<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Naval Postgraduate School (U.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Catalogue for 1961-1962</td>
</tr>
<tr>
<td>Publisher</td>
<td>Monterey, California. Naval Postgraduate School</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1961</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10945/31691</td>
</tr>
</tbody>
</table>

This document was downloaded on May 22, 2013 at 14:32:20
UNITED STATES NAVAL POSTGRADUATE SCHOOL

Catalogue for 1961-1962

MONTEREY ★ CALIFORNIA
MISSION

The Secretary of the Navy has defined the mission of the Naval Postgraduate School as follows:

"To conduct and direct the Advanced Education of commissioned officers, to broaden the professional knowledge of general line officers, and to provide such other indoctrination, technical and professional instruction as may be prescribed to meet the needs of the Naval Service. In support of the foregoing, to foster and encourage a program of research in order to sustain academic excellence."
U.S. NAVAL POSTGRADUATE SCHOOL

Superintendent

MARSHALL EDGAR DORNIN
Rear Admiral, U.S. Navy
B.S., USNA, 1930; USNPS, 1939;
Naval War College, 1951

Chief of Staff

LOWELL WINFIELD WILLIAMS
Captain, U.S. Navy
B.S., USNA, 1931; M.S., Ohio State Univ., 1951
(To be detached, May, 1961)

ROBERT ANTHONY MACPHERSON
Captain, U.S. Navy
B.S., USNA, 1933; Armed Forces Staff College, 1949;
Industrial College of the Armed Forces, 1953
(To report, Summer, 1961)

Academic Dean

ALLEN EDGAR VIVELL
B.E., Johns Hopkins Univ., 1927; D.Eng., 1937

Dean Emeritus

ROY STANLEY GLASGOW
B.S., Washington Univ., 1918;
M.S., Harvard, 1922; E.E., Washington Univ., 1925;
D.Sc. (Hon.), Washington Univ., 1961

Director, Engineering School

ROBERT DUNLAP RISSE
Captain, U.S. Navy
B.S., USNA, 1934; M.S., Univ. of Michigan, 1943

Director, General Line and Naval Science School

ROBERT PARK BEEBE
Captain, U.S. Navy
B.S., USNA, 1931; A.M., Boston Univ., 1957; Naval War College, 1956; Naval War College, Advanced Study
in Strategy and Sea Power, 1957
(To be detached, Summer, 1961)

ALFRED LEROY GURNEY
Captain, U.S. Navy
A.B., St. Mary’s College, 1935; General Line School, 1947;
Industrial College of the Armed Forces, 1956
(To report, Summer, 1961)

Director, Management School

HERBERT HENRY ANDERSON
Captain, U.S. Navy
B.S., USNA, 1941; M.B.A., Harvard Univ., 1953;
National War College, 1958

Commanding Officer, Administrative Command

RALPH WILLIAM ARNDT
Captain, U.S. Navy
B.S., USNA, 1936; B.S., USNPS, 1949;
M.S., Univ. of Minnesota, 1950
POSTGRADUATE SCHOOL CALENDAR

Academic Year 1961 - 1962

1961

General Line & Naval Science School Summer Term Ends
(Classes NS-4 and 5)

Management School Summer Session Begins

Fourth of July (Holiday)

Management School Summer Session Ends

Engineering School, Management School, General Line & Naval
Science School (Classes 1962A and NS7) Registration

General Line & Naval Science School Fifth Term Ends

Engineering School, Management School, General Line & Naval
Science School First Term Begins

Labor Day (Holiday)

Engineering School First Term Ends

Management School, General Line & Naval Science
School First Term Ends

Management School, General Line & Naval Science
Second Term Begins

Engineering School Second Term Begins

Thanksgiving Day (Holiday)

General Line & Naval Science School Graduation
(Class 1961B)

Engineering School, Management School, General Line &
Naval Science School Second Term Ends, Christmas Holiday Begins

1962

Engineering School, Management School, General Line &
Naval Science School Third Term Begins

Washington's Birthday (Holiday)

General Line & Naval Science School (Classes 1962B and
NS-8) Registration

Engineering School Third Term Ends

Management School, General Line & Naval Science School
Third Term Ends

Management School, General Line & Naval Science
Fourth Term Begins

Engineering School Fourth Term Begins

Engineering School, Management School, General Line &
Naval Science School Fourth Term Ends

General Line & Naval Science School Fifth Term Begins

Engineering School, Management School, General Line &
Naval Science School (Class 1962A) Graduation

Engineering School Special Weapons Orientation Begins

Engineering School Special Weapons Orientation Ends

General Line & Naval Science School Summer Term Ends
(Classes NS-6 and 7)

Management School Summer Session Begins

Fourth of July (Holiday)

Management School Summer Session Ends

Engineering School, Management School, General Line &
Naval Science School (Classes 1963A & NS-9) Registration

Engineering School, Management School, General Line A
Naval Science School First Term Begins

CALENDAR FOR 1961

<table>
<thead>
<tr>
<th>JANUARY</th>
<th>FEBRUARY</th>
<th>MARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T S</td>
<td>S M T W T S</td>
<td>S M T W T S</td>
</tr>
<tr>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>7 8 9 10 11 12 13</td>
<td>7 8 9 10 11 12 13</td>
<td>7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>14 15 16 17 18 19 20</td>
<td>14 15 16 17 18 19 20</td>
<td>14 15 16 17 18 19 20</td>
</tr>
<tr>
<td>21 22 23 24 25 26 27</td>
<td>21 22 23 24 25 26 27</td>
<td>21 22 23 24 25 26 27</td>
</tr>
<tr>
<td>28 29 30 31</td>
<td>28 29 30 31</td>
<td>28 29 30 31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APRIL</th>
<th>MAY</th>
<th>JUNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T S</td>
<td>S M T W T S</td>
<td>S M T W T S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>8 9 10 11 12 13 14</td>
<td>8 9 10 11 12 13 14</td>
<td>8 9 10 11 12 13 14</td>
</tr>
<tr>
<td>15 16 17 18 19 20 21</td>
<td>15 16 17 18 19 20 21</td>
<td>15 16 17 18 19 20 21</td>
</tr>
<tr>
<td>22 23 24 25 26 27 28</td>
<td>22 23 24 25 26 27 28</td>
<td>22 23 24 25 26 27 28</td>
</tr>
<tr>
<td>29 30 31</td>
<td>29 30 31</td>
<td>29 30 31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JULY</th>
<th>AUGUST</th>
<th>SEPTEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T S</td>
<td>S M T W T S</td>
<td>S M T W T S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>8 9 10 11 12 13 14</td>
<td>8 9 10 11 12 13 14</td>
<td>8 9 10 11 12 13 14</td>
</tr>
<tr>
<td>15 16 17 18 19 20 21</td>
<td>15 16 17 18 19 20 21</td>
<td>15 16 17 18 19 20 21</td>
</tr>
<tr>
<td>22 23 24 25 26 27 28</td>
<td>22 23 24 25 26 27 28</td>
<td>22 23 24 25 26 27 28</td>
</tr>
<tr>
<td>29 30 31</td>
<td>29 30 31</td>
<td>29 30 31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OCTOBER</th>
<th>NOVEMBER</th>
<th>DECEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T S</td>
<td>S M T W T S</td>
<td>S M T W T S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>8 9 10 11 12 13 14</td>
<td>8 9 10 11 12 13 14</td>
<td>8 9 10 11 12 13 14</td>
</tr>
<tr>
<td>15 16 17 18 19 20 21</td>
<td>15 16 17 18 19 20 21</td>
<td>15 16 17 18 19 20 21</td>
</tr>
<tr>
<td>22 23 24 25 26 27 28</td>
<td>22 23 24 25 26 27 28</td>
<td>22 23 24 25 26 27 28</td>
</tr>
<tr>
<td>29 30 31</td>
<td>29 30 31</td>
<td>29 30 31</td>
</tr>
</tbody>
</table>

A-4
U.S. NAVAL POSTGRADUATE SCHOOL

GENERAL INFORMATION

Functions

In carrying out its mission the Postgraduate School performs the following functions: (a) provides advanced engineering education through its own facilities at Monterey, and by supervision of the education of officer students at various civilian institutions throughout the country; (b) provides advanced professional education through the medium of the General Line and Naval Science School; (c) provides graduate management education through the medium of the Management School. Through the performance of these functions the Postgraduate School becomes the agent of the Bureau of Naval Personnel for graduate education.

These functions stem from the mission which in turn has evolved over the years as a result of the recognized need for advanced education. The resulting program is essentially three-fold: technical, special and professional. The technical phase is the particular province of the Engineering School which, by graduate instruction, provides officers with the facility for intelligent technical direction of the Navy's activities in such fields as electronics, ordnance, aeronautics, naval engineering and communications. This is done through the Engineering School facilities as well as by utilization of civilian institutions known for their leadership in the fields involved. Because of this latter contact, the Engineering School is also charged with the handling of such special programs as civil engineering, naval construction and engineering at civilian institutions.

The General Line and Naval Science School embraces that portion of the program formerly known as the General Line curriculum and a major segment of the Five Term Program. The General Line Curriculum is of 9½ months duration and is designed to broaden and enhance the mental outlook and professional knowledge of all career line officers upon the completion of five to seven years commissioned service, thereby preparing them for more responsible duties in the operating forces of the Navy. Successful completion of the Five Term Program by qualified candidates will lead to a baccalaureate degree (BS or BA). The baccalaureate programs include subjects taught in the 9½ months General Line curriculum.

The Management School offers a five month program including courses in various business subjects and in the general field of management. This School provides Naval officers with graduate level instruction enabling them to be better prepared for their future assignments to management billets. It also has administrative responsibility for related curricula such as business and personnel administration offered at civilian universities.

In addition to the above, the Postgraduate School exercises general supervision over the Naval Intelligence School at Washington, D.C. Otherwise, the Intelligence School operates independently under a Director.

Organization

The Postgraduate School consists of four main components: the Engineering School, The General Line, and Naval Science School, the Management School, and the Administrative Command. Heading the organization is the superintendent, a rear admiral of the line of the Navy. He is assisted by captains of the line as heads of the four components. The Administrative Command is the supporting organization for the schools at Monterey and provides all the usual housekeeping services.

The three schools at Monterey, the Engineering School, the Management School, and the General Line and Naval Science School, each have a military and an academic organization. The civilian faculty of the three schools, headed by the academic dean, provides the academic instruction in fields usually found in a well-rounded technical institution. In addition, officer instructors provide education in the purely naval subjects. Because of their different functions the three schools have different proportions of officer and civilian instructors; the Engineering School teaching staff is preponderantly civilian, whereas the opposite is true in the case of the General Line and Naval Science School. The Management School staff is about equal in proportion of officer and civilian instructors.

Student Information

Detailed information on the Postgraduate School and the Monterey area is provided in a student information brochure given to all newcoos. In general, however, the living facilities approach those detailed by the many travel folders available concerning the Monterey Peninsula. The general housing facilities are reasonably supported by schools, churches, and shopping facilities.

Of particular interest to the married student is La Mesa Village located within one mile of the school which provides 457 units of public quarters. An elementary school is located within the housing area.

The majority of the rooms of the old Del Monte Hotel are used as a BOQ. Within the same buildings are the usual facilities associated with the BOQ, such as closed and open messes, Navy Exchange, etc.

The Naval Air Facility, Monterey, is located about 2 miles from the school grounds. Its main mission is to provide flight facilities for the use of aviator students in maintaining their flight proficiency.
Facilities

The Naval Postgraduate School is located about one mile east of the downtown section of Monterey. This site is in the process of development aimed at the ultimate provision of modern classroom and laboratory facilities for the Engineering School, the General Line and Naval Science School, and the Management School. When the objective is attained, some spaces now employed for classes and laboratories will revert to their primary purposes as BOQ and other supporting facilities.

During the latter part of 1954 the Engineering School moved into the first group of buildings completed as part of this development plan. These buildings provide proper laboratory space for the first time during the existence of the Engineering School. The following buildings are now in use:

The main Engineering School building, Spanagel Hall, five stories in height, which houses the departments of Electronics, Physics, Metallurgy and Chemistry, and Electrical Engineering. Because of the building's height, the top level supports special equipment for demonstrations in aerology and electronics.

Bullard Hall, the Electrical Engineering Laboratory.

Halligan Hall, the Mechanical Engineering and Aeronautical Engineering Laboratories.

Root Hall, primarily a classroom building, is a long, two-story building that also provides space for the Computer Laboratory and for the departments of Aeronautics, Mechanical Engineering, Meteorology and Mathematics and Mechanics. The Management School is also located in Root Hall as is the Reference and Research Library which is occupying about one-third of the building until such time as a separate library building is constructed.

Historical

The U.S. Naval Postgraduate School had a modest beginning at the Naval Academy at Annapolis in 1909, at which time the first class of ten officers enrolled in a Marine Engineering curriculum.

The need for technically trained officers became evident at the turn of the century. The idea of a naval graduate school had its inception in a course of instruction in Marine Engineering which the Bureau of Engineering instituted in 1904. The results of this course were so encouraging that in 1909 the Secretary of the Navy established a School of Marine Engineering at the Naval Academy in Annapolis. In 1912 the School was designated the Postgraduate Department of the U.S. Naval Academy.

The operation of the School was temporarily suspended during World War I, but in 1919 classes were resumed in converted Marine Barracks on the Naval Academy grounds. At this time curricula in Mechanical Engineering and Electrical Engineering were added. With the passing years other curricula—Ordnance Engineering, Radio Engineering, Aerological Engineering and Aeronautical Engineering were added as the Navy's need for officers with technical knowledge in these fields became evident.

In 1927 the General Line Curriculum was established within the Postgraduate School to provide courses of instruction to acquaint junior line officers returning from sea duty with modern developments taking place in the Navy. The courses dealt with naval and military subjects for the most part. The General Line Curriculum remained as an integral part of the Postgraduate Department until the declaration of the emergency prior to the outbreak of World War II, at which time it was discontinued because of the need for officers in the growing fleet.

The enrollment in the Postgraduate School increased rapidly in the war years both in the several engineering curricula and in the communications curriculum which was added to meet the need for trained communication officers in the naval establishment. The School outgrew its quarters necessitating the building of an annex to house the additional classrooms and laboratories required, but even with this addition, the space requirements of the expanded school were not met.

The post-war program called for yet further expansion and the re-establishment of the General Line Curriculum with a greatly increased enrollment. In 1946 the General Line School was established at Newport, Rhode Island, as an outlying element of the Postgraduate School and continued until disestablished in 1952; in 1948 an additional General Line School was established at Monterey, California. The objective of the General Line School program—that of providing an integrated course in naval science to broaden the professional knowledge of unrestricted line officers of the Regular Navy—continued in effect as it had since the inception of this program. From 1946 until 1955 a curriculum varying in length from six months to one year provided such a course for Reserve and ex-Temporary officers who had transferred to Regular status. Since 1955, the curriculum has been nine and one-half months in duration and is intended for other Regular officers at the end of five to seven years of commissioned service.

The physical growth of the School and its increase in scope and importance were recognized in Congressional action which resulted in legislation during the years 1945 to 1951 emphasizing the academic level of the School, and providing for continued growth in a new location with modern buildings and equipment. This legislation authorized the School to confer Bachelors, Masters, and Doctors degrees in engineering and related subjects; created the position of academic dean to insure continuity in academic policy, established the School as a separate naval activity to be known as the United States Naval Postgraduate School; authorized the establishment of the School at Monterey, California; and provided funds to initiate the construction of buildings to house modern laboratories and classrooms at that location.

The U.S. Naval Postgraduate School is accredited by the Engineers Council for Professional Development (ECPD) and the Western College Association (WCA). Approval by the former agency, which accredits by curricula, was given originally in 1949, and was renewed in 1955 and again in 1959. The latter agency, which accredits the School as a whole, made its initial inspection in 1955. It gave its approval in that year and renewed that approval at its most recent visit in 1959.
On 22 December 1951, by order of the Secretary of the Navy, the United States Naval Postgraduate School was officially disestablished at Annapolis, Maryland, and established at Monterey, California. This completed the transfer of the School from the East to the West Coast, which had begun in 1948 when the Aerology Department and Curricular office were moved to the new location. Concurrently with this relocation, the U.S. Naval School (General Line) at Monterey was disestablished as a separate military command and its functions and facilities were assumed by the U.S. Naval Postgraduate School. At the same time, there was established the U.S. Naval Administrative Command, U.S. Naval Postgraduate School, Monterey, to provide logistic support, including supply, public works, medical and dental functions, for the Naval Postgraduate School and its components.

In mid-1957 a series of discussions were commenced between representatives of the Bureau of Naval Personnel and the Postgraduate School looking to the possibility of establishing a bachelor of science curriculum at the General Line School. It was conceived that this curriculum would fit into the Navy's five-term college program commencing in August 1958 with semi-annual pilot inputs, and ultimately, as the faculty and facilities expanded, the entire program would be carried out at Monterey. This curriculum was planned to include subjects taught in the General Line curriculum as well as a number of new courses adequate to support a degree of bachelor of science, no major designated. The discussion resulted in a feasibility study by the staff of the Postgraduate School, and in October 1957 the Chief of Naval Personnel approved the concept of a composite Five Term/General Line School Program to be implemented with the August 1958 input. The pilot phase of this program will require that selected candidates possess advance credits in specific areas in order to compensate for courses not yet established. Transition to the ultimate program of complete course offerings will depend upon the availability of funds required for expansion of faculty and physical facilities. In the interim, each semi-annual student input will include 50 students to be enrolled in the composite program, with the remainder enrolled in the 9½-month General Line Curriculum as heretofore. The Chief of Naval Personnel further specified that the title "General Line School" be changed to "General Line and Naval Science School," effective 1 July 1958.

In June 1956, by direction of the Chief of Naval Personnel, a Management School was established as an additional component of the Postgraduate School. The mission of the school is to provide an educational program for officers in the application of sound scientific management practice to the complex organizational structure and operations of the Navy with a view toward increasing efficiency and economy of operation. The first class included only Supply and Civil Engineering Corps officers and emphasis was placed on general management theory, financial management, and inventory management. In August 1957 this school was expanded to include input from both Line and Staff Corps officers. The curriculum now includes various areas of industrial management and additional material in the basic areas.

The U.S. Naval Postgraduate School, Monterey, now comprises the Engineering School under a director, the General Line and Naval Science School under a director, the Management School under a director, and the Administrative Command under a commanding officer. In command of the Naval Postgraduate School and all of its components is a line officer of flag rank in the Regular Navy with the title of superintendent.
THE LIBRARIES

DESCRIPTION

The Reference Library serves the research and instructional needs of the community comprised of students, faculty, and staff of the Engineering School, the General Line and Naval Science School, and the Management School. It is an active collection of some 245,000 published and unpublished volumes paralleling the School’s curricular fields of engineering, physical sciences, industrial engineering, management and naval sciences. Its technical reports and classified materials section is a steadily expanding collection of classified and unclassified research and development reports stemming from government, government-sponsored, and institutional research.

The Reference Library provides facilities for microfilming and microfilm reading, for photographic and contact reproduction of printed matter, and for borrowing from other libraries of publications not held in its collections.

The Christopher Buckley, Jr., Library is a branch of the Reference Library located on the first floor of Herrmann Hall. It is a collection of some 8,000 volumes pertaining principally to naval history and the sea. The Library itself is the result of the generosity of Mr. Christopher Buckley, Pebble Beach, California, who has been donating books to the School for this Library since 1949.

STAFF

George Ridgely Luckett, Professor and Director of Libraries (1950); B.S., Johns Hopkins Univ., 1949; M.S., Catholic Univ., 1951.

Edgar Raymond Larson, Assistant Professor and Public Services Librarian (1959); B.A., Univ. of Washington, 1939; B.S., Librarianship, Univ. of Washington, 1950.

Janusz Ignacy Kordiresski, Assistant Professor and Head Catalog Librarian (1956); Secondary education, Torun, Poland, 1927; Diploma National War College, Warsaw, Poland, 1938; M.S., Univ. of Southern California, 1955.

Paul Spinks, Assistant Professor and Chief, Technical Reports and Classified Materials Section (1959); B.A., Univ. of Oklahoma, 1958; M.S., Univ. of Oklahoma, 1959.

Elsa Maria Kuswalt, Senior Cataloger (1958); A.B., Univ. of California, 1957.

Georgia Plummer Lyke, Reference Librarian (1952); A.A., Hartnell Junior College, 1940.

Robert Moran Tierney Acquisitions Librarian (1957); A.B., Columbia University, 1937.

Mabel C. Van Vorhis, Technical Reports Cataloger (1955); A.B., Univ. of California, 1926.
United States Naval Postgraduate School

To all who may read these letters, Greetings:

Hereby it is certified that upon the recommendation of the Academic Council, the Superintendent, by virtue of the authority bestowed upon him by the Congress of the United States of America, has conferred on

the Degree of

in recognition of the satisfactory fulfillment of the requirements pertaining to this degree.

Dated, this sixth day of June, 1957
at Monterey in the State of California.

[Signatures]

Captain, U.S.N.
Director, Engineering School

Academic Dean

Rear Admiral, U.S.N.
Superintendent
ENGINEERING SCHOOL

DIRECTOR
Robert Dunlap Risser
Captain, U.S. Navy
B.S., USNA, 1934
M.S. University of Michigan 1943

ALLOTMENT AND MATERIAL CONTROL OFFICER
Beckum Underwood Sneed
Lieutenant, U.S. Navy

AERONAUTICAL CURRICULA

James Victor Rowney, Captain, U.S. Navy; Officer in Charge; B.S., USNA, 1941; AeE., California Institute of Technology, 1950.

