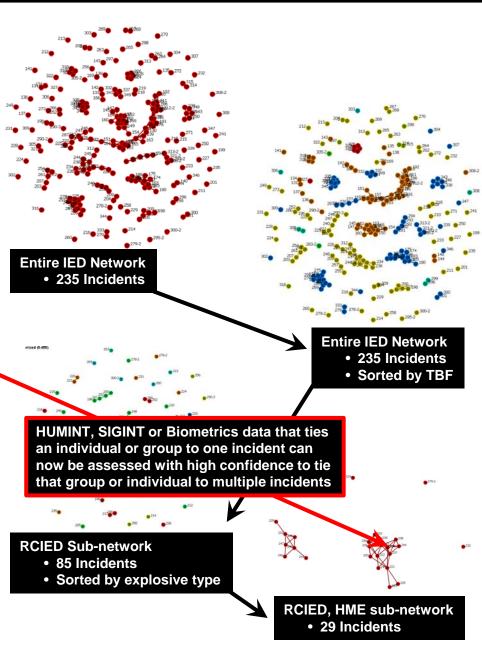
IED PHOTO INTEL 1	DURACELL
IED PHOTO 2 DETAILS	RECOVERED SLIDE SWITCH
IED PHOTO INTEL 2	
IED PHOTO 3 DETAILS	RECOVERED PLASTIC COATED COMMAND WIRE
IED PHOTO INTEL 3	

- By taking a two-pronged approach to analyzing IED component data
 - Improving on-scene collection capability that structures the data in a way that is easily imported into network analysis tools
 - 2. Applying component level analysis
- We can gain a much better ability to fill gaps in the knowledge of IED networks that are otherwise left empty
 - IEDNA makes it possible for an analyst to
 - More clearly define the specific network of interest
 - Identify likely bomb-making cells / individuals
 - Increase the value of HUMINT and SIGINT reporting
 - Increase the chances for justification of Direct Action on bomb-making groups and individuals
 - Zero in on more specific geographic areas of interest
 - Justify ISR collections requests empirically
 - Track and link together IED components and events across regional and national boundaries
 - In a drastically faster Processing, Exploitation, Dissemination cycle
 - In minutes or hours vice weeks and months



IEDNA Overview

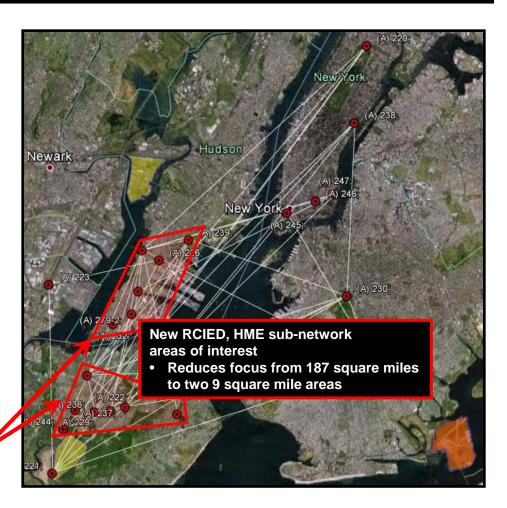

- By taking a two-pronged approach to analyzing IED component data
 - Improving on-scene collection capability that structures the data in a way that is easily imported into network analysis tools
 - 2. Applying component level analysis
- We can gain a much better ability to fill gaps in the knowledge of IED networks that are otherwise left empty
 - IEDNA makes it possible for an analyst to
 - More clearly define the specific network of interest
 - Identify likely bomb-making cells / individuals
 - Increase the value of HUMINT and SIGINT reporting
 - Increase the chances for justification of Direct Action on bomb-making groups and individuals
 - Zero in on more specific geographic areas of interest
 - Justify ISR collections requests empirically
 - Track and link together IED components and events across regional and national boundaries
 - In a drastically faster Processing, Exploitation, Dissemination cycle
 - In minutes or hours vice weeks and months


- By taking a two-pronged approach to analyzing IED component data
 - Improving on-scene collection capability that structures the data in a way that is easily imported into network analysis tools
 - 2. Applying component level analysis
- We can gain a much better ability to fill gaps in the knowledge of IED networks that are otherwise left empty
 - IEDNA makes it possible for an analyst to
 - More clearly define the specific network of interest
 - Identify likely bomb-making cells / individuals
 - Increase the value of HUMINT and SIGINT reporting
 - Increase the chances for justification of Direct Action on bomb-making groups and individuals
 - Zero in on more specific geographic areas of interest
 - Justify ISR collections requests empirically
 - Track and link together IED components and events across regional and national boundaries
 - In a drastically faster Processing, Exploitation, Dissemination cycle
 - In minutes or hours vice weeks and months

- By taking a two-pronged approach to analyzing IED component data
 - Improving on-scene collection capability that structures the data in a way that is easily imported into network analysis tools
 - 2. Applying component level analysis
- We can gain a much better ability to fill gaps in the knowledge of IED networks that are otherwise left empty
 - IEDNA makes it possible for an analyst to
 - More clearly define the specific network of interest
 - Identify likely bomb-making cells / individuals
 - Increase the value of HUMINT and SIGINT reporting
 - Increase the chances for justification of Direct Action on bomb-making groups and individuals
 - Zero in on more specific geographic areas of interest
 - Justify ISR collections requests empirically
 - Track and link together IED components and events across regional and national boundaries
 - In a drastically faster Processing, Exploitation, Dissemination cycle
 - In minutes or hours vice weeks and months