Melvin Edward Hirschi, Commander, U.S. Navy; Assistant Officer in Charge; B.S., University of New Mexico, 1958.

ELECTRONICS AND COMMUNICATIONS

Clarence Miller Brooks, Jr., Commander, U.S. Navy; Assistant Officer in Charge; B.S., The Citadel, 1941; USNPS, 1947, Applied Communication.

Herman Edward Meyer, Commander, U.S. Navy; Instructor in Communications; USNPS, 1945, Applied Communications.

Richard Lord Browning, Lieutenant Junior Grade, U.S. Navy Reserve; Electronics Laboratory Officer; B.S., Case Institute of Technology, 1958.

METEOROLOGY CURRICULA

Edwin Tyler Harding, Captain, U.S. Navy; Officer in Charge; A.B., University of California, 1932; USNPS, 1943, Aeronautical Engineering.

Leo Creusot Clarke, Commander, U.S. Naval Reserve; Assistant Officer in Charge; B.S., University of Miami, 1941.

Edward Leonard Snopkowski, Commander, U.S. Navy; Instructor in Meteorology; B.S., USNPS, 1957.

Robert Jay Brazzell, Lieutenant Commander, U.S. Navy; Instructor in Meteorology; B.S., Maryville State Teachers College, 1948; M.S., USNPS, 1950.

Howard Rodwell Seay, Lieutenant Commander, U.S. Navy; Instructor in Meteorology; M.S., USNPS, 1953.

ORDNANCE CURRICULA

Sidney Brooks, Captain, U.S. Navy; Officer in Charge; B.Cer.E., Ohio State University, 1938; M.S., Ohio State University, 1939.

David Leslie Byrd, Commander, U.S. Navy; Assistant Officer in Charge and Instructor in Ordnance Engineering; B.S., USNA, 1941; USNPS, 1947; Purdue University, 1948.

Ronald Eugene Gill, Commander, U.S. Navy; Instructor in Mine Warfare.

SCIENCE CURRICULA

Edwin Tyler Harding, Captain, U.S. Navy; Officer in Charge; A.B., University of California, 1932; USNPS, 1943, Aeronautical Engineering.

Howard Rodwell Seay, Lieutenant Commander, U.S. Navy; Assistant Officer in Charge; M.S., USNPS, 1953.

CIVILIAN FACULTY

DEPARTMENT OF AERONAUTICS

Wendell Marquis Coates, Professor of Aeronautics; Chairman (1931)*; A.B., Williams College, 1919; M.S., Univ. of Michigan, 1923; D.Sc., 1929.

Eric John Andrews, Professor of Aeronautics (1959); Hons. B.S., Univ. of London, 1936.

Richard William Bell, Professor of Aeronautics (1951); A.B., Oberlin College, 1930; A.C.E., California Institute of Technology, 1941; Ph.D., 1958.

Theodore Henry Gawain, Professor of Aeronautics (1951); B.S., Univ. of Pennsylvania, 1940; D.Sc., Massachusetts Institute of Technology, 1944.
CIVILIAN FACULTY

ENGINEERING SCHOOL

ULRICH HAUPT, Associate Professor of Aeronautics (1954); Dipl. Ing., Institute of Technology, Darmstadt, 1934.

RICHARD MOORE HEAD, Professor of Aeronautics (1949); B.S., California Institute of Technology, 1942; M.S., 1943; Ph.D., 1949.

GEORGE JUDSON HIGGINS, Professor of Aeronautics (1942); B.S., Univ. of Michigan, 1923; A.E.E., 1934.

CHARLES HORACE KAHN, Jr., Professor of Aeronautics (1947); B.S., Univ. of Michigan, 1944; M.S., 1945.

HENRY LERREICH KOHLER, Professor of Aeronautics (1943); B.S., Univ. of Illinois, 1929; M.S., Yale Univ., 1930; M.E., 1931.

PETER BARRY STUART LISSAMAN, Assistant Professor of Aeronautics (1958); B.S., Natal Univ., 1951; A.M., Cambridge Univ., 1954; M.S., California Institute of Technology, 1955.

MICHAEL HANS VAVRA, Professor of Aeronautics (1947); Dipl. Ing., Swiss Federal Institute of Technology, 1934; Ph.D., Univ. of Vienna, 1958.

*The year of joining postgraduate School faculty is indicated in parentheses.

DEPARTMENT OF ELECTRICAL ENGINEERING

CHARLES VAN ORDEN TERWILLIGER, Professor of Electrical Engineering; Chairman (1925); B.E., Union College, 1916; M.S., 1919; M.S., Harvard Univ., 1922; D.Eng., Johns Hopkins Univ., 1938.

JOHN MILLER BOLDRY, Associate Professor of Electrical Engineering (1946); B.S., Northeastern Univ., 1941; M.S., Brown Univ., 1956.

JOSEPH DANIEL BRONZINO, Instructor in Electrical Engineering (1959); B.S., Worcester Polytechnic Institute, 1959.

JAMES STEVE DEMETRY, Instructor in Electrical Engineering (1960); B.S., Worcester Polytechnic Institute, 1958; M.S., 1960.

RICHARD CARL DORF, Instructor in Electrical Engineering (1959); B.E.E., Clarkson College of Technology, 1955; M.S., Univ. of Colorado, 1957.

EDWARD MARKHAIM GARDNER, Professor of Electrical Engineering (1948); B.S., Univ. of London, 1923; M.S., California Institute of Technology, 1938.

ALEX GERRA, Jr., Assistant Professor of Electrical Engineering (1959); B.E.E., Univ. of Louisville, 1947; M.S., Univ. of Illinois, 1957.

RAYMOND KENNETH HOUSTON, Professor of Electrical Engineering (1946); B.S., Worcester Polytechnic Institute, 1938; M.S., 1939.

DONALD EVAN KIRK, Instructor in Electrical Engineering (1959); B.S., Worcester Polytechnic Institute, 1959.

JACK WILLIAM LaPATRA, Instructor in Electrical Engineering (1958); B.E.E., Clarkson College of Technology, 1955; M.S., Univ. of Iowa, 1956.

HERBERT LEROY MYERS, Assistant Professor of Electrical Engineering (1951); B.S., Univ. of Southern California, 1951.

CHARLES BENJAMIN OILER, Professor of Electrical Engineering (1946); B.S., Univ. of Pennsylvania, 1927; M.S., 1930; D.Eng., John Hopkins Univ., 1950.

ORVAL HAROLD POLK, Professor of Electrical Engineering (1946); B.S., Univ. of Colorado, 1927; M.S., Univ. of Arizona, 1933; E.E., Univ. of Colorado, 1940.

CHARLES HARRY ROTHBAUL, Professor of Electrical Engineering (1949); B.E., Johns Hopkins Univ., 1940; D.Eng., 1949.

WILLIAM CONLEY SMITH, Professor of Electrical Engineering (1946); B.S., Ohio Univ., M.S., 1939.

ROBERT DENNEY STRUM, Assistant Professor of Electrical Engineering (1958); B.S., Rose Polytechnic Institute, 1946.

GEORGE JULIUS THALER, Professor of Electrical Engineering (1951); B.E., Johns Hopkins Univ., 1940; D.Eng., 1947.

RICHARD CARVEL HENSEN WHEELER, Professor of Electrical Engineering (1929); B.E., Johns Hopkins Univ., 1923; D.Eng., Remsizer Polytechnic Institute, 1926.

MILTON LUDELL WILCOX, Associate Professor of Electrical Engineering (1958); B.S., Michigan State Univ., 1938; M.S., Univ. of Notre Dame, 1956.

RAYMOND BENJAMIN YABEROUGH, Instructor in Electrical Engineering (1959); B.S., Univ. of California, 1958.

DEPARTMENT OF ELECTRONICS

GEORGE ROBERT GIFT, Professor of Electronics; Chairman (1925); A.B., Columbia Univ., 1921; E.E., 1923.

WILLIAM MALCOLM BAUER, Professor of Electronics (1946); B.S., Northwestern Univ., 1927; E.E., 1928; M.S., Harvard Univ., 1929; D.Sc., 1940.

STEPHEN BREDA, Jr., Assistant Professor of Electronics (1958); B.S., Drexel Institute of Technology, 1952; M.S., Purdue Univ., 1954.

JESSE GERALD CHANAY, Professor of Electronics (1946); A.B., Northwestern Univ., 1924; A.M., Univ. of Texas, 1930.

PAUL EUGENE COOPER, Professor of Electronics (1946); B.S., Univ. of Texas, 1937; M.S., 1939.

MITCHELL LAVETTE COTTON, Associate Professor of Electronics (1953); B.S., California Institute of Technology, 1948; M.S., Washington Univ., 1952; E.E., Univ. of California, 1954.

GLENN A. GRAY, Assistant Professor of Electronics (1960); B.S., University of California, Berkeley, 1954; M.S., 1955; Ph.D., 1958.

GEORGE MAX HAIN, Associate Professor of Electronics (1960); A.B., Univ. of California, 1951; A.M., 1953.

DAVID BOYSEN HOISINGTON, Professor of Electronics (1947); B.S., Massachusetts Institute of Technology, 1940; M.S., Univ. of Pennsylvania, 1941.
CIVILIAN FACULTY

FRANK DAVID FAULKNER, Professor of Mathematics and Mechanics (1950); B.S., Kansas State Teachers College, 1940; M.S., Kansas State College, 1942.

JOSHDUB ARMATANA, Professor of Mathematics and Mechanics (1946); B.S., Univ. of Montana, 1928; Ph.D., New York Univ., 1936.

WALTER JENNINGS, Professor of Mathematics and Mechanics (1947); A.B., Ohio State Univ., 1932; B.S., 1934; A.M., 1934.

Brooks Javins Lockhart, Professor of Mathematics and Mechanics (1948); A.B., Marshall College, 1937; M.S., West Virginia Univ., 1940; Ph.D., Univ. of Illinois, 1943.

KENNETH ROBERT LUCAS, Assistant Professor of Mathematics (1958); B.S., Washburn Univ., 1949; Ph.D., Univ. of Kansas, 1957.

HERMAN BERNARD MARKS, Associate Professor of Mathematics (1961); B.S., Southern Methodist Univ., 1949; A.M., Univ. of Texas, 1950.

Aladuke Boyd Mewborn, Professor of Mathematics and Mechanics (1946); B.S., Univ. of Arizona, 1927; M.S., 1933; Ph.D., California Institute of Technology, 1940.

TIPPMES EDWARD OBERMICK, Professor of Mathematics and Mechanics (1951); A.B., Washington Univ., 1938; A.M., Univ. of Nebraska, 1940; Ph.D., California Institute of Technology, 1948.

JOHN BARR O'TOOLE, Associate Professor of Mathematics (1959); A.B., Duquesne Univ., 1948; Lit.M., Univ. of Pittsburgh, 1956; Ph.D., 1955.

JAMES ROLAND PAYNE, Instructor in Mathematics (1959); A.B., Univ. of California, 1954; A.M., 1955.

JOHN PHILIP PIERCE, Professor of Mathematics and Mechanics (1948); B.S., Worcester Polytechnic Institute, 1931; M.E.E., Polytechnic Institute of Brooklyn, 1937.

FRANCIS McCONNELL PULLIAM, Professor of Mathematics and Mechanics (1949); A.B., Univ. of Illinois, 1937; A.M., 1938; Ph.D., 1947.

EMIL WARREN SEEBLE, Assistant Professor of Mathematics (1960); A.B., Univ. of California, 1940.

WILLIAM BERT STEBER, Instructor in Mathematics (1960); A.B., Lake Forest College, 1958.

ELMO JOSPTH STEWART, Professor of Mathematics and Mechanics (1955); B.S., Univ. of Utah, 1937; M.S., 1939; Ph.D., Rice Institute, 1953.

RICHARD McNEILY THATCHER, Assistant Professor of Mathematics (1960); A.B., Univ. of California, 1952.

CHARLES CHAPMAN TORANCE, Professor of Mathematics and Mechanics (1946); M.E., Cornell Univ., 1922; A.M., 1927; Ph.D., 1931.

WILLIAM LLOYD WAINWRIGHT, Associate Professor of Mathematics and Mechanics (1958); B.S., Purdue Univ., 1951; M.S., 1955; Ph.D., Univ. of Michigan, 1958.
CIVILIAN FACULTY

DEPARTMENT OF MECHANICAL ENGINEERING

ROBERT EUGENE NEWTON, Professor of Mechanical Engineering; Chairman (1951); B.S. in M.E., Washington Univ., 1938; M.S., 1939; Ph.D., Univ. of Michigan, 1951.

DENNIS KAVANAUGH, Professor Emeritus of Mechanical Engineering (1926); B.S., Lehigh Univ., 1914.

PAUL JAMES KIEFER, Professor Emeritus of Mechanical Engineering (1920); A.B., Wittenberg College, 1908; B.S., Case Institute of Technology, 1911; M.E., 1939; D.Sc., (Hon.) Wittenberg College, 1953.

JOHN EDISON BROCK, Professor of Mechanical Engineering (1954); B.S.M.E., Purdue Univ., 1938; M.S.E., 1941; Ph.D.; Univ. of Minnesota, 1950.

GILLES CANTIN, Assistant Professor of Mechanical Engineering (1960); B.A.Sc., Ecole Polytechnique (Montreal), 1950; M.Sc., Stanford Univ., 1960.

VIRGIL MORING FAIRES, Professor of Mechanical Engineering (1958); B.S. in M.E., Univ. of Colorado, 1922; M.S., 1925; M.E., 1926.

ERNST KENNETH GATCOMBE, Professor of Mechanical Engineering (1946); B.S., Univ. of Maine, 1931; M.S., Purdue Univ., 1939; Ph.D., Cornell Univ., 1944.

CHARLES PINTO HOWARD, Associate Professor of Mechanical Engineering (1954); B.S. in M.E., Texas Agricultural and Mechanical College, 1949; M.S. in M.E., 1951; Engr. in M.E., Stanford Univ., 1960.

CECIL DUDLEY GREG KING, Associate Professor of Mechanical Engineering (1952); B.E., Yale Univ., 1943; M.S. in M.E., Univ. of California (Berkeley), 1952.

ROY WALTERS PROWELL, Professor of Mechanical Engineering (1946); B.S. in E.E., Lehigh Univ., 1936; M.S. in M.E., Univ. of Pittsburgh, 1943.

PAUL FRANCIS PUCCI, Associate Professor of Mechanical Engineering (1956); B.S. in M.E., Purdue Univ., 1949; M.S. in M.E., 1950; Ph.D., Stanford Univ., 1955.

HAROLD MARSHALL WRIGHT, Professor of Mechanical Engineering (1945); B.Sc. in M.E., North Carolina State College, 1930; M.M.E., Rensselaer Polytechnic Institute, 1931.

DEPARTMENT OF METALLURGY AND CHEMISTRY

FREDERICK LEO COogan, Professor of Metallurgy and Chemistry; Chairman (1931); A.B., Holy Cross College, 1922; M.S., 1924; D.Sc., Massachusetts Institute of Technology, 1931.

NEWTON WEBER BURGERT, Professor of Metallurgy (1942); B.S., Massachusetts Institute of Technology, 1933; M.S., 1934; Ph.D., 1937.

PETER MCLAUCHLIN BURKE, Assistant Professor of Metallurgy (1960); B.S. Stanford University, 1956; M.S., 1957.

JOHN ROBERT CLARK, Professor of Metallurgy (1947); B.S., Union College, 1935; D.Sc., Massachusetts Institute of Technology, 1942.

ALFRED GOLDBERG, Associate Professor of Metallurgy (1953); B.Eng., McGill Univ., 1946; M.S., Carnegie Institute of Technology, 1947; Ph.D., Univ. of California, 1955.

MAURICE GRIFFEL, Professor of Chemistry (1959); B.S., College of the City of New York, 1939; M.S., Univ. of Michigan, 1941; Ph.D., Univ. of Chicago, 1949.

WILLIAM WISNER HAWES, Professor of Metallurgy and Chemistry (1952); B.S., Purdue Univ., 1924; M.S., Brown Univ., 1927; Ph.D., 1930.

CARL ADOLPH HERING, Professor of Chemical Engineering (1946); B.S., Oregon State College, 1941; M.S., Cornell Univ., 1944.

GILBERT FORD KINNEY*, Professor of Chemical Engineering (1942); A.B., Arkansas College, 1928; M.S., Univ. of Tennessee, 1930; Ph.D., New York Univ., 1935.

GEORGE DANIEL MARSHALL, Jr., Professor of Metallurgy (1946); B.S., Yale Univ., 1930; M.S., 1932.

GEORGE HAROLD McFARLIN, Professor of Chemistry (1948); A.B., Indiana Univ., 1925; A.M., 1926.

RICHARD ALAN REINHARDT, Associate Professor of Chemistry (1951); B.S., Univ. of California, 1943; Ph.D., 1947.

MELVIN FERGUSON REYNOLDS, Professor of Chemistry (1946); B.S., Franklin and Marshall College, 1932; M.S., New York Univ., 1935; Ph.D., 1937.

JOHN WILFRED SCHULTZ, Assistant Professor of Chemistry (1958); B.S., Oregon State College, 1953; Ph.D., Brown Univ., 1957.

JAMES EDWARD SINCLAIR, Associate Professor of Chemistry (1946); B.S., Johns Hopkins Univ., 1945; M.S., USNPS, 1956.

JAMES WOODROW WILSON, Professor of Chemical Engineering (1949); A.B., Stephen F. Austin State Teachers College, 1935; B.S., Univ. of Texas, 1939; M.S., Texas Agricultural and Mechanical College, 1941.

DEPARTMENT OF METEOROLOGY AND OCEANOGRAPHY

WILLIAM DWIGHT DUTHEE, Professor of Meteorology; Chairman (1945); A.B., Univ. of Washington, 1935; M.S., 1937; Ph.D., Princeton Univ., 1940.

GEORGE JOSEPH HALTNER, Professor of Meteorology (1946); B.S., College of St. Thomas, 1940; Ph.M., Univ. of Wisconsin, 1942; Ph.D., 1948.

GLENN HAROLD JUNG, Associate Professor of Oceanography (1958); B.S., Massachusetts Institute of Technology, 1949; M.S., 1952; Ph.D., Texas Agricultural and Mechanical College, 1955.

FRANK LIONEL MARTIN, Professor of Meteorology (1947); A.B., Univ. of British Columbia, 1936; A.M., 1938; Ph.D., Univ. of Chicago, 1941.

ROBERT JOSEPH RENARD*, Assistant Professor of Meteorology (1952); M.S., Univ. of Chicago, 1952.
ENGINEERING SCHOOL

CIVILIAN FACULTY

CHARLES LUTHER TAYLOR, Associate Professor of Meteorology (1954); B.S., Pennsylvania State Univ., 1942; M.S., 1947.

WARREN CHARLES THOMPSON, Professor of Oceanography (1953); A.B., Univ. of California at Los Angeles, 1943; M.S., Scripps Institution of Oceanography, 1948; Ph.D., Texas Agricultural and Mechanical College, 1953.

JACOB BERTRAM WICKHAM, Associate Professor of Oceanography (1951); B.S., Univ. of California, 1947; M.S., Scripps Institution of Oceanography, 1949.

*Absent on leave until January 1962

DEPARTMENT OF PHYSICS

AUSTIN ROGERS FREY, Professor of Physics; Chairman (1946); B.S., Harvard Univ., 1920; M.S., 1924; Ph.D., 1929.

FRED RAMON BUSKIRK, Assistant Professor of Physics, (1960); B.S., Western Reserve Univ., 1951; Ph.D., Case Institute of Technology, 1958.

ALFRED WILLIAM MADISON COOPER, Assistant Professor of Physics (1957); A.B., (Mod), Univ. of Dublin, 1955; A.M., 1959; Ph.D., USNPS, 1961.

JOHN NIESSINK COOPER, Professor of Physics (1956); A.B., Kalamazoo College, 1935; Ph.D., Cornell Univ., 1940.

EUGENE CASSON CRITTENDEN, Professor of Physics (1953); A.B., Cornell Univ., 1934; Ph.D., 1938.

PETER PERCE CROOKER, Instructor in Physics (1960); B.S., Oregon State College, 1959.

WILLIAM PENTON CUNNINGHAM, Professor of Physics (1946); B.S., Yale Univ., 1928; Ph.D., 1932.

JOHN NORVILL DYER, Assistant Professor of Physics (1961); A.B., Univ. of California, 1956; Ph.D., 1960.

HARRY ELIAS HANDLER, Associate Professor of Physics (1958); A.B., Univ. of California at Los Angeles, 1949; A.M., 1951; Ph.D., 1955.

DON EDWARD HARRISON, Jr., Associate Professor of Physics (1961); B.S., College of William and Mary, 1949; Ph.D., Yale Univ., 1953.

SYDNEY HOBART KALMBACH, Associate Professor of Physics (1947); B.S., Marquette Univ., 1934; M.S., 1937.

RAYMOND LEROY KELLY, Associate Professor of Physics (1960); A.B., Univ. of Wichita, 1947; Ph.D., Univ. of Wisconsin, 1951.

LAWRENCE EDWARD KINSLE, Professor of Physics (1946); B.S., California Institute of Technology, 1931; Ph.D., 1934.

HERMAN MEDWIN, Professor of Physics (1955); B.S., Worcester Polytechnic Institute, 1941; M.S., Univ. of California at Los Angeles, 1948; Ph.D., 1953.

EDMUND ALEXANDER MILNE, Associate Professor of Physics (1954); B.A., Oregon State College, 1919; M.S., California Institute of Technology, 1950; Ph.D., 1953.

JOHN ROBERT NEIGBOURS, Associate Professor of Physics (1959); B.S., Case Institute of Technology, 1949; M.S., 1951; Ph.D., 1953.

NORMAN LEE OLESON, Professor of Physics (1948); B.S., Univ. of Michigan, 1935; M.S., 1937; Ph.D., 1940.

LEONARD OLIVER OLESON, Professor of Physics (1960); B.A., Iowa State Teachers College, 1932; M.S., State Univ. of Iowa, 1934; Ph.D., 1937.

JOHN DEWITT RIGGIN, Professor of Physics (1946); B.S., Univ. of Mississippi, 1934; M.S., 1936.

GEORGE WAYNE ROEBACK, Associate Professor of Physics (1960); B.S., Univ. of Idaho, 1943; M.S., Univ. of Illinois, 1947; Ph.D., 1951.

JAMES VINCENT SANDERS, Assistant Professor of Physics (1961); B.S., Kent State Univ., 1954; Ph.D., Cornell Univ., 1961.

OSCAR BRYAN WILSON, Jr., Associate Professor of Physics (1957); B.S., Univ. of Texas, 1944; A.M., Univ. of California at Los Angeles, 1948; Ph.D., 1951.

GENERAL INFORMATION

FUNCTION: The Engineering School accomplishes that part of the mission of the Postgraduate School "to conduct . . . advanced education . . . and technical instruction . . . as may be prescribed to meet the needs of the service." Many curricula at both the undergraduate and graduate level are offered by the school at Monterey in a number of technical fields of naval interest. In addition, students are placed in civilian universities throughout the country for graduate study in fields such as civil engineering or naval architecture which are not offered in the Navy's own Postgraduate School facilities.

ORGANIZATION: The Engineering School is organized with a naval administrative staff for professional supervision of curricula and an academic faculty for technical instruction and educational advice.

Under the Director the naval staff is organized in five curricular offices each headed by an officer experienced in his field designated as "Officer-in-Charge" of the curricula.

The titles of the curricular offices are:

Aeronautical Engineering
Electronics and Communications Engineering
Meteorology
Naval Engineering
Ordnance Engineering

The Officers-in-Charge are the reporting seniors for officer students and they handle all military matters which concern the officers enrolled in their curricula. In addition, the Officers-in-Charge are responsible to ensure that the curricula provide the scope and kind of education that is required to meet the needs of the Navy. This responsibility extends to supervision of curricula in allied fields conducted at civilian institutions.

The faculty consists of all professors, associate professors, assistant professors and instructors headed by the Academic Dean of the Postgraduate School, but for purposes of instruction the faculty is divided into eight departments each headed by a chairman. The departments provide the technical instruction in the engineering and physical sciences in much the same manner as in most civilian graduate institutions.
The titles of the academic departments are:

Aeronautics
Electrical Engineering
Electronics
Mathematics and Mechanics
Mechanical Engineering
Metallurgy and Chemistry
Meteorology and Oceanography
Physics

A close working relationship between the Officers-in-Charge who are responsible for curricula and the academic departments which are responsible for instruction is achieved through the assignment of an Academic Associate for each curriculum to advise and assist the Officers-in-Charge. The assignment of Academic Associates is shown in Table I. The Officer-in-Charge of a curriculum and the Academic Associate between them share the responsibility that each curriculum meets the needs of the Navy and the academic standards required for good instruction.

The curricular offices also provide instruction in specifically naval subjects such as communications or ordnance, where an officer's experience is the most valuable background for the education to be imparted. Thus the naval staff and civilian faculty together provide a broad course of instruction.

Academic Records. The course designation and marking system in use by the Engineering School is designed to evaluate both the curricula and the student achievement for degree awards. The letter in parentheses following a course number indicates the level of instruction or graduate standing for that course as follows:

(A) Full graduate course
(B) Partial graduate course
(C) Undergraduate course
(L) Lecture course—no academic credit

The two numbers in parentheses (separated by hyphens) following the course title indicate the hours of instruction per week in classroom and laboratory respectively. Laboratory hours are assigned half the value shown in calculating term hours for the credit value of a course. Thus a (3-2) course (having three hours recitation and two hours laboratory) will be assigned a credit value of 4 term hours.

Since the length of the term at the Engineering School is 10 weeks as compared to the normal school semester of 15-16 weeks, the term hour is the credit equivalent of two-thirds semester hours.

To evaluate the performance of each student a quality point number is assigned for each letter grade achieved by the student in his course as follows:

<table>
<thead>
<tr>
<th>Performance</th>
<th>Grade</th>
<th>Quality Point Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>A</td>
<td>3.0</td>
</tr>
<tr>
<td>Good</td>
<td>B</td>
<td>2.0</td>
</tr>
<tr>
<td>Fair</td>
<td>C</td>
<td>1.0</td>
</tr>
<tr>
<td>Barely passing</td>
<td>D</td>
<td>0.0</td>
</tr>
<tr>
<td>Failure</td>
<td>X</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

When the term hour value of a course is multiplied by the quality point number of the student's grade, a quality point value for the student's work in that course is obtained. The sum of the quality points for all courses divided by the sum of the term hour value of all courses gives a weighted numerical evaluation of the student's performance termed the Quality Point Rating (QPR). A student achieving a QPR of 2.0 has maintained a B average in all courses undertaken with a proper weight assigned for course hours.

In evaluating a curriculum as meriting the award of the Master's Degree in accordance with para. 2(C) of the Regulations set forth below, no credit is allowed for undergraduate level courses, only half the term hours of credit are allowed for partial graduate level courses, but full value is assigned to full graduate level courses. For example,

Ch-221(C) QUALITATIVE ANALYSIS (3-2) is credited as 4 term hours for a BS degree but zero term hours for the MS degree.

Ch-105(B) PHYSICAL CHEMISTRY (3-2) is credited as 4 term hours for a BS degree but only 2 term hours for the MS degree.

Ch-561(A) PHYSICAL CHEMISTRY (3-2) is credited as 4 term hours for both the BS and MS degrees.

Academic Prerequisite Qualifications. In general, the entrance requirements for all technical curricula are established as either:

a. A degree from a Service Academy, its equivalent, or
b. A baccalaureate degree, including a sufficient number of hours in those science-engineering fields which will provide a foundation for the selected curriculum.

In addition, the candidate must meet the following minimum specific prerequisites: Mathematics through differential and integral calculus and 1 year of college level physics required for all curricula. Candidates for M.S. curricula should have in addition a course in mechanics and a pattern of above average grades in the prerequisite courses.

Regulations Governing the Award of Degrees. Public Law 303 of the 80th Congress authorizes the Superintendent of the United States Naval Postgraduate School to confer bachelor's of science, masters' and doctors' degrees in engineering and related fields. Such authorization is pursuant to such regulations as the Secretary of the Navy may prescribe and contingent upon due accreditation from time to time by the appropriate professional authority of the applicable curricula. Recipients of such degrees must be found qualified by the Academic Council in accordance with certain academic standards.

The superintendent is further authorized to confer Masters' and Doctors' degrees in engineering or related fields, upon the recommendation by the faculty, based upon satisfactory completion of a program of advanced study approved by the Academic Council.

The following paragraphs set forth the requirements for the degrees:

(1) Requirements for the Bachelor of Science Degree:

(a) The Bachelor's degree in engineering or other scientific fields may be awarded for successful completion of a curriculum which serves the needs of the Navy and has the approval of the Academic Council as meriting a degree. Such a curriculum shall conform to current practice in accredited engineering institutions and shall contain a well-defined major, with appro-
priate cognate minors. The degree Bachelor of Science requires a minimum of 186 term hours, including at least 36 term hours in non-technical subjects. Award of the degree in engineering or a designated specialty requires that these minima be 216 hours and 36 hours, respectively.

(b) Admission with suitable advanced standing and a minimum of two academic years of residence at the Naval Postgraduate School are normally required. With the approval of the Academic Council, this residence requirement may be reduced to not less than one academic year in the case of particular students who have had sufficient prior preparation at other institutions.

(c) To be eligible for the degree, the student must attain a minimum average quality point rating of 1.0 in all courses of his curriculum. In very exceptional cases, small deficiencies from this figure may be waived at the discretion of the Academic Council.

(d) With due regard for the above requirements, the Academic Council will decide whether or not to recommend the candidate to the Superintendent of the Naval Postgraduate School for the award of the Bachelor’s degree.

(2) Requirements for the Master of Science Degree:

(a) The Master’s degree in engineering and related fields is awarded for the successful completion of a curriculum which complements the basic scientific education of a student and which has been approved by the Academic Council as meriting a degree, provided the student exhibits superior scholarship, attains scientific proficiency, and meets additional requirements as stated in the following paragraphs.

(b) Since curricula serving the needs of the Navy ordinarily contain undergraduate as well as graduate courses, a minimum of two academic years of residence at the Naval Postgraduate School is normally required. With the approval of the Academic Council, the time of residence may be reduced in the case of particular students who have successfully pursued graduate study at other educational institutions. In no case will the degree be granted for less than one academic year of residence at the Naval Postgraduate School.

(c) A curriculum leading to a Master’s degree shall comprise not less than 48 term hours (32 semester hours) of work that is clearly of graduate level, and shall contain a well-supported major, together with cognate minors. At least six of the term hours shall be in advanced mathematics. The proposed program shall be submitted to the cognizant department chairman for review and approval. If the program is satisfactory to the department chairman, it shall be forwarded by him to the Academic Council for final action.

(d) To become a candidate for the Master’s degree the student shall have completed at least half of the final year of his curriculum with an average quality point rating in all his courses of not less than 1.75 as defined in the section on scholarship.

(e) To be eligible for the Master’s degree the student must attain a minimum average quality point rating of 2.0 in all the (A) and (B) level courses of his curriculum and either 1.5 in the (C) level courses or 1.75 in all courses of the curriculum. In special cases, under very extenuating circumstances, small deficiencies from the figures noted in paragraphs (d) and (e) may be waived at the discretion of the Academic Council.

(f) A reasonable proportion of the graduate work leading to the Master’s degree shall be composed of research and a thesis reporting the results obtained. The thesis topic is selected by the student in conjunction with a faculty advisor, and is subject to the approval of the cognizant department chairman. The research must indicate ability to perform independent work. In addition, the completed thesis must indicate an ability to report on the work in a scholarly fashion. The thesis in final form is submitted via the faculty advisor to the cognizant department chairman for review and evaluation. Upon final approval of the thesis the student shall be certified as eligible for examination.

(g) If the thesis is accepted, the candidate for the degree shall take a final oral examination, the duration of which will be approximately one hour. An additional comprehensive written examination may be required at the discretion of the cognizant department chairman. Not more than one half of the oral examination shall be devoted to questions directly related to the candidate’s thesis topic; the remainder to the candidate’s major and related areas of study.

(h) With due regard for the above requirements, the Academic Council will decide whether or not to recommend the candidate to the superintendent of the Naval Postgraduate School for the award of the Master’s degree.

(3) Requirements for the Doctor’s Degree:

(a) The Doctor’s degree in engineering and related fields is awarded as a result of very meritorious and scholarly achievement in a particular field of study which has been approved by the Academic Council as within the purview of the Naval Postgraduate School. A candidate must exhibit faithful and scholarly application to all prescribed courses of study, achieve a high level of scientific advancement and establish his ability for independent investigation, research, and analysis. He shall further meet the requirements described in the following paragraphs.

(b) Any program leading to the Doctor’s degree shall require the equivalent of at least three academic years of study beyond the undergraduate level, and shall meet the needs of the Navy for advanced study in the particular area of investigation. At least one academic year of the doctorate work shall be spent at the Naval Postgraduate School.

(c) A student seeking to become a candidate for the doctorate shall hold a Bachelor’s degree from a college or university, based on a curriculum that included the prerequisites for full graduate status in the department of his major study, or he shall have pursued successfully an equivalent course of study. The student shall submit his previous record to the Academic Council, via the chairman of the department of the major subject, for determination of the adequacy of his preparation.

(d) This chairman will specify one or more minor subjects and, with the chairmen of the corresponding departments, will nominate a Doctorate Committee consisting of five or more members, at least three of whom are under different departments. The chairman of the department of the major subject will submit to the Academic Council for its approval the
choice of minor fields and the names of the faculty members nominated for the Doctorate Committee.

(c) After a sufficient period of study in his major and minor fields, the student shall submit to qualifying examinations, including tests of his reading knowledge of foreign languages. The selection of these languages depends on the field of study. The minimum is a reading knowledge of German and a second language to be suggested by his Doctorate Committee and approved by the Academic Council. The language examinations will be conducted by a committee especially appointed by the Academic Council. The other qualifying examinations will cover material previously studied in his major and minor fields; they will be written and oral and will be conducted by the Doctorate Committee. The members of the Academic Council or their delegates may be present at the oral examinations. The Doctorate Committee will report the results of the qualifying examinations to the Academic Council for consideration and, upon approval, the student becomes a candidate for the Doctorate. The qualifying examinations are not given, ordinarily, before the completion of the first year of residence at the Naval Postgraduate School; they must be passed successfully at least two years before the degree is granted.

(f) Upon successful qualification as a candidate, the student will be given a further program of study by the Doctorate Committee. This program must be approved by the Academic Council.

(g) The distinct requirement of the doctorate is the successful completion of an original, significant, and scholarly investigation in the candidate's major area of study. The results of the investigation, in the form of a publishable dissertation, must be submitted to the Academic Council at least two months before the time at which it is hoped the degree will be granted. The Academic Council will select two or more referees, who will make individual written reports on the dissertation. Lastly, the Academic Council will vote upon the acceptance of the dissertation.

(h) After the approval of the dissertation, and not later than two weeks prior to the award of the degree, the candidate will be subject to written and oral examination in his major and minor subjects. Written examinations will be conducted by the department having cognizance of the particular subject. The occasion and scope of each examination will be arranged by the Doctorate Committee, after consultation with the departments concerned and the members of the Academic Council. The Doctorate Committee will notify the Academic Council of the time of the oral examination and will invite their attendance, or that of their delegates. The Committee will also invite the attendance of such other interested persons as it may deem desirable. In this oral examination, approximately one half of the allotted time will be devoted to the major subject and one half to the minor subjects. The Doctorate Committee will submit the results of all examinations to the Academic Council for their approval.

(i) With due regard for all of the above requirements, the Academic Council will decide whether to recommend the candidate to the Superintendent of the Naval Postgraduate School for the award of the doctorate.

(j) It is not to be expected that the course requirements for the doctorate can be met while pursuing one of the three-year curricula shown in this catalogue unless the student has previously had suitable graduate work and signifies his desire to become a candidate within three months of the beginning of his curriculum.

LABORATORY FACILITIES. Extensive laboratory experimentation is carried on at the Engineering School in connection with the instructional and research programs of the various departments. The experimental facilities have been greatly improved and expanded in recent years, and further improvement is planned for the future.

The Physics Laboratories are equipped to carry on experimental and research work in acoustics, atomic physics, electricity, nuclear physics, geometrical and physical optics, and solid state physics.

The laboratory facilities include a two-million volt Van de Graaff electrostatic accelerator, a Collins liquid helium cryostat, a large grating spectograph, an infrared spectrophotometer, a medium size anechoic (echo-free) chamber, a small reverberation chamber, and a multiple-unit acoustics laboratory for student experimentation in airborne acoustics.

The work in the acoustics laboratory is particularly directed toward underwater sound applications, and a large proportion of the laboratory space is devoted to sonar equipment, test tanks, and instrumentation for investigations in underwater sound.

The Aeronautical Laboratories contain facilities for experimentation and research in aerodynamics, structural and stress analysis, aerothermodynamics and propulsion problems.

The Subsonic Aerodynamics Laboratory consists of two subsonic wind tunnels with 32 x 45 inches and 42 x 60 inches test sections, each with a speed range up to 200 knots. Force and moment beam balances measure aerodynamics reactions. A small classroom wind tunnel 7 x 10 inches in cross-section is also in use. Equipment for operating powered propeller aircraft models is available. Experiments in boundary layers, pressure distribution, performance and dynamics are run. In the subsonic wind tunnel area are located two additional test setups, a shock tube, and a plasma jet rig.

The Structural Test Laboratory contains testing machines with varying capacities up to 600,000 pounds for demonstration and analysis of relatively small structures. Large aircraft components such as P-2V wing, F8U-3 wing, A3D tail are accommodated on the loading floor section of the laboratory where static and vibration tests are carried out. An electromagnetic shaker is used for vibration testing of turbomachine components and other aeronautics structures components.

The facilities of the Compressibility Laboratory include a transonic wind tunnel having a 4" x 16" test section and operating in the Mach number range from 0.4 to 1.4 and a supersonic wind tunnel having a 4" x 4" test section and a vertical free-jet of 1" x 1" cross-section, both operating in the Mach number range from 1.4 to 4. Instruments associated with these wind tunnels include a 9" Mach-Zehnder interferometer and a 9" and two 5" Schlieren systems for flow observations.
The Propulsion Laboratory contains a test block mounting a J-34 turbojet engine suitably instrumented for static operation tests, a combustion test rig for full scale turbojet combustor studies, and a small flame tube especially designed to study flame propagation in steady flow. For studies of flows in turbo machines the laboratory contains the Mark I Compressor Test Rig, instrumented for conventional performance measurements, and for special problems of three-dimensional flows about the stationary vanes and the turning rotor blades. By changing the angular position of the stationary vanes, a large number of design configurations can be investigated. Further a small Boeing turboprop engine with variable pitch propeller is available for the determination of performance data and investigations of transient control behavior. Under development is the 300 hp Cascade Test Rig for measurements of pressure distributions, and boundary layer investigations on blades of turbo-machines.

The Chemical Laboratories of the Department of Metallurgy and Chemistry are well equipped for instructional purposes at both the undergraduate and graduate level in chemistry and chemical engineering. These laboratories include a radio-chemistry ("hot") laboratory with Geiger and scinillation counters and special apparatus for handling and testing radioactive materials; a well-equipped fuel and lubricant laboratory; a plastics laboratory and shop where plastics are synthesized, molded in compression or injection presses, and their mechanical, physical and chemical properties determined; an explosives laboratory with impact tester, ballistics mortar, chronograph and other apparatus for evaluating explosives. Space is also available for faculty and student research projects.

The Metallurgy Laboratories are completely equipped with the standard mechanical testing machines and heat treating furnaces. The latest type of microscopes and metallographs are available for metallographic examination. Facilities for the study of crystal structures include X-ray diffraction units, powder cameras and heating cameras. Weissenberg X-ray goniometers and a recording photo densitometer. Metal fabricating and melting equipment include a swaging machine, rolling mill, induction and vacuum melting furnaces, a die-casting machine and a welding laboratory. Studies of the effect of high and low temperatures on metals are made in a laboratory equipped with creep testing apparatus and facilities for obtaining low temperatures.

The Electrical Engineering Laboratories separately housed in a modern two story building specially designed for this purpose, provide facilities for instruction and research in electrical machinery; power and control electronics; servomechanisms; electrical measurements and electrical circuits. The building and equipment are designed and arranged for the most effective utilization by students and faculty, and sufficient equipment is available so that each student can take an active part in the laboratory work.

In addition to the conventional educational equipment, there are a number of special machines and instruments used for instruction and research. The Machinery Laboratory has amplidyne generators, control motors and dynamometer sets used in control system analysis. A five unit harmonic generator set is available for magnetic material studies at higher power frequencies. The High Voltage Laboratory facilities include a 100 kilo-volt, 60 cycle power transformer and a Schering bridge for high voltage insulation tests; a 30 kilo-volt direct current supply and a high frequency-high voltage power supply for special high voltage studies.

The Servomechanisms Laboratory is completely equipped with analyzers, Brush recorders, oscilloscopes and cameras, and the basic units required to synthesize and test a wide variety of control systems. The Computer Laboratory has seven electronic analog computers with accessories. These are used by students to solve electrical circuit and control system problems. The Electronics Control and Measurement Laboratory has many of the electronic control devices used in modern control systems and magnetic amplifiers with their accessory equipment.

A well equipped Standards and Calibration Laboratory is used for precision measurements and to calibrate the laboratory instruments used for instruction and research. Photographic records of test results are obtained from electromagnetic oscillographs, oscilloscope cameras, and Polaroid-Land cameras. The film is processed in a completely outfitted darkroom. Brush recorders are used extensively to obtain test results in graphic form. A number of completely equipped research rooms are assigned to students and faculty while they are working on special projects or research.

The Mechanical Engineering Laboratories provide facilities for instruction and research in elastic-body mechanics and dynamics, in hydromechanics and in heat-power and related fields. Noteworthy equipment in the heat-power laboratories includes a gas or oil-fired boiler, 200 psi, and 8000 lb/hr, fully automatic controls; a 175 HP gas turbine installation, dynamometer loaded; a two-dimensional supersonic air nozzle with Schlieren equipment for analysis of shock-wise flows; a two-stage axial flow test compressor; a packaged steam power plant; an experimental single cylinder diesel engine; and a CFR diesel fuel test engine. Facilities of the mechanics laboratories include a universal fatigue tester, for testing in tension, compression, bending or torsion, a Chapman polariscope for stress determination by photoelastic method; vibration inducer units and associated equipment for inducing vibrations in mechanical systems with controlled amplitudes and frequencies from 20 to 20,000 cycles per second; dynamic balancing machines; and a linear accelerometer and calibrator unit.