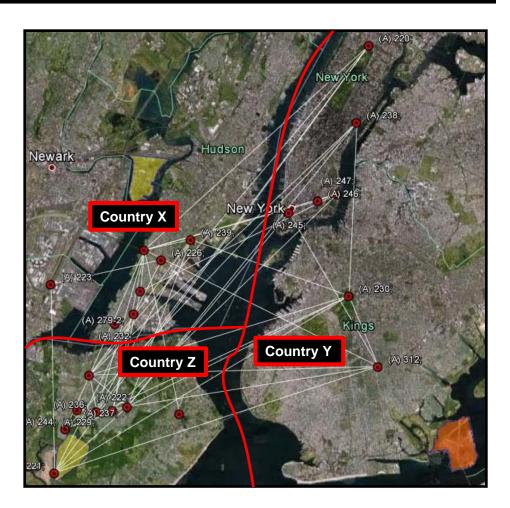
IEDNA Overview

- By taking a two-pronged approach to analyzing IED component data
 - Improving on-scene collection capability that structures the data in a way that is easily imported into network analysis tools
 - 2. Applying component level analysis
- We can gain a much better ability to fill gaps in the knowledge of IED networks that are otherwise left empty
 - IEDNA makes it possible for an analyst to
 - More clearly define the specific network of interest
 - Identify likely bomb-making cells / individuals
 - Increase the value of HUMINT and SIGINT reporting
 - Increase the chances for justification of Direct Action on bomb-making groups and individuals
 - Zero in on more specific geographic areas of interest
 - Justify ISR collections requests **empirically**
 - Track and link together IED components and events across regional and national boundaries
 - In a drastically faster Processing, Exploitation, Dissemination cycle
 - In minutes or hours vice weeks and months


RCIED, HME sub-network

- Geo-located
- Maintaining links

- By taking a two-pronged approach to analyzing IED component data
 - Improving on-scene collection capability that structures the data in a way that is easily imported into network analysis tools
 - 2. Applying component level analysis
- We can gain a much better ability to fill gaps in the knowledge of IED networks that are otherwise left empty
 - IEDNA makes it possible for an analyst to
 - More clearly define the specific network of interest
 - Identify likely bomb-making cells / individuals
 - Increase the value of HUMINT and SIGINT reporting
 - Increase the chances for justification of Direct Action on bomb-making groups and individuals
 - Zero in on more specific geographic areas of interest
 - Justify ISR collections requests *empirically*
 - Track and link together IED components and events across regional and national boundaries
 - In a drastically faster Processing, Exploitation, Dissemination cycle
 - In minutes or hours vice weeks and months


RCIED, HME sub-network

- Geo-located
- Maintaining links

- By taking a two-pronged approach to analyzing IED component data
 - Improving on-scene collection capability that structures the data in a way that is easily imported into network analysis tools
 - 2. Applying component level analysis
- We can gain a much better ability to fill gaps in the knowledge of IED networks that are otherwise left empty
 - IEDNA makes it possible for an analyst to
 - More clearly define the specific network of interest
 - Identify likely bomb-making cells / individuals
 - Increase the value of HUMINT and SIGINT reporting
 - Increase the chances for justification of Direct Action on bomb-making groups and individuals
 - Zero in on more specific geographic areas of interest
 - Justify ISR collections requests empirically
 - Track and link together IED components and events across regional and national boundaries
 - In a drastically faster Processing, Exploitation, Dissemination cycle
 - In minutes or hours vice weeks and months

RCIED, HME sub-network

- Geo-located
- Maintaining links

- Bottom Line / Big Picture
 - IEDNA is not a silver bullet
 - There will never be one
 - It does fill a gap in knowledge by properly utilizing data that is <u>already being collected</u>
 - These techniques are proven and validated, and are therefore powerful tools that give commanders more options in the F3EA cycle:
 - Empirically justify Collections Emphasis Requests
 - Satisfy legal justifications for Direct Action
 - Identify supply chain similarities within IED networks and subnetworks

- Bottom Line / Big Picture (continued)
 - It also allows an analyst to quickly sort through massive datasets that currently entail hundreds of hours of analyst legwork
 - By quickly sorting through the IED component variables, an analyst can zero in on a sub-network of interest
 - Including isolating for specific components that may be moving across regional and national boundaries
 - Again, EOD techs are already required to collect this type of data
 - Our application allows them to collect it in a way that structures the data and reduces the reporting burden
 - Not taking advantage of the intelligence in a timely manner is a failure

Points of Contact

Naval Postgraduate School Team:

Mike Stevens
Structured Data Collection Manager
Lighthouse Program Manager
(562)607-4168 - COMM
mrsteven@nps.edu- NIPR

LT David Scherr, USN (410)271-4887 - COMM dmscherr@nps.edu - NIPR