The Electronics Laboratories are well equipped for carrying on a comprehensive program of experimental work in the various branches of the field. Facilities are available for investigating the operational characteristics of radio and electronic circuits at frequencies ranging from d-c to the microwave region. For precision measurements and accurate calibration of instruments, standard frequency sources and standardizing equipment are available.

To illustrate modern communications practices, representative systems are available covering a wide range of operating frequencies, power outputs and methods of modulation. These include systems for transmitting manual and automatic telegraphy, voice and video signals. Additional systems include electronics countermeasures equipment, radio aids to navigation and a broad selection of Navy radio systems.

Improved facilities are now provided for the study of tele-metering systems, computing systems, modern radar systems, antenna radiation characteristics, microwave phenomena, and transistors as well as for advanced work in circuit measurements. Additional space is also available for conducting individual research and project work.
TABLE I

CURRICULA AT THE ENGINEERING SCHOOL

<table>
<thead>
<tr>
<th>Curricular Officer</th>
<th>Curriculum</th>
<th>Group</th>
<th>Length</th>
<th>Academic Associate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERONAUTICAL ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
<td>AG</td>
<td>2 yrs</td>
<td>Prof. Coates</td>
</tr>
<tr>
<td>Advanced (1)</td>
<td></td>
<td>AA</td>
<td>3 yrs</td>
<td>Prof. Coates</td>
</tr>
<tr>
<td>ELECTRONICS AND COMMUNICATIONS ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td>RC</td>
<td>3 yrs</td>
<td>Prof. Coonan</td>
</tr>
<tr>
<td>Hydrodynamics</td>
<td></td>
<td>RH</td>
<td>3 yrs</td>
<td>Prof. Howard</td>
</tr>
<tr>
<td>Mathematics (Applied)</td>
<td></td>
<td>RM</td>
<td>3 yrs</td>
<td>Prof. Pulliam</td>
</tr>
<tr>
<td>Metallurgy</td>
<td></td>
<td>RMT</td>
<td>3 yrs</td>
<td>Prof. Coonan</td>
</tr>
<tr>
<td>Physics (General)</td>
<td></td>
<td>RP</td>
<td>3 yrs</td>
<td>Prof. Frey</td>
</tr>
<tr>
<td>Physics (Nuclear)</td>
<td></td>
<td>RX</td>
<td>3 yrs</td>
<td>Prof. Frey</td>
</tr>
<tr>
<td>Communications Engineering</td>
<td></td>
<td>CE</td>
<td>2 yrs</td>
<td>Prof. Stentz</td>
</tr>
<tr>
<td>ENGINEERING ELECTRONICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic</td>
<td></td>
<td>EB</td>
<td>2 yrs</td>
<td>Prof. Klamm</td>
</tr>
<tr>
<td>Advanced</td>
<td></td>
<td>EA</td>
<td>3 yrs</td>
<td>Prof. Klamm</td>
</tr>
<tr>
<td>Information and Control Systems</td>
<td></td>
<td>EC</td>
<td>3 yrs</td>
<td>Prof. Klamm</td>
</tr>
<tr>
<td>Underwater Acoustics</td>
<td></td>
<td>EW</td>
<td>3 yrs</td>
<td>Prof. Klamm</td>
</tr>
<tr>
<td>Special (CEC)</td>
<td></td>
<td>EY</td>
<td>18 mos</td>
<td>Prof. P. E. Cooper</td>
</tr>
<tr>
<td>METEOROLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Meteorology</td>
<td></td>
<td>MA</td>
<td>2 yrs</td>
<td>Prof. Duthie</td>
</tr>
<tr>
<td>Advanced Meteorology</td>
<td></td>
<td>MM</td>
<td>2 yrs</td>
<td>Prof. Duthie</td>
</tr>
<tr>
<td>NAVAL ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering Advanced</td>
<td></td>
<td>NLA</td>
<td>3 yrs</td>
<td>Prof. Polk</td>
</tr>
<tr>
<td>Mechanical Engineering Advanced</td>
<td></td>
<td>NHA</td>
<td>3 yrs</td>
<td>Prof. Wright</td>
</tr>
<tr>
<td>Naval Engineering</td>
<td></td>
<td>NG</td>
<td>2 yrs</td>
<td>Prof. Wright</td>
</tr>
<tr>
<td>(Second year Mechanical Engineering Option)</td>
<td></td>
<td>NGH</td>
<td>2 yrs</td>
<td>Prof. Wright</td>
</tr>
<tr>
<td>(Second year Electrical Engineering Option)</td>
<td></td>
<td>NGL</td>
<td>2 yrs</td>
<td>Prof. Polk</td>
</tr>
<tr>
<td>Nuclear Power</td>
<td></td>
<td>NN</td>
<td>2 yrs</td>
<td>Prof. Handler</td>
</tr>
<tr>
<td>ORDNANCE ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Engineering (Effects)</td>
<td></td>
<td>RZ</td>
<td>2 yrs</td>
<td>Profs. Marmont, Oleson</td>
</tr>
<tr>
<td>Operations Analysis</td>
<td></td>
<td>RO</td>
<td>2 yrs</td>
<td>Profs. Cunningham, Oberbeck</td>
</tr>
<tr>
<td>Weapons Systems (General)</td>
<td></td>
<td>WG</td>
<td>2 yrs</td>
<td>Profs. Bleick, Rothauge</td>
</tr>
<tr>
<td>(Electrical Engineering)</td>
<td></td>
<td>WE</td>
<td>3 yrs</td>
<td>Profs. Kinsler, Thaler</td>
</tr>
<tr>
<td>(Physics)</td>
<td></td>
<td>WP</td>
<td>3 yrs</td>
<td>Profs. J. N. Cooper, Sheingold</td>
</tr>
<tr>
<td>(Chemistry)</td>
<td></td>
<td>WC</td>
<td>3 yrs</td>
<td>Profs. Medwin, Reynolds</td>
</tr>
<tr>
<td>(Special)</td>
<td></td>
<td>WS</td>
<td>2 yrs</td>
<td>Profs. Bleick, Rothauge</td>
</tr>
<tr>
<td>SCIENCE CURRICULA</td>
<td></td>
<td>SS</td>
<td>1 yr</td>
<td>Prof. P. E. Cooper</td>
</tr>
</tbody>
</table>

(1) Usually the third year is taken at a civilian university.
ENGINEERING SCHOOL
CURRICULA

Laboratory equipment for Mathematics and Mechanics now available includes an electronic analogue computer and a digital differential analyzer both of which are used to find the solutions of differential equations; a specially modified accounting machine used in finite difference computations; a variety of planimeter type instruments including a large precision moment integrator, a Stieljes integrator and a harmonic analyzer. A large number of modern electric desk calculators are available in the laboratory for numerical methods and statistics. Many special models and demonstrators, including the only two automatic relay controlled Wald Sequential Sampling Machines ever made, and other devices and visual aids in mathematics, probability and mechanics are used in support of courses in these subjects. An 85 ft Foucault Pendulum with an 184 lb. bob is kept in constant operation and display.

The Computer Center functions as a service department to all Departments of the U.S. Navy Postgraduate School. The laboratory contains two general purpose digital computers: the National Cash Register-102A and the Control Data Corporation-1604. There are card, punched-paper tape, magnetic tape and printing facilities associated with each of the computers. The CDC-1604 is a completely solid state computer having 32,768 words, 48-bits per word, of core storage. This computer is capable of performing approximately 200,000 additions per second. The Computer Center has been described as the largest academic Computing Center in the United States.

Students in almost all curricula at the Postgraduate School receive course and laboratory work in the application and operation of computers. Student and Faculty research is carried on in the Computer Center on both an open-shop and closed-shop basis.

The Facilities in Meteorology include all instruments in present-day use for measuring the current physical and dynamic state of the atmosphere, as well as teletype and facsimile communications equipment for the rapid reception and dissemination of weather data in coded and analyzed form for the entire northern hemisphere.

The instruments for gathering weather data include radiosonde equipment, which provides a continuous recording of temperature, pressure, humidity and wind directions and velocities at designated levels above the surface; radiosonde equipment whereby pressure, temperature and humidity information is transmitted to ground via radio signals from heights that may extend above 100,000 feet; a wiresonde that measures air temperature and humidity conditions in the lower strata of the atmosphere, an inversion meter designed for remote recordings of free air temperature at designated heights in the boundary layer; a bathythermograph for recording sea temperature gradients; and a shore wave recorder for measuring wave heights and periods.

ADVANCED MATHEMATICS

Interested student should consult the Chairman of the Department of Mathematics and Mechanics for an evaluation of his previous work to determine his potential for obtaining either degree and to consider the possibility of scheduling the necessary work. The requirements in mathematics for these degrees are given below. They provide, on the bachelor's or master's level, a working knowledge of one field of mathematics and a well-rounded background in three of the major fields of mathematics.

A. To obtain the Bachelor of Science degree with major in mathematics the student must complete a minimum of thirty-six term hours of acceptable mathematical courses above the level of elementary calculus including Ma-105, 106, 109, 110 or their equivalent. Evaluation of courses presented upon entering the Naval Postgraduate School for credit towards the degree must be completed prior to entering a program leading to this degree.

B. To obtain the Master of Science degree with major in mathematics the student must meet the following requirements:
1) He must have completed work which could qualify him for a Bachelor of Science degree with a major in mathematics;
2) He must successfully complete a minimum of 48 term hours of courses at the graduate level distributed as nearly as practicable in the following way:

 a. A minimum of 15 term hours of graduate credit in courses so chosen that not less than four term hours of graduate credit will be earned in each of three of the following branches of mathematics: a. algebra, b. geometry, c. analysis, and d. applied mathematics.

 b. In addition to the above, two or more courses in the general subject chosen for specialization, carrying a total of not less than six term hours of graduate credit. It is expected that the thesis will be written on a topic in the field of this subject, and these courses may be taken fairly late in the curriculum.

 c. A thesis, demonstrating the student's ability to locate and master with very little assistance the subject matter directly involved in the thesis topic, to organize it, to add to it if possible, and to present it systematically in appropriate literary, scientific, and scholarly form. The work on this project will, in general, be spread over two terms and receive eight term hours of graduate credit.

 d. Not less than twelve graduate credit term hours in some related field which the candidate shall present as a minor.

The thesis director, topic, and subject of specialization shall be chosen, with the consent of the chairman of the department, as early as possible (but in all events, not later than two terms prior to the time for granting the degree). Minor departures from the preceding requirements may be authorized by the Chairman of the Department of Mathematics and Mechanics. Evaluation of entrance credits must be completed prior to entering a program leading to this degree.
AERONAUTICAL ENGINEERING (GENERAL)

TWO YEAR CURRICULUM

Second Year (AG2)

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Hours</th>
<th>Credit</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term</td>
<td>Ae-142(A)</td>
<td>(3-4)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-501(A)</td>
<td>(4-0)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-173(A)</td>
<td>(4-0)</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Ac-151(B)</td>
<td>(2-0)</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Ac-161(B)</td>
<td>(2-0)</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Ch-121(B)</td>
<td>(4-2)</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>EE-283(B)</td>
<td>(3-4)</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>EE-464(C)</td>
<td>(3-4)</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Mt-201(C)</td>
<td>(3-2)</td>
<td>P</td>
<td>V</td>
</tr>
<tr>
<td>Second Term</td>
<td>Ae-001(L)</td>
<td>(0-1)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-111(B)</td>
<td>(4-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-502(A)</td>
<td>(4-0)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-174(A)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-112(B)</td>
<td>(0-3)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-221(B)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-316(C)</td>
<td>(2-4)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-152(B)</td>
<td>(2-0)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-162(B)</td>
<td>(0-4)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>EE-284(A)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>EE-771(B)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Mt-202(C)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td>Third Term</td>
<td>Ae-421(B)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-508(A)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-316(C)</td>
<td>(2-4)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-150(B)</td>
<td>(3-4)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>EE-670(A)</td>
<td>(3-3)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>EE-752(C)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>EE-772(B)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>LP-101(L)</td>
<td>(0-1)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Mt-201(C)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td>Fourth Term</td>
<td>Ae-001(L)</td>
<td>(0-1)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-111(B)</td>
<td>(4-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-512(A)</td>
<td>(4-0)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-174(A)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-214(A)</td>
<td>(3-0)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-221(B)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-316(C)</td>
<td>(2-4)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-152(B)</td>
<td>(2-0)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Ae-162(B)</td>
<td>(0-4)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>EE-284(A)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>EE-771(B)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
<tr>
<td></td>
<td>Mt-202(C)</td>
<td>(3-2)</td>
<td>F</td>
<td>P V</td>
</tr>
</tbody>
</table>

AERONAUTICAL ENGINEERING (ADVANCED)

THREE YEAR CURRICULUM

Second Year (AA2)

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Hours</th>
<th>Credit</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term</td>
<td>Ae-142(A)</td>
<td>(3-4)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-511(A)</td>
<td>(4-0)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-173(A)</td>
<td>(4-0)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ac-106(C)</td>
<td>(3-2)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>Ch-121(B)</td>
<td>(4-2)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>EE-238(B)</td>
<td>(3-4)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>EE-164(C)</td>
<td>(3-4)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>Mt-210(C)</td>
<td>(3-2)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td>Second Term</td>
<td>Ae-001(L)</td>
<td>(0-1)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-111(B)</td>
<td>(4-2)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-512(A)</td>
<td>(4-0)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-174(A)</td>
<td>(3-2)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-214(A)</td>
<td>(3-0)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>Ae-221(B)</td>
<td>(3-2)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>Ae-316(C)</td>
<td>(2-4)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>Ch-107(C)</td>
<td>(3-2)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>EE-284(A)</td>
<td>(3-2)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>EE-771(B)</td>
<td>(3-2)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>Mt-202(C)</td>
<td>(3-2)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td>Third Term</td>
<td>Ae-421(B)</td>
<td>(3-2)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-513(A)</td>
<td>(4-0)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-311(C)</td>
<td>(2-4)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>Ae-316(C)</td>
<td>(2-4)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>Ae-215(A)</td>
<td>(4-0)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>EE-670(A)</td>
<td>(3-3)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>EE-752(C)</td>
<td>(3-2)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>EE-772(B)</td>
<td>(3-2)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td></td>
<td>LP-101(L)</td>
<td>(0-1)</td>
<td>A</td>
<td>S V</td>
</tr>
<tr>
<td>Fourth Term</td>
<td>Ae-508(A)</td>
<td>(3-2)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-316(C)</td>
<td>(2-4)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-428(A)</td>
<td>(3-2)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-801(A)</td>
<td>(3-3)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-124(A)</td>
<td>(3-2)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-153(B)</td>
<td>(2-0)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>Ae-163(B)</td>
<td>(0-4)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>CE-542(A)</td>
<td>(3-2)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>CE-565(B)</td>
<td>(3-4)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>EE-745(A)</td>
<td>(3-4)</td>
<td>A</td>
<td>P S V</td>
</tr>
<tr>
<td></td>
<td>LP-102(L)</td>
<td>(0-1)</td>
<td>A</td>
<td>P S V</td>
</tr>
</tbody>
</table>

AERO COURSE Codes:

- **100 Series**: Technical Aerodynamics
- **200 Series**: Structures
- **300 Series**: Design
- **400 Series**: Propulsion
- **500 Series**: Theoretical Aerodynamics
- **600 Series**: Advanced Structures
- **700 Series**: Space Technology
- **800 Series**: Systems Engineering

Complete course titles & descriptions are listed in the Course Description Section.

ELECTIVE Major Codes:

- A: Aero-Space Dynamics
- F: Flight Testing and Evaluation
- P: Propulsion
- S: Structures
- V: Avionics
- M: Aeromechanics
- E: Electrocity
- Z: Aerophysics
AERONAUTICAL ENGINEERING CURRICULA

OBJECTIVE—To provide officers with advanced aeronautical education to meet Navy technical requirements in flight vehicles and their environmental fields. Curricula are edited to suit the field of the major, choosing fundamental or advanced material from mathematics, mechanics, physics, chemistry, metallurgy, structural analysis, aerodynamics, propulsion, electricity, electronics, environmental and vehicle dynamics; also the application of these sciences to flight vehicles and to space technology.

The entrance requirement to the Aeronautical Engineering curricula, General and Advanced, is a Bachelor of Science degree, Naval Academy or its equivalent. The Naval Academy coverage in the basic prerequisite sciences in semester hours is Math (20), Engineering Mechanics (11), Mechanical Engineering (11), Electrical Engineering (13), Physics (8) and Chemistry (8).

Successful completion of two years study in either the General or the Advanced Curriculum qualifies the student for the degree of Bachelor of Science in Aeronautical Engineering, or, in exceptional cases with advanced credit, for a Master's Degree. The General Curriculum terminates in two years. The Advanced Curriculum continues study towards a higher degree, usually a Master's or an Engineer's Degree at a civilian institution.

COMMON FIRST YEAR OF STUDY

First Year (A1)

First Term (16-8)
Ac-100(C) Basic Aerodynamics (3-2)
Ac-200(C) Structural Mechanics I (3-2)
Ma-151(C) Differential Equations (4-1)
Ma-150(C) Vector Algebra and Geometry (4-1)
Mc-101(C) Engineering Mechanics (2-2)

Second Term (16-9)
Ac-121(C) Technical Aerodynamics (3-4)
Ac-211(C) Structural Mechanics II (4-2)
Ma-152(B) Infinite Series (3-0)
Ma-158(B) Topics for Automatic Control (4-0)
Mc-102(C) Engineering Mechanics II (2-2)
Ac-001(L) Aeronautical Lecture (0-1)

Third Term (18-7)
Ac-131(B) Technical Aerodynamics Performance (4-2)
Ac-212(C) Structural Components I (4-2)
Ac-409(C) Aeronautical Thermodynamics (4-2)
Ma-153(B) Vector Analysis (3-0)
EE-281(C) Basic Electrical Phenomena (3-0)
LP-101(L) Lecture Program (0-1)

Fourth Term (16-11)
Ac-141(A) Dynamics I (3-2)
Ac-213(B) Structural Components II (4-2)
Ac-410(B) Aeronautical Thermodynamics II (3-2)
Ma-126(B) Numerical Methods for Digital Computers (3-2)
EE-282(B) Basic Circuit Analysis (3-2)
LP-102(L) Lecture Program (0-1)

Summer intersessional periods—Field trips to industry and military installations and courses in Naval Management.

After completion of the First year, selection is made for the two or three year program, either in Aeronautical Engineering General or Aeronautical Engineering Advanced.
ADVANCED SCIENCE CURRICULA

Chemistry (Group RC)
Hydrodynamics (Group RH)
Metallurgy (Group RMT)
General Physics (Group RP)
Nuclear Physics (Group RX)
Applied Mathematics (Group RM)

OBJECTIVE—To prepare selected officer personnel to deal with the problems of fundamental and applied research in the fields of general physics, nuclear physics, hydrodynamics, chemistry, metallurgy, and applied mathematics.

CURRICULA—Officers nominated for the Advanced Science Curricula are selected from among the first-year students enrolled in the Engineering School of the U.S. Naval Postgraduate School who apply for these curricula. Applicants are carefully screened and only those having a very good academic background and who appear to have an excellent chance of succeeding in their chosen field are nominated.

Officers in the Advanced Science Curricula complete the first year of their curriculum in the Engineering School at the U.S. Naval Postgraduate School. The second and third years are spent at a civilian university. These officers may spend the summer prior to entering the civilian universities on duty at the Office of Naval Research, Washington, D.C., familiarizing themselves with the work of the Office of Naval Research in the basic natural sciences, and preparing themselves for graduate school language requirements.

The curriculum at the civilian university for each officer is arranged from courses selected to suit the needs of the Navy, to develop the capabilities of the individual student and to meet the ultimate objective of his specialty.

The Advanced Science Curricula normally lead to the Master of Science degree for those officers meeting the requirements of the civilian universities for that degree and may, in exceptional cases for especially qualified officers, lead to a Doctor’s degree.

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Basic Objective—To educate officers in the basic scientific and engineering fields related to electronics and its application to the art of naval warfare. The specific aim is to develop competence and ability to direct the development, evaluation, and operation of electronic devices that are required by the Navy to improve its capability in the several areas of Communications, ASW, Combat Information and Direction, Air Warfare, Electronic Intelligence and Countermeasures, etc.

Curricula—For the first year and a half (six terms) all students pursue the Basic Curriculum covering the basic requirements in mathematics, physics, and electronic fundamentals. For the last half year, students in the Engineering Electronics program are permitted to take elective courses best suited to their individual interests and naval experience. For properly qualified entering students, successful completion of two years of work in the EB or CE curriculum affords the opportunity to earn the degree of Bachelor of Science in Engineering Electronics or in Communications Engineering.

Those students who meet the academic requirements to continue for a third year of graduate work may be permitted, within quota limitations established by the Chief of Naval Personnel, to select one of three options at the end of the six term Basic Curriculum for an additional six terms of graduate work leading to the degree of Master of Science in Engineering Electronics. The three options are constructed to develop particular competence in Advanced Electronics, Underwater Acoustics, and Information and Control Systems.

BASIC CURRICULUM

First Year (All Students—Group EB1)

First Term (14-8)
Es-111(C) Fund. of Electric Circuits I (4-4).
Es-211(C) Physical Electronics (3-3).
Ma-120(C) Vector Algebra & Geometry (3-1).
Ma-230(C) Calculus of Several Variables (4-0).

Second Term (19-6)
Es-112(C) Fund. of Electric Circuits II (4-3).
Es-212(C) Electronic Circuits I (4-3).
Ma-244(C) Elem. Diff. Eqs. & Inf. Series (4-0).
Ma-260(B) Vector Analysis (3-0).
Ma-271(B) Complex Variables (4-0).

Third Term (16-6)
Es-113(C) Circuit Theory (4-2).
Es-213(C) Electronic Circuits II (4-3).
Ma-246(A) Partial Differential Eqs. (4-0).
Ph-113(B) Dynamics (4-0).
LP-101(L) NPS Lecture Program I (0-1).

Fourth Term (16-9)
Es-214(C) Electronic Circuits III (4-3).
Es-611(C) Intro. to Dist. Constant Networks (4-3).
Ma-321(B) Probability (4-2).
Ph-620(B) Atomic Physics (4-0).
LP-102(L) NPS Lecture Program II (0-1).

Intersessional Term: Engineering Electronics students take MN-101, “Elements of Management and Industrial Engineering” and “Art of Presentation.” Communications Engineering students take a field trip to West Coast naval communications facilities.

Second Year (All Students — Group EB2)

First Term (13-11)
EE-463(C) Special Machinery (3-2).
Es-215(C) Electronic Devices (3-3).
Es-510(C) Electronic Measurements (3-6).
Es-612(C) Intro. to Electromagnetics (4-0).
Second Term (13-12)

EE-670(A) Intro. to Servomechanisms (3-3).
Es-216(B) Transmitters and Receivers (3-6).
Es-410(B) Communication Theory (4-0).
Es-419(C) Electronic Computers (3-3).

Upon completion of the basic curriculum, students will complete their studies in one of the following programs.

ENGINEERING ELECTRONICS

The EB students will complete their second year in an all elective program, subject to approval of the OinC and academic advisors, chosen from the listed offerings. The elective program of each student must develop some major area of the application of electronic engineering in a field of naval professional interest. As an example, a typical elective program in the field of ASW might be as follows: (Four courses not exceeding 24 hours per week are elected for each term.)

SECOND YEAR (Typical Electives) (Group EB2)

Third Term (14-6)

Es-321(B) Theory of Radar (3-3).
Es-331(B) Guidance & Navigation (4-0).
Ma-322(A) Statistical Decision Theory (3-2).
Ph.431(B) Fundamental Acoustics (4-0).
LP-101(L) NPS Lecture Program I (0-1).

Fourth Term (14-9)

Es-320(A) Sys. Eng. (3-2) or OA-121(A) Op. Anal (4-2).
Es-329(B) Sonar Systems Engng (3-3).
Oc-110(C) Oceanography (3-0).
Ph-432(A) Underwater Acoustics & Sonar Sys. (4-3).
LP-102(L) NPS Lecture Program II (0-1).

Intersessional Term: Upon completion of second year all students will visit various naval and industrial laboratories and facilities on a four week field trip prior to detachment.

COMMUNICATIONS ENGINEERING

The CE students will complete their second year in an all elective program, subject to approval of the OinC and academic advisors, chosen from the listed offerings. As an example, a typical elective program in Communications Engineering might be as follows: (Four courses not exceeding 24 hours per week are elected for each term.)

SECOND YEAR (Typical Electives) (Group CE2)

Third Term (13-9)

Es-421(B) Modern Communications I (3-3).
Es-430(A) Information Networks (3-2).
Es-620(B) Theory of Antennas (3-3).
Es-230(A) Feedback Networks (4-0).
LP-101(L) NPS Lecture Program I (0-1).

Fourth Term (14-8)

Os-121(A) Operations Analysis (4-2).
Es-422(B) Modern Communications II (3-3).
Es-320(A) Systems Engineering (3-2).
Es-630(B) Theory of Propagation (4-0).
LP-102(L) NPS Lecture Program II (0-1).

ENGINEERING ELECTRONICS — MS Program

Those students who enter the MS program will select one of the three options following, subject to approval of OinC. Where electives are permitted, the selection must meet approval of OinC and academic advisors as consistent to the option major.

OPTION I — ADVANCED ELECTRONICS

SECOND YEAR (Group EA2)

Third Term (24)

Es-621(B) Electromagnetics I (5-0).
Ph-730(A) Solid State Physics (4-2).
LP-101(L) NPS Lecture Program I (0-1).
Elective (12).

Fourth Term (22)

Es-220(A) Microwave Devices (3-2).
Es-622(A) Electromagnetics II (4-0).
LP-102(L) NPS Lecture Program II (0-1).
Elective (12).

Intersessional Term: Upon completion of second year all students in MS program will visit various naval and industrial laboratories and facilities on a four week field trip.

THIRD YEAR (Group EA3)

(Commencing 1961)

First Term (20)

Es-120(A) Circuit Synthesis (3-3).
Ma-322(A) Statistical Decision Theory (3-2).
Elective (6).
Thesis (3-0).

Second Term (19)

Es-320(A) Systems Engineering (3-2).
Es-420(A) Optimum Communication Systems (3-2).
Elective (6).
Thesis (3-0).

Third Term

This term is spent in an industrial electronics laboratory. During this period the student works as a junior engineer on a selected project which may form part of or be related to his thesis.
Fourth Term (20)
Es-920(A) Systems Seminar (3-0).
OA-121(A) Operations Analysis (4-2).
LP-102(L) NPS Lecture Program II (0-1).
Elective (6).
Thesis (4-0).

OPTION II — UNDERWATER ACOUSTICS

Second Year (Group EW2)

Third Term (22)
Ma-322(A) Statistical Decision Theory (3-2).
Ph-431(B) Fundamental Acoustics (4-0).
Ph-730(A) Solid State Physics (4-2).
LP-101(L) NPS Lecture Program I (0-1).
Elective (6).

Fourth Term (22)
Es-220(A) Microwave Devices (3-2).
Qc-110(C) Oceanography (3-0).
Ph-432(A) Underwater Acoustics & Sonar Sys. (4-3).
LP-102(L) NPS Lecture Program II (0-1).
Elective (6).

Third Year (Group EW3)
(Commencing 1961)

First Term (24)
Es-120(A) Circuit Synthesis (3-3).
Es-336(A) Sonar Systems I (3-3).
Ph-461(A) Transducer Theory (3-3).
Elective (6).

Second Term (19)
Es-337(A) Sonar Systems II (2-3).
Es-420(A) Optimum Communications Systems (3-2).
Elective (6).
Thesis (3-0).

Third Term
This term is spent in an industrial electronics laboratory. During this period the student works as a junior engineer on a selected project which may form part of or be related to his thesis.

Fourth Term (20)
OA-121(A) Operations Analysis (4-2).
Ph-442(A) Shock Waves in Fluids (3-0).
LP-102(L) NPS Lecture Program II (0-1).
Elective (6).
Thesis (4-0).

OPTION III — INFORMATION AND CONTROL SYSTEMS

Second Year (Group EC2)

Third Term (21)
Es-230(A) Feedback Networks (4-0).
Es-430(A) Information Networks (3-2).
Ma-116(A) Matrices and Numerical Methods (3-2).
LP-101(L) NPS Lecture Program I (0-1).
Elective (6).

Fourth Term (22)
Es-330(A) Automation & System Control (3-3).
Es-439(A) Data Processing Methods (3-2).
Ma-423(A) Advanced Programming (4-0).
LP-102(L) NPS Lecture Program II (0-1).
Elective (6).

Third Year (Group EC3)
(Commencing 1961)

First Term (20)
Es-120(A) Circuit Synthesis (3-3).
Ma-322(A) Statistical Decision Theory (3-2).
Elective (6).
Thesis (3-0).

Second Term (19)
Es-320(A) Systems Engineering (3-2).
Es-420(A) Optimum Communication Systems (3-2).
Elective (6).
Thesis (3-0).

Third Term
This term is spent in an industrial electronics laboratory. During this period the student works as a junior engineer on a selected project which may form part of or be related to his thesis.

Fourth Term (20)
Es-920(A) Systems Seminar (3-0).
OA-121(A) Operations Analysis (4-2).
LP-102(L) NPS Lecture Program II (0-1).
Elective (6).
Thesis (4-0).

SPECIAL ELECTRONICS CURRICULUM FOR SELECTED CEC OFFICERS

Objective—To prepare selected CEC officers for special duties requiring a technical capability for planning electronic facilities and accomplishing the engineering studies required in the development of plans and specifications for their construction.
ENGINEERING SCHOOL

ENGINEERING ELECTRONICS (CEC)

(Commencing January 1961)

Third Term (14-5)

Es-241(C) Electronics I (3-2)
Es-628(B) Distributed Constant Networks (4-3)
Ma-113(B) Vector Analysis & Partial Differential Equations
*Ph-610(C) Survey of Atomic & Nuclear Physics (3-0)

Fourth Term (14-8)

Es-129(A) Transforms & Transients (3-2)
*Es-242(C) Electronics II (3-2)
Ma-114(A) Functions of a Complex Variable & Laplace
Transforms (5-0)
Ma-321(B) Probability & Statistics (4-2)

Intercessional term: MN-101—Elements of Management and
Industrial Engineering (six weeks plus participation in Work-
shop Seminars)

(Commencing August 1961)

First Term (10-8)

*Es-216(B) Transmitters & Receivers (3-6)
Es-410(B) Information Theory (4-0)
Ma-322(A) Statistical Decision Theory (3-2)
Elective

Second Term (10-5)

EE-670(A) Introduction to Servomechanisms (3-3)
Es-320(A) Systems Engineering (3-2)
*Es-612(C) Introduction to Electromagnetics (4-0)
Elective

Third Term (11-6)

Es-429(B) Theory of Modulation (3-3)
Es-620(B) Theory of Antennas (3-3)
Es-621(B) Electromagnetics I (5-0)
Thesis

Fourth Term (12-3)

Es-622(A) Electromagnetics II (4-0)
Es-630(B) Theory of Propagation (4-0)
Es-629(B) Control of Electromagnetic Environment (4-3)
Thesis

*Substitutions may be made for these courses depending upon
previous individual preparation. Elective options are not man-
datory.

METEOROLOGY

GENERAL METEOROLOGY

(GROUP MAA)

Objective—To prepare officers to become qualified meteor-
ologists, with a working knowledge of oceanography as ap-
plied to naval operations.

First Year (MAA)

First Term (14-3)

Ma-161(C) Algebra, Trigonometry, and Analytic
Geometry (5-0).
Mr-200(C) Introduction to Meteorology (3-0).
Oc-110(C) Introduction to Oceanography (3-0).
Ph-190(C) Survey of Physics I (3-0).
Weather Codes (0-3).

Second Term (13-11)

Ma-162(C) Introduction to Calculus (5-0).
Mr-201(C) Elementary Weather-Map Analysis (3-9).
Mr-410(C) Meteorological Instruments (2-2).
Ph-191(C) Survey of Physics II (3-0).

Third Term (13-12)

Ma-163(C) Calculus and Vector Analysis (4-0).
Mr-202(C) Weather-Map Analysis and Introduction To
Weather Elements (3-9).
Mr-462(C) Introduction to Meteorological
Thermodynamics (3-2).
Oc-210(B) Physical Oceanography (3-0).
LP-101(L) NPS Lecture Program I (0-1).

Fourth Term (12-14)

Ma-381(C) Elementary Probability and Statistics (4-2).
Mr-203(C) Forecasting Weather Elements (2-9).
Mr-301(B) Elementary Dynamic Meteorology I (4-0).
Mr-521(B) Synoptic Climatology (2-2).
LP-102(L) NPS Lecture Program II (0-1).

During intercessional period students are instructed in the
meteorological aspects of ABC warfare and visit naval and
civilian installations.

Second Year (MAA)

First Term (12-15)

Mr-204(B) Upper-Air and Surface Prognosis (3-9).
Mr-302(B) Elementary Dynamic Meteorology II (4-0).
Mr-415(B) Radar Meteorology (2-0).
Mr-611(B) Ocean Waves and Wave Forecasting (3-6).

Second Term (12-10)/(15-12)

Mr-218(B) Tropical and Southern Hemisphere
Meteorology (3-6).
Mr-220(B) Selected Topics in Applied Meteorology (3-0).
Oc-613(B) Arctic Sea Ice and Ice Forecasting (3-4).
Oc-620(B) Oceanographic Factors In Underwater Sound (3-0).
Elective
Ma-421(B) Introduction to Digital Computers (3-2).
CURRICULA—METEOROLOGY

ENGINEERING SCHOOL

Third Term (8-18)/(13-18)
Mr-215(B) The Middle Atmosphere (2-9).
Mr-403(B) Introduction to Micrometeorology (4-0).
Oc-621(B) Ocean Thermal Structure: Variation and Prediction (2-2).
LP-101(L) NPS Lecture Program I (0-1).
Research Problem (0-6).
Elective
Mr-422(A) The Upper Atmosphere (5-0).

Fourth Term (6-10)
Mr-206(C) Naval Weather Service Organization and Operation (1-9).
Mr-810(A) Seminar in Meteorology and Oceanography (2-0).
Oc-213(B) Shallow-Water Oceanography (3-0).
LP-102(L) NPS Lecture Program II (0-1).

For properly qualified entering students this curriculum affords the opportunity to qualify for the degree of Bachelor of Science in Meteorology.

ADVANCED METEOROLOGY

(GROUP MMM)

Objective—To prepare officers to become qualified meteorologists with a working knowledge of oceanography as applied to naval operations and to enable them, through advanced study, to conduct independent research.

First Year (MMM)

First Term (17-5)
Ma-120(C) Vector Algebra and Geometry (3-1).
Ma-131(C) Partial Derivatives and Multiple Integrals (3-1).
Mr-206(C) Introduction to Meteorology (3-0).
Oc-110(C) Introduction to Oceanography (3-0).
Ph-196(C) Review of General Physics (5-0).
Weather Codes (0-3).

Second Term (13-13)
Ma-132(B) Vector Analysis and Differential Equations (5-0).
Mr-201(C) Elementary Weather-Map Analysis (3-9).
Mr-410(C) Meteorological Instruments (2-2).
Mr-413(B) Thermodynamics of Meteorology (3-2).

Third Term (17-10)
Ma-133(A) Differential Equations and Vector Mechanics (5-0).
Mr-202(C) Weather-Map Analysis and Introduction To Weather Elements (3-9).
Mr-321(A) Dynamic Meteorology I (3-0).
Mr-412(A) Physical Meteorology (3-0).
Oc-210(B) Physical Oceanography (3-0).
LP-101(L) NPS Lecture Program I (0-1).

Fourth Term (12-14)
Ma-125(B) Numerical Methods for Digital Computers (2-2).
Ma-331(B) Statistics (5-2).
Mr-203(C) Forecasting Weather Elements (2-9).
Mr-322(A) Dynamic Meteorology II (3-0).
LP-102(L) NPS Lecture Program II (0-1).

During intersessional period students are instructed in the meteorological aspects of ABC warfare and visit naval and civilian installations.

Second Year (MMM)

First Term (13-13)
Ma-121(B) Introduction to Digital Computers (3-2).
Mr-204(B) Upper-Air and Surface Prognosis (3-9).
Mr-323(A) Dynamic Meteorology III (3-0).
Mr-415(B) Radar Meteorology (2-0).
Mr-521(B) Synoptic Climatology (2-2).

Second Term (14-12)
Mr-218(B) Tropical and Southern Hemisphere Meteorology (3-6).
Mr-229(A) The General Circulation and Extended Forecasting (2-1).
Mr-611(B) Ocean Waves and Wave Forecasting (3-6).
Oc-213(B) Shallow-Water Oceanography (3-0).
Oc-620(B) Oceanographic Factors In Underwater Sound (3-0).

Third Term (11-18)
Mr-215(B) The Middle Atmosphere (2-9).
Mr-422(A) The Upper Atmosphere (5-0).
Oc-621(B) Ocean Thermal Structure: Variation and Prediction (2-2).
LP-101(L) NPS Lecture Program I (0-1).
Thesis I (2-6).

Fourth Term (6-22)
Mr-206(C) Naval Weather Service Organization and Operation (1-9).
Mr-810(A) Seminar in Meteorology and Oceanography (2-0).
Oc-613(B) Arctic Sea Ice and Ice Forecasting (3-4).
LP-102(L) NPS Lecture Program II (0-1).

Thesis II (0-8).

For properly qualified entering students, this curriculum affords an opportunity to qualify for the degree of Master of Science in Meteorology.

ADVANCED METEOROLOGY

(NUMERICAL FORECASTING)

(GROUP MMM)

Objective—To prepare officers to become qualified meteorologists with a working knowledge of oceanography as applied to naval operations and to enable them, through advanced study, to conduct independent research. This program allows for a degree of subspecialization in the field of numerical weather forecasting.
First Year (MMS)
Same as MMM Curriculum

Second Year (MMS)
First Term (13-13)
Ma-421(B) Introduction to Digital Computers (3-2).
Mr-204(B) Upper-Air and Surface Prognosis (3-9).
Mr-323(A) Dynamic Meteorology III (3-0).
Mr-415(B) Radar Meteorology (2-0).
Mr-521(B) Synoptic Climatology (2-2).

Second Term (15-13)
Ma-426(A) Advanced Numerical Methods for Digital Computers (4-1).
Mr-218(B) Tropical and Southern Hemisphere Meteorology (3-6).
Mr-229(A) The General Circulation and Extended Forecasting (2-0).
Mr-324(A) Dynamical Prediction (3-0).
Mr-611(B) Ocean Waves and Wave Forecasting (3-6).

Third Term (10-17)
Ma-420(L) Computer Operation (1-1).
Mr-215(B) The Middle Atmosphere (2-9).
Mr-422(A) The Upper Atmosphere (5-0).
LP-101(L) NPS Lecture Program I (0-1).
Thesis I (2-6).

Fourth Term (6-22)
Mr-206(C) Naval Weather Service Organization and Operation (1-9).
Mr-810(A) Seminar in Meteorology and Oceanography (2-0).
Oc-613(B) Arctic Sea Ice and Ice Forecasting (3-4).
LP-102(L) NPS Lecture Program II (0-1).
Thesis II (0-8).

For properly qualified entering students, this curriculum affords an opportunity to qualify for the degree of Master of Science in Meteorology.

NAVAL ENGINEERING CURRICULA

Objective—To provide officers with advanced marine engineering education to meet the requirements of the Navy. Specifically, these curricula are designed to cover the fundamental and advanced theories of mathematics, thermodynamics, mechanics, dynamics, electricity, metallurgy and structures within the several curricula. The curricula are Naval Engineering (General) with an option of either Mechanical or Electrical Engineering, Mechanical Engineering (Advanced), Electrical Engineering (Advanced) and Nuclear Power.

All students initially enter the Naval Engineering (General) curriculum. They are then selected for the various special curricula as follows:

After First Term
Nuclear Power . 2 yr. curriculum

E-21
CURRICULA—NAVAL ENGINEERING

NAVAL ENGINEERING (MECHANICAL)

(GROUP NGH)

OBJECTIVE—This is the Mechanical Engineering option for the second year of Naval Engineering.

SECOND YEAR

First Term (14-6)
ME-122(C) Engineering Thermodynamics II (3-2)
ME-421(C) Mechanics of Fluids I (3-2)
ME-521(C) Mechanics of Solids II (4-0)
ME-711(B) Mechanics of Machinery (4-2)

Second Term (12-8)
EE-711(C) Electronics (3-2)
ME-221(C) Marine Power Plant Problems I (3-4)
ME-422(B) Mechanics of Fluids II (2-2)
ME-522(B) Mechanics of Solids III (4-0)

Third Term (12-9)
EE-453(B) Alternating Current Machinery (3-4)
ME-222(C) Thermodynamics Laboratory (1-4)
ME-722(B) Mechanical Vibrations (3-2)
Ph-610(C) Survey of Atomic and Nuclear Physics (3-0)
LP-101(L) NPS Lecture Program I (0-1)

Fourth Term (10-11)
ME-223(B) Marine Power Plant Analysis (2-4)
ME-240(B) Nuclear Power Plants (4-0)
ME-622(B) Experimental Stress Analysis (2-2)
ME-820(C) Machine Design (2-4)
LP-102(L) NPS Lecture Program II (0-1)

This curriculum affords the opportunity to qualify for the degree of Bachelor of Science in Mechanical Engineering.

NAVAL ENGINEERING (ELECTRICAL)

(GROUP NGL)

OBJECTIVE—This is the Electrical Engineering option for the second year of Naval Engineering.

SECOND YEAR

First Term (10-10)
EE-453(B) Alternating Current Machinery (3-4)
EE-751(C) Electronics (3-4)
ME-132(C) Engineering Thermo II (4-2)

Second Term (10-9)
EE-273(C) Electrical Measurements I (2-3)
EE-971(A) Seminar (1-0)
Ma-321(B) Probability and Statistics (4-2)
ME-210(C) Applied Thermodynamics (3-2)

Third Term (9-9)
EE-671(A) Transients (3-4)
EE-971(A) Seminar (1-0)
ME-220(B) Marine Power Plant Analysis (2-4)
Ph-610(C) Survey of Atomic and Nuclear Physics (3-0)
LP-101(L) NPS Lecture Program I (0-1)

Fourth Term (15-8)
EE-670(A) Servomechanisms (3-3)
EE-571(B) Lines and Network Synthesis (3-4)
EE-971(A) Seminar (1-0)
ME-240(B) Nuclear Power Plants (4-0)
OA-141(B) Fundamentals of Operations Analysis (4-0)
LP-102(L) NPS Lecture Program II (0-1)

This curriculum affords the opportunity to qualify for the degree of Bachelor of Science in Electrical Engineering.

MECHANICAL ENGINEERING (ADVANCED)

(GROUP NHA)

OBJECTIVE—To prepare officers in advanced Mechanical Engineering for technical and administrative duties connected with naval machinery and engineering plants.

FIRST YEAR
Same as Naval Engineering Curriculum

SECOND YEAR (NHA)

First Term (17-4)
EE-711(C) Electronics (3-2)
Ma-114(A) Functions of Complex Variable (5-0)
ME-112(C) Engineering Thermodynamics II (4-2)
ME-511(B) Mechanics of Solids II (5-0)

Second Term (14-8)
ME-211(B) Thermodynamics of Comp. Flow (3-4)
ME-411(C) Mechanics of Fluids (3-2)
ME-512(A) Topics in Elasticity (4-0)
ME-711(B) Mechanics of Machinery (4-2)

Third Term (13-7)
ME-212(A) Advanced Thermodynamics (3-2)
ME-412(A) Advanced Mechanics of Fluids (4-2)
ME-513(A) Advanced Mechanics of Solids (3-0)
ME-712(A) Mechanical Vibrations (3-2)
LP-101(L) NPS Lecture Program I (0-1)

Fourth Term (10-7)
EE-453(B) Alternating Current Machinery (3-4)
ME-310(B) Heat Transfer (4-2)
Mt-301(A) High Temperature Materials (3-0)
LP-102(L) NPS Lecture Program II (0-1)

Intersessional period: A four to six week field trip will be arranged to industrial or research activities.
CURRICULA—NAVAL ENGINEERING

Third Year (NHA)

First Term (11-12)
- EE-273(C) Electrical Measurements I (2-3)
- EE-671(A) Transients (3-4)
- EE-971(A) Seminar (1-0)
- ME-220(B) Marine Power Plant Analysis (2-4)
- Ph-610(C) Survey of Atomic and Nuclear Physics (3-0)
- LP-101(L) NPS Lecture Program I (0-1)

Second Term (8-12)
- ME-217(B) Internal Combustion Engines (3-2)
- ME-240(B) Nuclear Power Plants (4-0)
- Mt-204(A) Non-Ferrous Metallography (3-3)
- Thesis (0-4)

Third Term (3-17)
- Ph-610(C) Survey of Atomic and Nuclear Physics (3-0)
- Thesis (0-16)
- LP-101(L) NPS Lecture Program I (0-1)

Fourth Term (10-10)
- ME-217(B) Internal Combustion Engines (3-2)
- ME-240(B) Nuclear Power Plants (4-0)
- Mt-204(A) Non-Ferrous Metallography (3-3)
- Thesis (0-4)
- LP-102(L) NPS Lecture Program II (0-1)

This curriculum affords the opportunity to qualify for the degree of Master of Science in Mechanical Engineering.

ELECTRICAL ENGINEERING (ADVANCED)

GROUP NLA

Objective—To prepare officers in advanced Electrical Engineering for technical and administrative duties connected with naval machinery and engineering plants.

Third Year (NLA)

First Term (10-12)
- EE-871(A) Marine Electrical Design (2-4)
- EE-772(B) Electronics (3-2)
- EE-571(B) Lines and Network Synthesis (3-4)
- Thesis (0-6)

Second Term (10-11)
- EE-872(A) Marine Electrical Design (2-4)
- EE-773(B) Magnetic Amplifiers (2-3)
- EE-971(A) Seminar (1-0)
- Ph-362(A) Electromagnetic Waves (3-0)
- Thesis (0-8)

Third Term (5-15)
- EE-873(A) Marine Electrical Design (2-4)
- EE-971(A) Seminar (1-0)
- Thesis (0-14)
- LP-101(L) NPS Lecture Program I (0-1)

Fourth Term (7-10)
- EE-745(A) Electronic Control and Measurement (3-3)
- EE-874(A) Marine Electrical Design (2-4)
- EE-971(A) Seminar (1-0)
- Thesis (0-6)
- LP-102(L) NPS Lecture Program II (0-1)

This curriculum affords the opportunity to qualify for the degree of Master of Science in Electrical Engineering.

NUCLEAR POWER

GROUP NN

Objective—To educate officers in Nuclear Science in order to prepare them for technical and administrative duties afloat and ashore involving the development, operation and maintenance of nuclear reactors.
CURRICULA—ORDNANCE

ENGINEERING SCHOOL

First Year (NN)

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
</table>
| First Term (16-8) | EE-171(C) Electrical Circuits & Fields (3-4)
Ma-111(C) Intro. to Engineering Math (3-1)
Ma-120(C) Vector Algebra & Geometry (3-1)
ME-591(C) Statics (4-0)
Ch-106(C) Principles of Chemistry I (3-2) |

Selection will be made from students enrolled in Naval Engineering after the first term.

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
</table>
| Second Term (14-8) | EE-251(C) A.C. Circuits (3-4)
Ma-112(B) Diff. Equations & Infinite Series (5-0)
Mt-201(C) Intro. Physical Metallurgy (3-2)
Ch-107(C) Principles of Chemistry II (3-2) |

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
</table>
| Third Term (15-5) | EE-463(C) Special Machinery (3-2)
Ma-113(B) Part. Diff. Equa. & Complex Variables (5-0)
Mt-202(C) Ferrous Metallurgy (3-2)
Ph-113(B) Dynamics (4-0)
LP-101(L) NPS Lecture Program I (0-1) |

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
</table>
| Fourth Term (16-8) | Ma-114(A) Functions of Complex Variable & Vector Anal. (5-0)
ME-111(C) Engineering Thermo (4-2)
ME-500(C) Mechanics of Solids (3-2)
Ph-600(B) Atomic Physics (4-3)
LP-102(L) NPS Lecture Program II (0-1) |

Intersessional period: Field trip to industrial or research activities associated with the development of Nuclear Reactors.

Second Year (NN)

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
</table>
| First Term (15-4) | Ch-401(A) Physical Chemistry (3-2)
ME-112(C) Engineering Thermo (4-2)
ME-511(B) Mechanics of Solids II (5-0)
Ph-637(B) Nuclear Physics I (3-0) |

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
</table>
| Second Term (13-9) | EE-711(C) Electronics (3-2)
ME-411(C) Mechanics of Fluids (3-2)
ME-310(B) Heat Transfer (4-2)
Ph-638(B) Nuclear Physics II (3-3) |

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
</table>
| Third Term (12-9) | Ch-551(A) Radiochemistry (2-4)
EE-651(B) Transients & Servos (3-4)
Mt-402(B) Nuclear Reactor Materials (4-0)
Ph-651(A) Reactor Theory I (3-0)
LP-101(L) NPS Lecture Program I (0-1) |

Fourth Term (12-9)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE-653(A) Reactor Instrument & Control (3-4)</td>
<td></td>
</tr>
<tr>
<td>ME-241(A) Nuclear Propulsion Systems I (3-2)</td>
<td></td>
</tr>
<tr>
<td>Mt-301(A) High Temp. Materials (3-0)</td>
<td></td>
</tr>
<tr>
<td>Ph-652(A) Reactor Theory II (3-0)</td>
<td></td>
</tr>
<tr>
<td>Ph-653(A) Reactor Physics Lab (0-2)</td>
<td></td>
</tr>
<tr>
<td>LP-102(L) NPS Lecture Program II (0-1)</td>
<td></td>
</tr>
</tbody>
</table>

This curriculum provides the opportunity to qualify for the degree of Bachelor of Science in Nuclear Science.

NUCLEAR ENGINEERING (EFFECTS) (GROUP RZ)

Objective—To educate selected officers in such portions of the fundamental sciences as will furnish an advanced technical understanding of the phenomenology of the blast, thermal, nuclear, and biological aspects of atomic weapons effects including their employment and defensive situations.

This curriculum is sponsored by the Defense Atomic Support Agency as a joint-service course for selected officers of the Army, Navy, Air Force, Marine Corps, Coast Guard, and U.S. Public Health Service.

First Year (RZ1)

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
</table>
| First Term (16-4) | Ma-102(C) Vector Algebra and Solid Analytic Geometry (3-1)
Ma-230(C) Calculus of Several Variables (4-0)
Ma-250(B) Elementary Infinite Series (2-0)
Ph-151(C) Mechanics I (4-0)
Ph-240(C) Optics and Spectra (3-3) |

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
</table>
| Second Term (18-2) | Es-140(C) Electronics I (3-2)
Ma-241(C) Elementary Differential Equations (3-0)
Ma-260(B) Vector Analysis (3-0)
Ph-152(B) Mechanics II (4-0)
Ph-635(B) Atomic Physics I (5-0) |

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
</table>
| Third Term (16-4) | Ma-246(A) Partial Differential Equations (4-0)
Ph-153(A) Mechanics III (4-0)
Ph-365(B) Electricity and Magnetism (4-0)
Ph-636(B) Atomic Physics II (4-3)
LP-101(L) Lecture |

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
</table>
| Fourth Term (15-7) | Ch-102(C) General Inorganic Chemistry (3-2)
Es-240(C) Electronics II (3-3)
Ph-366(B) Electromagnetism (4-0)
Ph-535(B) Thermodynamics, Kinetic Theory and Statistical Mechanics (5-0)
Ph-750(L) Physics Seminar (0-1)
LP-102(L) Lecture (0-1) |

Intersessional period: Field trip to Sandia Base for specially tailored Weapons Employment Course given by the Special Weapons Training Group of the Field Command, DASA.
Second Year (RZ2)

First Term (15-9)

Ch-405(B) Physical Chemistry (4-2)
Ph-367(A) Special Topics in Electromagnetism (4-0)
Ph-441(A) Shock Waves in Fluids (4-0)
Ph-637(B) Nuclear Physics I (3-0)
Ph-750(L) Physics Seminar (0-1)
Ph-911(A) Thesis (0-6)

Second Term (12-12)

Bi-800(C) General Biology (4-2)
ME-505(C) Statics and Strength of Materials (5-0)
Ph-638(B) Nuclear Physics II (3-3)
Ph-750(L) Physics Seminar (0-1)
Ph-912(A) Thesis (0-6)

Third Term (9-16)

Bi-801(B) Animal Physiology (4-2)
Ch-551(A) Radiochemistry (2-4)
ME-750(B) Mechanical Vibrations (3-0)
Ph-750(L) Physics Seminar (0-1)
Ph-913(A) Thesis (0-8)
LP-101(L) Lecture (0-1)

Fourth Term (12-12)

Bi-802(A) Radiation Biology (4-2)
ChE-591(A) Blast and Shock Effects (3-0)
ME-550(B) Dynamic Structural Analysis (5-0)
Ph-750(L) Physics Seminar (0-1)
Ph-914(A) Thesis (0-8)
LP-102(L) Lecture (0-1)

This curriculum affords the opportunity to qualify for the degree of Master of Science in Physics.

OPERATIONS ANALYSIS CURRICULUM

(GROUP RO)

Objective—To develop the analytical ability of officers by providing a sound scientific background and extensive education in scientific and analytical methods so that they may formulate new work in operations analysis, apply the results of operations research studies with greater effectiveness, and solve problems in operations analysis which arise both in the fleet and ashore.

First Year (ROI)

First Term (14-6)

Ma-120(C) Vector Algebra and Solid Analytic Geometry (3-1)
Ma-181(C) Partial Derivatives and Multiple Integrals (4-1)
Ma-391(C) Basic Probability (4-0)
OA-892(L) Orientation Seminar (0-1)
Ph-241(C) Radiation (3-3)

Second Term (16-4)

Ma-182(B) Vector Analysis and Differential Equations (5-0)
Ma-392(B) Basic Statistics (3-2)
OA-291(C) Introduction to Operations Analysis (4-0)
Ph-341(C) Electricity and Magnetism (4-2)

Third Term (17-5)

Ma-116(A) Matrices and Numerical Methods (3-2)
OA-292(B) Methods of Operations Analysis (4-0)
OA-391(A) Games of Strategy (3-2)
Ph-141(B) Analytical Mechanics (4-0)
Ph-321(B) Electromagnetism (3-0)
LP-101(L) Lecture (0-1)

Fourth Term (20-3)

Ma-183(B) Fourier Series and Complex Variable (4-0)
Ma-193(A) Set Theory and Integration (2-0)
Ma-196(A) Matrix Theory (3-0)
Ma-421(A) Digital Computers (3-2)
OA-293(B) Search Theory and Air Defense (4-0)
Ph-142(B) Analytical Mechanics (4-0)
LP-102(L) Lecture (0-1)

Intersessional period: Students are assigned individually as working members of various industrial or military Operations Research groups engaged in military problems.

Second Year (RO2)

First Term (17-5)

Ma-393(A) Design of Experiments (3-2)
OA-201(A) Logistics Analysis (3-2)
OA-294(A) Special Topics in Operations Analysis (3-0)
OA-891(L) Seminar (0-1)
Ph-431(B) Fundamental Acoustics (4-0)
Ph-541(B) Kinetic Theory and Statistical Mechanics (4-0)

Second Term (15-5)

OA-202(A) Econometrics (3-0)
Ma-394(A) Advanced Statistics (3-0)
OA-401(A) Theory of Information Communication (3-0)
Ph-435(B) Underwater Acoustics (3-2)
Ph-640(B) Atomic Physics (3-3)

Third Term (10-16)

OA-296(A) Design of Weapon Systems (3-0)
OA-392(A) Decision Theory (3-0)
OA-894(A) Thesis Seminar (0-2)
Ph-642(B) Nuclear Physics (4-3)
LP-101(L) Lecture (0-1)

Thesis (0-10)
CURRICULA—ORDNANCE

ENGINEERING SCHOOL

Fourth Term (9-11)
Co-230(C) Naval Communication Analysis (3-0)
Mr-120(C) Introduction to Meteorology and
Oceanography (3-0)
OA-295(A) Analysis of Weapon Systems (3-0)
OA-895(A) Thesis Seminar (0-2)
LP-102(L) Lecture (0-1)
Thesis (0-8)

This curriculum affords the opportunity to qualify for the
degree of Master of Science.

ORDNANCE ENGINEERING CURRICULA

Basic Objective—To provide selected officers with an ad-
vanced technical education on a broad foundation encompassing
the basic scientific and engineering principles underlying
the field of weapons. The specific areas of study and the level to
be attained are formulated for each curriculum to insure a
sound basis for technical competence and for such subsequent
growth as may be required for the operation, maintenance,
design, development or production of advanced weapons systems.

General Information—All officers ordered for instruction
in Ordinance Engineering initially matriculate in the 2-year
General Curriculum. At the end of the first year, officer students
will be selected for the 3-year Advanced Weapons Systems
Curricula within the quotas assigned by the Chief of Naval
Personnel. This selection is based on the expressed choice of
the individual and the Superintendent’s appraisal of his aca-
demic ability. For properly qualified students, the
2-year General Curriculum leads to the award of a Bachelor’s
degree and the 3-year Curriculum leads to the award of a
Master’s degree in a scientific or engineering field. A 2-year
Special Curriculum is offered to selected foreign officer students.

WEAPONS SYSTEMS (GENERAL)

(GROUP WG)

Objective—To support the aims of the basic objective to
the extent practicable within the 2-year period by equalizing
the time allocated to studies in the principle science-engineering
fields of Electrical Engineering, Physics and Chemistry under-
lying space, air and underwater weapons systems.

First Year (WG1) (Common to All)

First Term (13-7)
Ch-106(C) Principles of Chemistry I (3-2)
EE-171(C) Electrical Circuits and Fields (3-4)
Ma-120(C) Vector Algebra and Solid Analytical
Geometry (3-1)
Ma-230(C) Calculus of Several Variables (4-0)

Second Term (14-6)
Ch-107(C) Principles of Chemistry II (3-2)
EE-251(C) Alternating Current Circuits (3-4)
Ma-240(C) Elementary Differential Equations (2-0)
Ma-251(B) Elementary Infinite Series (3-0)
Ma-260(B) Vector Analysis (3-0)

Third Term (15-5)
ChE-611(C) Engineering Thermodynamics (3-2)
Es-241(C) Electronics I (3-2)
Ma-270(B) Complex Variables (3-0)
Or-241(C) Guided Missiles I (2-0)
Ph-151(C) Mechanics I (4-0)
LP-101(L) Lecture (0-1)

Fourth Term (17-5)
EE-463(C) Special Machinery (3-2)
Es-242(C) Electronics II (3-2)
Ma-245(A) Partial Differential Equations (3-0)
Ma-280(B) Laplace Transformations (2-0)
Or-242(B) Guided Missiles II (2-0)
Ph-152(B) Mechanics II (4-0)
LP-102(L) Lecture (0-1)

Intersessional period: Enrollment in the “Elements of Man-
gement and Industrial Engineering” Course, MN-101, and a
course in the “Art of Presentation” at the U.S. Naval Post-
graduate School.

Second Year (WG2)

First Term (13-6)
Ch-407(A) Physical Chemistry (3-2)
Ma-116(A) Matrices and Numerical Methods (3-2)
Ph-260(C) Physical Optics (3-2)
Ph-365(B) Electricity and Magnetism (4-0)

Second Term (12-10)
Ch-571(A) Explosives (3-2)
EE-671(A) Transients (3-4)
Es-258(B) Introduction to Microwaves (3-2)
Ma-121(A) Digital Computers (3-2)

Third Term (12-10)
ChE-591(A) Blast and Shock Effects (3-0)
EE-670(A) Introduction to Servomechanisms (3-3)
Es-351(B) Pulse Techniques and Radar Fundamentals (3-3)
Ph-640(B) Atomic Physics (3-3)
LP-101(L) Lecture (0-1)

Fourth Term (13-11)
ChE-542(A) Reaction Motors (3-2)
Es-352(B) Radar Systems (3-3)
Ph-450(B) Underwater Acoustics (3-2)
Ph-632(B) Nuclear Physics (4-3)
LP-102(L) Lecture (0-1)

This curriculum affords the opportunity to qualify for the
degree of Bachelor of Science in Electrical Engineering.
ADVANCED WEAPONS SYSTEMS

CHEMISTRY CURRICULUM (GROUP WC)

OBJECTIVE—To further the aims of the basic objective by providing officer students with a broad background of selected science-engineering studies oriented toward those weapons systems dependent upon chemical energy for propulsion or explosive applications, with Chemistry as the major field of study and Electrical Engineering as the principal minor field.

FIRST YEAR (Common to All)

First Term (13-7)
Ch-106(C) Principles of Chemistry I (3-2)
EE-171(C) Electrical Circuits and Fields (3-4)
Ma-120(C) Vector Algebra and Solid Analytic Geometry (3-1)
Ma-230(C) Calculus of Several Variables (4-0)

Second Term (14-6)
Ch-107(C) Principles of Chemistry II (3-2)
EE-251(C) Alternating Current Circuits (3-4)
Ma-240(C) Elementary Differential Equations (2-0)
Ma-251(B) Elementary Infinite Series (3-0)
Ma-260(B) Vector Analysis (3-0)

Third Term (15-5)
ChE-611(C) Engineering Thermodynamics (3-2)
Es-241(C) Electronics I (3-2)
Ma-270(B) Complex Variables (3-0)
Or-241(C) Guided Missiles I (2-0)
Ph-151(C) Mechanics I (4-0)
LP-101(L) Lecture (0-1)

Fourth Term (17-5)
EE-463(C) Special Machinery (3-2)
Es-242(C) Electronics II (3-2)
Ma-245(A) Partial Differential Equations (3-0)
Ma-280(B) Laplace Transformations (2-0)
Or-242(B) Guided Missiles II (2-0)
Ph-152(B) Mechanics II (4-0)
LP-102(L) Lecture (0-1)

SECOND YEAR (WC2)

First Term (13-8)
Ch-311(C) Organic Chemistry (3-2)
ChE-614(A) Engineering Thermodynamics (3-2)
EE-671(A) Transients (3-4)
Ph-365(B) Electricity and Magnetism (4-0)

Second Term (13-9)
Ch-231(C) Quantitative Analysis (2-4)
Ch-443(C) Physical Chemistry I (4-2)
EE-756(A) Electrical Measurement of Non-Electrical Quantities (3-3)
Ph-366(B) Electromagnetism (4-0)

Third Term (12-13)
Ch-444(B) Physical Chemistry (3-4)
Ch-571(A) Explosives (3-2)
EE-670(A) Introduction to Servomechanisms (3-3)
Ph-640(B) Atomic Physics (3-3)
LP-101(L) Lecture (0-1)

Fourth Term (11-11)
Ch-150(A) Inorganic Chemistry, Advanced (4-3)
Ch-312(C) Organic Chemistry (3-2)
Ch-800(A) Chemistry Seminar (0-2)
Ph-642(B) Nuclear Physics (4-3)
LP-102(L) Lecture (0-1)

Intersessional period: Field assignment at a representative ordnance or industrial installation.

THIRD YEAR (WC3)

First Term (9-13)
Ch-452(A) Physical Chemistry, Advanced (3-4)
Ch-456(A) Chemical Applications of Infrared Spectroscopy (2-0)
Ch-551(A) Radiochemistry (2-4)
ChE-625(A) Thermodynamics (2-2)
Thesis (0-3)

Second Term (9-11)
Ch-322(A) Organic Chemistry, Advanced (3-2)
ChE-741(B) Heat Transmission (3-2)
Mr-201(C) Introductory Physical Metallurgy (3-2)
Thesis (0-5)

Third Term (9-12)
ChE-542(A) Reaction Motors (3-2)
ChE-591(A) Blast and Shock Effects (3-0)
Mr-202(C) Ferrous Physical Metallurgy (3-2)
LP-101(L) Lecture (0-1)
Thesis (0-7)

Fourth Term (9-12)
ChE-112(A) Fuels, Combustion, High Energy Fuels (3-2)
Ch-580(A) Electrochemistry (3-2)
Ch-800(A) Chemistry Seminar (0-2)
Mr-301(A) High Temperature Materials (3-0)
LP-102(L) Lecture (0-1)
Thesis (0-5)

This curriculum affords the opportunity to qualify for the degree of Master of Science.
ADVANCED WEAPONS SYSTEMS
ELECTRICAL ENGINEERING CURRICULUM

(GROUP WE)

Objective—To further the aims of the basic objective by providing officer students with a broad background of selected science-engineering studies oriented toward **underwater weapon systems**, with Electrical Engineering as the major field of study and Physics as the principal minor field.

First Year (Common to All)

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term (13-7)</td>
<td></td>
</tr>
<tr>
<td>Ch-106(C) Principles of Chemistry I (3-2)</td>
<td></td>
</tr>
<tr>
<td>EE-171(C) Electrical Circuits and Fields (3-4)</td>
<td></td>
</tr>
<tr>
<td>Ma-120(C) Vector Algebra and Solid Analytical Geometry (3-1)</td>
<td></td>
</tr>
<tr>
<td>Ma-230(C) Calculus of Several Variables (4-0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Term (14-6)</td>
<td></td>
</tr>
<tr>
<td>Ch-107(C) Principles of Chemistry II (3-2)</td>
<td></td>
</tr>
<tr>
<td>EE-251(C) Alternating Current Circuits (3-4)</td>
<td></td>
</tr>
<tr>
<td>Ma-290(C) Elementary Differential Equations (2-0)</td>
<td></td>
</tr>
<tr>
<td>Ma-251(B) Elementary Infinite Series (3-0)</td>
<td></td>
</tr>
<tr>
<td>Ma-260(B) Vector Analysis (3-0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Term (15-5)</td>
<td></td>
</tr>
<tr>
<td>ChE-611(C) Engineering Thermodynamics (3-2)</td>
<td></td>
</tr>
<tr>
<td>Es-241(C) Electronics I (3-2)</td>
<td></td>
</tr>
<tr>
<td>Ma-270(B) Complex Variables (3-0)</td>
<td></td>
</tr>
<tr>
<td>Or-241(C) Guided Missiles I (2-0)</td>
<td></td>
</tr>
<tr>
<td>Ph-151(C) Mechanics I (4-0)</td>
<td></td>
</tr>
<tr>
<td>LP-101(L) Lecture (0-1)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Term (17-5)</td>
<td></td>
</tr>
<tr>
<td>EE-463(C) Special Machinery (3-2)</td>
<td></td>
</tr>
<tr>
<td>Es-242(C) Electronics II (3-2)</td>
<td></td>
</tr>
<tr>
<td>Ma-245(A) Partial Differential Equations (3-0)</td>
<td></td>
</tr>
<tr>
<td>Ma-280(B) Laplace Transformations (2-0)</td>
<td></td>
</tr>
<tr>
<td>Or-242(B) Guided Missiles II (2-0)</td>
<td></td>
</tr>
<tr>
<td>Ph-152(B) Mechanics II (4-0)</td>
<td></td>
</tr>
<tr>
<td>LP-102(L) Lecture (0-1)</td>
<td></td>
</tr>
</tbody>
</table>

Intersessional period: Enrollment in the “Elements of Management and Industrial Engineering” Course, MN-101, and a course in the “Art of Presentation” at the U.S. Naval Postgraduate School.

Second Year (WE2)

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term (13-8)</td>
<td></td>
</tr>
<tr>
<td>Ch-407(A) Physical Chemistry (3-2)</td>
<td></td>
</tr>
<tr>
<td>EE-671(A) Transients (3-4)</td>
<td></td>
</tr>
<tr>
<td>Ma-116(A) Matrices and Numerical Methods (3-2)</td>
<td></td>
</tr>
<tr>
<td>Ph-365(B) Electricity and Magnetism (4-0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Term (15-7)</td>
<td></td>
</tr>
<tr>
<td>Ac-102(C) Aerodynamics (Ord) I (3-0)</td>
<td></td>
</tr>
<tr>
<td>Ac-103(C) Aerodynamics (Ord) I Lab (0-2)</td>
<td></td>
</tr>
<tr>
<td>EE-756(A) Electrical Measurement of Non-Electrical Quantities (3-3)</td>
<td></td>
</tr>
<tr>
<td>Ma-421(A) Digital Computers (3-2)</td>
<td></td>
</tr>
<tr>
<td>Or-191(C) Mines and Mine Mechanisms (2-0)</td>
<td></td>
</tr>
<tr>
<td>Ph-366(B) Electromagnetism (4-0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Term (14-8)</td>
<td></td>
</tr>
<tr>
<td>ChE-542(A) Reaction Motors (3-2)</td>
<td></td>
</tr>
<tr>
<td>EE-672(A) Servomechanisms (3-3)</td>
<td></td>
</tr>
<tr>
<td>Ma-321(B) Probability and Statistics (4-2)</td>
<td></td>
</tr>
<tr>
<td>Ph-367(A) Special Topics in Electromagnetism (4-0)</td>
<td></td>
</tr>
<tr>
<td>LP-101(L) Lecture (0-1)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Term (15-8)</td>
<td></td>
</tr>
<tr>
<td>EE-673(A) Nonlinear Servomechanisms (3-3)</td>
<td></td>
</tr>
<tr>
<td>EE-675(A) Sampled Data Servo Systems (3-2)</td>
<td></td>
</tr>
<tr>
<td>Ma-322(A) Statistical Decision Theory (3-2)</td>
<td></td>
</tr>
<tr>
<td>OA-152(C) Measures of Effectiveness of Mines (3-0)</td>
<td></td>
</tr>
<tr>
<td>Ph-161(A) Hydrodynamics (3-0)</td>
<td></td>
</tr>
<tr>
<td>LP-102(L) Lecture (0-1)</td>
<td></td>
</tr>
</tbody>
</table>

Intersessional period: Field assignment at a representative ordnance or industrial installation.

Third Year (WE3)

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term (16-3)</td>
<td></td>
</tr>
<tr>
<td>EE-674(A) Advanced Linear Servo Theory (3-3)</td>
<td></td>
</tr>
<tr>
<td>Oc-110(C) Introduction to Oceanography (3-0)</td>
<td></td>
</tr>
<tr>
<td>Or-291(C) Mine Countermeasures I (3-0)</td>
<td></td>
</tr>
<tr>
<td>Ph-162(A) Advanced Hydrodynamics (3-0)</td>
<td></td>
</tr>
<tr>
<td>Ph-431(B) Fundamental Acoustics (4-0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Term (13-11)</td>
<td></td>
</tr>
<tr>
<td>EE-676(A) Linear and Nonlinear Servo Compensation Theory (3-2)</td>
<td></td>
</tr>
<tr>
<td>OA-153(B) Game Theory and Its Applications to Mine Fields (3-0)</td>
<td></td>
</tr>
<tr>
<td>Oc-330(A) Marine Geology and Geophysics (3-0)</td>
<td></td>
</tr>
<tr>
<td>Ph-432(A) Underwater Acoustics and Sonar Systems (4-3) Thesis (0-6)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Term (10-12)</td>
<td></td>
</tr>
<tr>
<td>Oc-230(A) Wave Phenomena in the Sea (3-0)</td>
<td></td>
</tr>
<tr>
<td>Or-292(C) Mine Countermeasures II (1-2)</td>
<td></td>
</tr>
<tr>
<td>Ph-442(A) Shock Waves in Fluids (3-0)</td>
<td></td>
</tr>
<tr>
<td>Ph-640(B) Atomic Physics (3-3)</td>
<td></td>
</tr>
<tr>
<td>LP-101(L) Lecture (0-1)</td>
<td></td>
</tr>
</tbody>
</table>
Fourth Term (9-12)

- **Ch-580(A)** Electrochemistry (3-2)
- **EE-773(B)** Magnetic Amplifiers (2-3)
- **Or-294(A)** Mine Warfare Seminar (2-0)
- **Or-392(B)** Minefield Planning (2-0)
- **LP-102(L)** Lecture (0-1)
 - **Thesis (0-6)**

This curriculum affords the opportunity to qualify for the degree of Master of Science in Electrical Engineering.

ADVANCED WEAPONS SYSTEMS

PHYSICS CURRICULUM (GROUP WP)

Objective—To further the aims of the basic objective by providing officer students with a broad background of selected science-engineering studies underlying *air and space weapons systems*, with Physics as the major field of study and Electrical Engineering as the principal minor field.

First Year (Common to All)

First Term (13-7)

- **Ch-106(C)** Principles of Chemistry I (3-2)
- **EE-171(C)** Electrical Circuits and Fields (3-1)
- **Ma-120(C)** Vector Algebra and Solid Analytic Geometry (3-1)
- **Ma-230(C)** Calculus of Several Variables (4-0)

Second Term (14-6)

- **Ch-107(C)** Principles of Chemistry II (3-2)
- **EE-251(C)** Alternating Current Circuits (3-4)
- **Ma-240(C)** Elementary Differential Equations (2-0)
- **Ma-251(B)** Elementary Infinite Series (3-0)
- **Ma-260(B)** Vector Analysis (3-0)

Third Term (15-5)

- **ChE-611(C)** Engineering Thermodynamics (3-2)
- **Es-241(C)** Electronics I (3-2)
- **Ma-270(B)** Complex Variables (3-0)
- **Or-241(C)** Guided Missiles I (2-0)
- **Ph-151(C)** Mechanics I (4-0)
- **LP-101(L)** Lecture (0-1)

Fourth Term (17-5)

- **EE-463(C)** Special Machinery (3-2)
- **Es-242(C)** Electronics II (3-2)
- **Ma-245(A)** Partial Differential Equations (3-0)
- **Ma-280(B)** Laplace Transformations (2-0)
- **Or-242(B)** Guided Missiles II (2-0)
- **Ph-152(B)** Mechanics II (4-0)
- **LP-102(L)** Lecture (0-1)

Inter sessional period: Enrollment in the “Elements of Management and Industrial Engineering” Course, MN-101, and a course in the “Art of Presentation” at the U.S. Naval Postgraduate School.

Second Year (WP2)

First Term (15-6)

- **Ch-407(A)** Physical Chemistry (3-2)
- **Ma-321(B)** Probability and Statistics (4-2)
- **Ph-154(A)** Celestial Mechanics (4-0)
- **Ph-270(B)** Physical Optics and Spectra (4-2)

Second Term (16-6)

- **Ae-171(A)** Aerodynamics (3-2)
- **ChE-542(A)** Reaction Motors (3-2)
- **Ma-322(A)** Statistical Decision Theory (3-2)
- **Ph-365(B)** Electricity and Magnetism (4-0)
- **Ph-670(B)** Atomic Physics I (3-0)

Third Term (13-11)

- **Ae-172(A)** Aerodynamics (3-2)
- **EE-671(A)** Transients (3-4)
- **Ph-366(B)** Electromagnetism (4-0)
- **Ph-671(B)** Atomic Physics II (3-3)
- **Ph-750(L)** Physics Seminar (0-1)
- **LP-102(L)** Lecture (0-1)

Inter sessional period: Field assignment at a representative ordnance or industrial installation.

Third Year (WP3)

First Term (14-9)

- **Ae-173(A)** Compressible Fluids (4-0)
- **Es-351(B)** Pulse Techniques and Radar Fundamentals (3-3)
- **Ph-635(B)** Nuclear Physics II (3-3)
- **Ph-730(A)** Physics of the Solid State (4-2)
- **Ph-750(L)** Physics Seminar (0-1)

Second Term (10-12)

- **Ae-174(A)** Compressible Fluids (3-2)
- **Es-352(B)** Radar Systems (3-3)
- **Ph-653(A)** Plasma Physics (4-0)
- **Ph-750(L)** Physics Seminar (0-1)
- **Thesis (0-6)**

Third Term (10-13)

- **Es-540(B)** Radio Telemetering and Simulation (3-3)
- **Ma-116(A)** Matrices and Numerical Methods (3-2)
- **Mr-420(B)** Upper Atmosphere Physics (4-0)
- **Ph-750(L)** Physics Seminar (0-1)
- **LP-101(L)** Lecture (0-1)
Fourth Term (9-15)

- Ac-550(A) Magnetohydrodynamics (3-2)
- Es-357(B) Missile Guidance (3-3)
- Ma-421(A) Digital Computers
- Ph-750(L) Physics Seminar
- LP-102(L) Lecture (0-1)
 - Thesis (0-6)

This curriculum affords the opportunity to qualify for the degree of Master of Science in Physics.

WEAPONS SYSTEMS (SPECIAL)

GROUP WS

Objective—To provide selected foreign officers with a technical education in the principal science-engineering fields of Electrical Engineering, Physics and Chemistry underlying weapons systems.

First Year (WS1)

First Term (13-7)

- Ch-106(C) Principles of Chemistry I (3-2)
- EE-171(C) Electrical Circuits and Fields (3-4)
- Ma-120(C) Vector Algebra and Solid Analytic Geometry (3-1)
- Ma-230(C) Calculus of Several Variables (4-0)

Second Term (14-6)

- Ch-107(C) Principles of Chemistry II (3-2)
- EE-251(C) Alternating Current Circuits (3-4)
- Ma-240(C) Elementary Differential Equations (2-0)
- Ma-251(B) Elementary Infinite Series (3-0)
- Ma-260(B) Vector Analysis (3-0)

Third Term (13-5)

- ChE-611(C) Engineering Thermodynamics (3-2)
- Es-241(C) Electronics I (3-2)
- Ma-270(B) Complex Variables (3-0)
- Ph-151(C) Mechanics I (4-0)
- LP-101(L) Lecture (0-1)

Fourth Term (15-5)

- EE-463(C) Special Machinery (3-2)
- Es-242(C) Electronics II (3-2)
- Ma-245(A) Partial Differential Equations (3-0)
- Ma-280(B) Laplace Transformations (2-0)
- Ph-152(B) Mechanics II (4-0)
- LP-102(L) Lecture (0-1)

Second Year (WS2)

First Term (13-6)

- Ch-407(A) Physical Chemistry (3-2)
- Ma-116(A) Matrices and Numerical Methods (3-2)
- Ph-260(C) Physical Optics (3-2)
- Ph-365(B) Electricity and Magnetism (4-0)

Second Term (12-11)

- EE-671(A) Transients (3-4)
- EE-756(A) Electrical Measurement of Non-Electrical Quantities (3-3)
- Es-258(B) Introduction to Microwaves (3-2)
- Ma-421(A) Digital Computers (3-2)

Third Term (12-12)

- EE-670(A) Introduction to Servomechanisms (3-3)
- Es-351(B) Pulse Techniques and Radar Fundamentals (3-3)
- Ma-351(B) Industrial Statistics I (3-2)
- Ph-640(B) Atomic Physics (3-3)
- LP-101(L) Lecture (0-1)

Fourth Term (12-11)

- ChE-521(A) Plastics (3-2)
- Es-352(B) Radar Systems (3-3)
- Ma-352(B) Industrial Statistics II (2-2)
- Ph-642(B) Nuclear Physics (4-3)
- LP-102(L) Lecture (0-1)

This curriculum affords the opportunity to qualify for the Degree of Bachelor of Science in Electrical Engineering.

ONE YEAR SCIENCE CURRICULUM

The objective of this program is to provide Commissioned Officers with additional education by extension of their undergraduate studies in order to prepare them for subsequent specialization and to stimulate a desire for maintaining and improving their basic education. The course will be predominantly in the fields of science and mathematics with about one-fourth of the curriculum in the areas of Management, Leadership, International Relations, and subjects in the Naval Professional area.

Officers in this program will be grouped according to their academic background and the curriculum established for each group will be designed to build upon this previous education.
AERONAUTICS

Ae-001(L) AERONAUTICAL LECTURE SERIES (0-1). Lectures on general aeronautical engineering subjects by prominent authorities from the Navy Department, research laboratories and the industry.

Ae-100(C) BASIC AERODYNAMICS (3-2). Properties of fluids; statics; velocity and pressure; Bernoulli's theorem; cavitation; theory of lift; blade screws and propellers; viscous flows; vortices; laminar and turbulent boundary layer flows; separation phenomena; surface friction; resistance of floating bodies; dynamics of compressible fluids. The laboratory periods include experimental work in the wind tunnel, allied to the topics above; technical analysis and report writing. TEXTS: Dodge and Thompson, Fluid Mechanics; Rouse, Elementary Fluid Mechanics.

Ae-102(C) AERODYNAMICS (3-2). Basic aerodynamics for ordnance application. Properties of fluids; equations of basic hydro-aerodynamics flow; viscous fluids and boundary layers; dynamic lift and drag of bodies; elementary study of compressible flows. Laboratory is in subsonic wind tunnel. TEXTS: Same as Ae-100. PREREQUISITE: Engineering Mechanics.

Ae-121(C) TECHNICAL AERODYNAMICS (3-4). Characteristic flows and pressures about bodies; surface friction; wake drag; aerodynamic characteristic of airfoil sections; threedimensional airfoil theory; induced drag; interference drag; high lift devices; velocity polar. The laboratory periods include wind tunnel experiments, analysis and technical report writing on topics allied to the above class work. TEXTS: Dwinnell, Principles of Aerodynamics; Pope, Wind Tunnel Testing. PREREQUISITE: Ae-100(C).

Ae-131(B) TECHNICAL AERODYNAMICS PERFORMANCE (4-2). The aerodynamics characteristics of the airplane; propeller and jet engine characteristics; sea level performance; performance at altitudes; range and endurance; special performance problems; charts. The laboratory periods are devoted to computations and performance analysis. TEXTS: Dwinnell, Principles of Aerodynamics; Perkins, and Hage, Airplane Performance, Stability and Control; Pope, Wind Tunnel Testing. PREREQUISITE: Ae-121(C).

Ae-141(A) DYNAMICS I (3-2). Fundamental definitions; the forces and moments on the entire airplane; the equations of motion; the moments of the wing, tail and other parts of the airplane; C.G. location, effect on static stability; neutral points; maneuver points; fixed control and free control stability; elevator, aileron, rudder effectiveness; control design features; maneuverability and controllability; turns and loops. The laboratory work consists of wind tunnel experimentation and analysis of the above topics on models. TEXTS: Higgin, USNPGS Notes; Perkins, Aircraft Stability and Controllability; Hamlin, Flight Testing; Etkin, Dynamics of Flight. PREREQUISITE: Ae-131(B).

Ae-142(A) DYNAMICS II (3-4). The Euler equations of motion; the moments of inertia of aircraft; the aerodynamic reactions and derivatives; the symmetrical or longitudinal motion analysis; the asymmetrical or lateral motion analysis; effect of control freedom, of controls and response; spins. The laboratory work consists of wind tunnel experimentation on models to study some of the above problems. TEXTS: Same as Ae-141(A). PREREQUISITE: Ae-141(A).

Ae-150(B) FLIGHT TEST PROCEDURES (3-4). Technical aerodynamics of airplanes including performance, longitudinal stability, lateral-directional stability and flight test methods and aircraft evaluation. Test flying by students in naval aircraft, data reduction and flight test report writing. TEXTS: Dommasch, Sherby and Connolly, Airplane Aerodynamics; NATC Payxent, Flight Test Manual; NASAer publications.

Ae-151(B) FLIGHT TESTING AND EVALUATION I (2-0). Theoretical longitudinal stability and control of aircraft, related test methods and aircraft evaluation. TEXTS: Same as Ae-150(B). PREREQUISITE: Ae-141(A) or Ae-146(A).

Ae-152(B) FLIGHT TESTING AND EVALUATION II (2-0). Theoretical lateral-directional control of aircraft, related test methods and aircraft evaluation. TEXTS: Same as Ae-150(B). PREREQUISITE: Ae-142(A) or Ae-146(A).

Ae-153(B) FLIGHT TESTING AND EVALUATION III (2-0). The technical aerodynamics of airplanes, especially performance and test methods. TEXTS: Same as Ae-150(B). PREREQUISITE: Ae-421(B).

Ae-161(B) FLIGHT TESTING AND EVALUATION LABORATORY I (0-4). Flight program accompanying Ae-151(B). Test flying in naval aircraft by aviator students: stalls; static and dynamics longitudinal stability; static and maneuvering neutral points; control effectiveness; trim changes; Mach effects.

Ae-162(B) FLIGHT TESTING AND EVALUATION LABORATORY II (0-4). Flight program accompanying Ae-152(B). Test flying in naval aircraft by aviator students: rate of roll; adverse yaw; control effectiveness with asymmetric power, static and dynamics lateral-directional stability; overall qualitative evaluation of aircraft.

Ae-163(B) FLIGHT TESTING AND EVALUATION LABORATORY III (0-4). Flight program accompanying Ae-153(B). Test flying in naval aircraft by aviator students and reduction of resulting data: airspeed calibration; level flight performance and fuel consumption: climb performance.

Ae-171(A) AERODYNAMICS I (3-2). Edited to the interests of ordnance curricula. Properties of gases from viewpoint of kinetic theory; dynamic equations for real fluids in vector form; circulation; potential flow, perfect fluid equations, two-dimensional flows, theory of lift, vortices, viscous fluids; dimensional analysis, incompressible laminar boundary layer; TEXT: Class notes. PREREQUISITES: Required Ma and Ph.
Ae-172(A) AERODYNAMICS II (3-2). Continuation of Ae-171. Karman integral relation, turbulent boundary-layer, transition, separation; airfoil section characteristics; laws of vortex motion, finite wing span theory, induced drag; engineering consequences and applications. TEXT: Class notes. PREREQUISITE: Ae-171.

Ae-173(A) COMPRESSIBLE FLUIDS (4-0). Essentially the coverage in Ae-513, edited to the interests of ordnance curricula. TEXTS: Same as Ae-513. PREREQUISITE: Ae-172.

Ae-174(A) COMPRESSIBLE FLUIDS (3-2). A continuation of Ae-173, edited from the same viewpoint, with coverage similar to Ae-514. TEXTS: Same as Ae-514. PREREQUISITE: Ae-173.

Ae-175(A) MISSILE DYNAMICS (3-2). Generalized force fields on flight vehicles, in continuation of this sequence. Equations of motion, trim, performance, range, static and dynamic stability, controllability, practical design problems and analysis of a particular missile. TEXTS: Same as Ae-141. PREREQUISITE: Ae-174.

Ae-200(C) STRUCTURAL MECHANICS I (3-2). This surveys basic mechanics for application to the structure of flight vehicles. Topics are: Force systems, deformations, energy principles, truss analysis, section properties, graphical and diagrammatic methods. Problem work supplements theory. TEXTS: Beer and Johnston, Statics; Niles and Newell, Airplane Structures; Timoshenko, Strength of Materials, Vol. I. PREREQUISITE: Ae-174.

Ae-211(C) STRUCTURAL MECHANICS II (4-2). A continuation of Ae-200. The two-dimensional state of stress, stress-strain relations; design of struts, circular shafts, thin cylinders, beams; load distribution, shear and bending-moment diagrams, interrelationship; bending deflections by diagrammatic methods. Problem work and laboratory tests supplement theory. TEXTS: Timoshenko, Strength of Materials; Peery, Aircraft Structures; Niles and Newell, Airplane Structures. PREREQUISITE: Ae-200(C).

Ae-212(C) STRUCTURAL COMPONENTS I (4-2). Stress and structural analysis of frame or engine components used in flight vehicles. Extended discussion of statically indeterminate systems under transverse or axial loads, bending, torsion; thermal effects; curved bars and frames; columns; impact loads. Problem work and laboratory tests supplement theory. TEXTS: Same as Ae-211, and Timoshenko, Strength of Materials, Part II. PREREQUISITE: Ae-211(C).

Ae-213(B) STRUCTURAL COMPONENTS II (4-2). A continuation of Ae-212. Flight framework is analyzed under characteristic loading, unsymmetrical bending, shear flow in open and closed sections, shear resistant webs, diagonal tension fields. Torsion of non-circular sections, membrane analogy. Problem work and laboratory tests supplement theory. TEXTS: Same as Ae-212. PREREQUISITE: Ae-212.

Ae-214(A) STRUCTURAL COMPONENTS III (3-0). A continuation of Ae-213. Topics include: Beam columns, stability, axially symmetric parts, thin shells under inner pressure, discontinuity stresses, plates under transverse loads, discs in rotation, thick cylinders and spheres under pressure; TEXTS: Same as Ae-213. PREREQUISITE: Ae-213.
COURSE DESCRIPTIONS—AERONAUTICS

Ae-441(A) DESIGN OF TURBOMACHINES (3-1). Analysis and design of turbomachines with special reference to design of blades and other mechanical elements. Vibratory characteristics, stress analysis and general design concepts and procedures. TEXTS: USNPS Notes. PREREQUISITE: Ae-431.

Ae-501(A) HYDRO-AERO MECHANICS I (4-0). Dynamic equations for real fluids in vector and tensor form, circulation, rotational flow, potential flow, perfect fluid equations, complex variables and conformal mapping, two-dimensional airfoil theory. TEXTS: KUETHE and SCHETZER, Foundations of Aerodynamics; ABBOTT and von DOENHOFF, Theory of Wing Sections; Instructor’s Notes. PREREQUISITES: Ma-153(B), and Ae-121(C).

Ae-511(A) HYDRO-AERO MECHANICS ADVANCED I (4-0). This course provides a more advanced coverage of the material in Ae-501. TEXTS: Same as Ae-501.

Ae-512(A) HYDRO-AERO MECHANICS ADVANCED II (4-0). This course provides a more advanced coverage of the material in Ae-502. TEXTS: Same as Ae-511.

Ae-513(A) COMPRESSIBILITY I (4-0). One dimensional gas dynamics; channel flow, normal and oblique shock waves, Prandtl-Meyer expansion, three-dimensional flow equations, Crocco’s theorem, linearized potential flow and application to airfoils and bodies of revolution, method of characteristics. TEXTS: LIEPMANN and ROHRO, Elements of Gasdynamics; Instructor’s Notes. PREREQUISITES: Ae-410(B) and Ae-502(A).

Ae-514(A) COMPRESSIBILITY II (3-2). Similarity laws for transonic and hypersonic flows, viscous shear and heat transfer, continuum magneto-aerodynamics; basic equations including Maxwell’s relations, applications to plasmas, ionized boundary layers and magnetic nozzles. Wind tunnel and shock tube tests are conducted in conjunction with class discussion. TEXTS: Same as Ae-513(A). PREREQUISITE: Ae-513(A).

Ae-508(A) COMPRESSIBILITY (3-2). One dimensional gas dynamics; channel flow, normal and oblique shock waves, Prandtl-Meyer expansion, three-dimensional flow equations; Crocco’s theorem, linearized potential flow and application to airfoils and bodies of revolution, method of characteristics, equations of magnetothermodynamics and specific applications. Wind tunnel and shock tube tests are conducted in conjunction with class discussion. TEXTS: Same as Ae-503(A). PREREQUISITES: Ae-502(A) and Ae-410(B).

Ac-604(A) THERMOELASTICITY (3-1). Analysis and design of structures at elevated temperatures. Temperature distribution, elastic and inelastic thermal stresses in aeronautical structures, thermal effects on deflections, stiffness and flutter. TEXT: GATEWOOD, Thermal Stresses. PREREQUISITE: Ac-601.

Ac-605(A) PLATES AND SHELLS (4-0). Analysis of thin, stiff plates and shells from viewpoint of application to flight vehicles. Topics are: flat plates in simple bending or under transverse load, curvature and twist of middle surface, bending and twisting moments, shearing forces, equations of equilibrium, solution for stresses; strain energy stored under lateral loading, under loads in middle surface, stability considerations, crippling stress; axially symmetrical problems in shells, shell geometry, equilibrium under load, analysis for critical stresses; effects of discontinuities, flanges, cutouts; selected design applications. TEXTS: TIMOSHENKO, Theory of Plates and Shells; NACA and NASA Technical Notes; USNPS Notes. PREREQUISITES: Ac-601.

Ac-610(A) AERONAUTICAL STRUCTURES SEMINAR (3-0). Selected topics in advanced structural design of flight vehicles from; aeroelasticity, thermoelasticity, dynamic loading and vibration, plasticity, stability, non-linear problems, structural systems. TEXTS: Depend upon topics. PREREQUISITES: Some coursework in Ac-600 sequence.

Ac-701(A) MAGNETOE AERODYNAMICS (4-0). Dynamic equations for continuous media and classical equations for electromagnetic fields as applied to ionized gases moving in a magnetic field; propagation of small disturbances, Alfvén waves, fast and slow waves, shock waves; particular solutions of the magnetoeaerodynamic equations; motion of charged particles, drift, anisotropic Ohm’s law, applications. TEXTS: Instructor’s notes. PREREQUISITE: Ac-506(A) or Ac-508(A).

Ac-801(A) AERONAUTICAL SYSTEMS ENGINEERING (3-3). Advanced manual control systems, requirements for power operation and stability augmentation; block diagram concept, transfer function, systems engineering viewpoint; basic control-reference systems for automation; single axis and multi-axis systems, inter-axis maneuver coupling; time modulated control; command flight, remote-controlled reference systems; systems concepts, applications to weapons and their sub-systems. TEXTS: ETKIN, Dynamics of Flight. PERKINS and HAGE, Airplane Performance, Stability and Control.

BIOLOGY

Bi-800(C) FUNDAMENTALS OF BIOLOGY (4-2). The fundamental principles of the living cell covered from a biochemical and bio-physical standpoint. Specialization of cell function, as exemplified in certain animal and plant tissues and organ systems. Genetics and its relation to properties of the cell nucleus. Related topics, including the evolutionary process. TEXT: MARSLAND, Principles of Modern Biology.

Bi-801(B) ANIMAL PHYSIOLOGY (4-2). A general course in animal physiology, emphasizing human functional aspects. TEXT: BEST and TAYLOR: The Living Body. PREREQUISITE: Bi-800(C).

Bi-802(A) RADIATION BIOLOGY (4-2). Fundamental processes of energy transfer from radiation to living matter. Biochemical, physiological and genetic effects of radiation. Methods of experimental radiation biology. TEXTS: BACQ and AXEL, Fundamentals of Radiobiology; CLAUS, Radiation Biology and Medicine. PREREQUISITES: Ph-642(B), Bi-800(C), Bi-801(B).

Bi-822(A) SPECIAL TOPICS IN RADIATION BIOLOGY (2-0). Study of important current topics in radiation biology. TEXTS: Current literature in the field. PREREQUISITES: Appropriate biological background.

CHEMISTRY AND CHEMICAL ENGINEERING

Ch-001 GENERAL INORGANIC CHEMISTRY (4-3). The first term of a two-term course in elementary chemistry for students in the School of Naval Science will consist of a study of the principles governing the physical and chemical behavior of matter with sufficient descriptive chemistry to illustrate these principles. Laboratory experiments will be related to the lecture material. TEXTS: SIENKO and PLANE, Chemistry; RITTER, An Introductory Laboratory Course in Chemistry; PIERCE and SMITH, General Chemistry Workbook.

Ch-002 GENERAL INORGANIC CHEMISTRY (3-3). A continuation of Ch-001. The chemical properties of the elements and their compounds will be studied from the viewpoint of the periodic table. Special emphasis will be given to the compounds. TEXTS: SIENKO and PLANE, Chemistry; RITTER, An Introductory Laboratory Course in Chemistry; PIERCE and SMITH, General Chemistry Workbook, PREREQUISITE: Ch-001.

Ch-101(C) GENERAL INORGANIC CHEMISTRY (3-2). A study of the principles governing the chemical behavior of matter. Includes topics such as kinetic theory, atomic structure,
chemical equilibrium, introduction to organic chemistry and specialized topics (explosives, corrosion, etc.) Elementary physical chemistry experiments are performed in the laboratory. TEXT: Hildebrand, Principles of Chemistry; or Sienko and Plane, Chemistry.

Ch-102(C) GENERAL INORGANIC CHEMISTRY (3-2). A one-term course in chemical principles designed for students in the Nuclear Engineering (Effects) curriculum. Will include elementary chemical stoichiometry, the gas laws, chemical equilibria, and descriptive chemistry of selected transition metals. The laboratory work will supplement the lectures. TEXT: Sienko and Plane, Chemistry; or Hildebrand and Powell, Principles of Chemistry, and Latimer and Hildebrand, Reference Book of Inorganic Chemistry (combined volume).

Ch-106(C) PRINCIPLES OF CHEMISTRY I (3-2). The first course of a two-term sequence. A study of the fundamental principles of chemistry governing the physical and chemical behavior of matter. Current theories of atomic structure and chemical bonding are particularly emphasized. Also studied are the states of matter, chemical kinetics, and chemical equilibria. Elementary physical chemistry experiments are performed in the laboratory. TEXT: Sienko and Plane, Chemistry; PREREQUISITE: College Chemistry.

Ch-107(C) PRINCIPLES OF CHEMISTRY II (3-2). A continuation of Ch-106. The principles of chemistry are applied to the study of the chemical properties of the elements and their compounds. Special attention is given to the compounds of carbon. Laboratory experiments are used to illustrate the chemical behavior of matter. TEXT: Sienko and Plane, Chemistry. PREREQUISITE: Ch-106(C).

Ch-108(C) INTERMEDIATE INORGANIC CHEMISTRY (3-4). An intensive treatment at an intermediate level of the chemistry of the common ions in aqueous solution. The course will supplement General Chemistry and will emphasize facility in the use of the concepts of equilibria, kinetics and structure in correlating the chemistry of the more familiar elements. TEXT: King, Qualitative Analysis and Electrolytic Solutions. PREREQUISITE: Ch-107(C).

Ch.E-111(A) FUEL AND OIL CHEMISTRY (2-2). A study of fuels and lubricants from an engineering aspect. Topics discussed include combustion and lubrication theory, properties of fuels and lubricants and occurrence and refining of petroleum. Laboratory work consists of fuel and lubricant testing and the analysis of gaseous combustion products: TEXT: Popovich and Hering, Fuels and Lubricants.

Ch.E-112(A) FUELS, COMBUSTION, HIGH ENERGY FUELS (3-2). A brief survey of the organic and physical chemistry necessary for a study of the problems associated with fuels. The nature of conventional fuels and of high-energy fuels, their limitations, and possible future developments; methods of reaction rate control, etc. TEXTS: Popovich and Hering, Fuels and Lubricants; Penner, Chemical Problems in Jet Propulsion. PREREQUISITE: Physical Chemistry.

Ch-121(B) GENERAL AND PETROLEUM CHEMISTRY (4-2). A course combining selected topics in general inorganic chemistry with the elementary chemistry of fuels and lubricants. The laboratory illustrates principles common to both fields. TEXTS: Hildebrand, Principles of Chemistry; Popovich and Hering, Fuels and Lubricants.

Ch-150(A) INORGANIC CHEMISTRY, ADVANCED (4-3). A systematic study, employing the methods of physical and analytical chemistry to inorganic systems. Types of chemical reactions; the periodic system; aqueous solution chemistry of selected metals and non-metals; high energy inorganic fuels. The laboratory will apply the principles of chemical equilibria and kinetics to inorganic reactions. TEXT: Moelies, Inorganic Chemistry. PREREQUISITE: Ch-107(C), Ch-444(B) (may be taken concurrently), Quantitative Analysis; or permission of the instructor.

Ch-213(C) QUANTITATIVE ANALYSIS (2-3). Typical volumetric and gravimetric determinations in the laboratory are used as a basis for the study of the theory and calculations of quantitative analysis. TEXT: Pierce and Haenisch, Quantitative Analysis. PREREQUISITE: Ch-102(C).

Ch-221(C) QUALITATIVE ANALYSIS (3-2). The first part of a course in analytical chemistry, combining the separation and detection of selected actions on a semi-micro scale with a theoretical and descriptive treatment of solutions of electrolytes. TEXT: Curtman, Introduction to Semi-micro Qualitative Analysis. PREREQUISITE: Ch-101(C) or Ch-121(B).

Ch-222(C) QUALITATIVE ANALYSIS (2-2). A brief course in semi-micro qualitative analysis, accompanied by a theoretical and descriptive treatment of solutions of electrolytes. TEXT: Curtman, Introduction to Semi-micro Qualitative Analysis. PREREQUISITE: Ch-101(C) or Ch-121(B).

Ch-231(C) QUANTITATIVE ANALYSIS (2-4). A continuation of Ch-221(C), dealing with the principles and calculations of quantitative analysis, and accompanied by typical volumetric and gravimetric determinations in the laboratory. TEXT: Pierce and Haenisch, Quantitative Analysis. PREREQUISITES: Ch-101(C) or Ch-121(B) and Ch-221(C).

Ch-302(C) ORGANIC CHEMISTRY (4-2). A brief study of organic substances and their reactions, accompanied by the preparation of typical organic compounds. TEXT: Brewster, Organic Chemistry—A Brief Course. PREREQUISITE: Ch-101(C) or equivalent.

Ch-311(C) ORGANIC CHEMISTRY (3-2). The first half of a course in organic chemistry, consisting of the study of the properties and reactions of organic compounds. The laboratory work is designed to illustrate typical organic reactions. TEXT: Brewster, Organic Chemistry—A Brief Course. PREREQUISITE: Ch-101(C).

Ch-312(C) ORGANIC CHEMISTRY (3-2). A continuation of Ch-311(C). Organic synthetic methods are emphasized in the laboratory. TEXT: Brewster, Organic Chemistry—A Brief Course. PREREQUISITE: Ch-311(C).

Ch-315(C) ORGANIC CHEMISTRY (3-2). An introduction to the properties, reactions and relationships of the principal classes of organic compounds. TEXT: Hart and Schultz, A Short Course in Organic Chemistry. PREREQUISITE: Ch-102(C).
Ch-321(A) ORGANIC QUALITATIVE ANALYSIS (2-2). Identification of organic compounds on the basis of physical properties, solubility behavior, classification reactions and the preparation of derivatives. TEXT: SHRIVER and Fuson, Identification of Organic Compounds. PREREQUISITE: Ch-301(C) or Ch-312(C) or Ch-315(C).

Ch-322(A) ORGANIC CHEMISTRY, ADVANCED (3-2). A more detailed consideration of reactions used in organic syntheses, with particular attention to reaction mechanisms and electronic configurations. TEXT: ROYALS, Advanced Organic Chemistry. PREREQUISITE: Ch-301(C) or Ch-312(C) or Ch-315(C).

Ch-323(A) THE CHEMISTRY OF HIGH POLYMERS (3-0). A treatment of the principal classes of natural and synthetic high polymers, including preparation, structure and physical properties. TEXT: RITCHe, Chemistry of Plastics and High Polymers. PREREQUISITES: Ch-301(C) or Ch-312(C) or Ch-315(C) and Ch-521(A).

Ch-403(B) PHYSICAL CHEMISTRY (3-2). A terminal course in physical chemistry for selected groups. Gases, liquids, chemical thermodynamics, thermochemistry, chemical equilibria, and chemical kinetics. Laboratory experiments illustrate principles discussed in the lectures. TEXTS: DANIELS and ALBERTY, Physical Chemistry; DANIELS and others, Experimental Physical Chemistry. PREREQUISITES: Ch-101(C) or Ch-121(B) or equivalent.

Ch-405(B) PHYSICAL CHEMISTRY (4-2). A short course in physical chemistry including such topics as properties of matter, thermo-chemistry, chemical equilibria, chemical kinetics, electrochemistry. Laboratory experiments illustrate the principles discussed in lecture. TEXTS: DANIELS and ALBERTY, Physical Chemistry; DANIELS and others, Experimental Physical Chemistry. PREREQUISITE: Ch-101(C) or Ch-102(C).

Ch-407(A) PHYSICAL CHEMISTRY (3-2). A one-term course in physical chemistry for students who have had Thermodynamics. Gases, liquids, solids, solutions, thermochemistry, chemical equilibria, and chemical kinetics are studied. Laboratory experiments illustrate principles discussed in the lectures. TEXTS: DANIELS and ALBERTY, Physical Chemistry; DANIELS and others, Experimental Physical Chemistry. PREREQUISITES: Ch-101(C) and one term of Thermodynamics.

Ch-443(C) PHYSICAL CHEMISTRY I (4-2). The first part of a course in physical chemistry. To include such topics as properties of matter, thermochemistry, chemical thermodynamics, chemical equilibria. Laboratory experiments illustrate the principles discussed in lecture. TEXTS: DANIELS and ALBERTY, Physical Chemistry; DANIELS and others, Experimental Physical Chemistry. PREREQUISITE: Ch-107(C) and one term of Thermodynamics.

Ch-444(B) PHYSICAL CHEMISTRY II (3-4) A continuation of Ch-443(C). Chemical kinetics, electrochemistry, and related topics. Laboratory experiments will support and supplement the material covered in the lecture. TEXTS: DANIELS and ALBERTY, Physical Chemistry; DANIELS and others, Experimental Physical Chemistry. PREREQUISITE: Ch-443(C).

Ch-452(A) PHYSICAL CHEMISTRY, ADVANCED (3-4). Selected advanced topics in physical chemistry such as: atomic and molecular structure; chemical kinetics; physical chemistry of electrolytes. The laboratory work supplements the lecture work and introduces the student to problems encountered in research. This course ordinarily follows Ch-444(B). TEXT: To be assigned. PREREQUISITE: A two-term course in physical chemistry.

Ch-454(B) INSTRUMENTAL METHODS OF ANALYSIS (3-3). A course designed to familiarize the student with modern instrumental techniques of chemical analysis. Emphasis is given to the theoretical basis of the various kinds of measurements made in the laboratory and the principles involved in the design and construction of analytical instruments. Laboratory experiments will deal with representative analytical problems. TEXT: WILLARD, MERRITT and DEAN, Instrumental Methods of Analysis. PREREQUISITE: Ch-444(B).

Ch-456(A) CHEMICAL APPLICATIONS OF INFRARED SPECTROSCOPY (2-0). Infrared spectroscopy presented as a laboratory tool for the study of chemical bonding and for solving problems arising in chemical research. Lectures will deal with elementary theory of molecular spectra, optics and performance of infrared spectrometers, techniques of sample preparation, and measurement and interpretation of infrared spectra. A laboratory problem will involve obtaining the infrared spectrum of some substance. PREREQUISITE: Physical Chemistry. Ch-558(A) STRUCTURE OF MOLECULES (3-0). A survey of experimental methods for determining the geometry and structure of molecules. Infrared methods will not be included. TEXT: WHEATLEY, The Determination of Molecular Structure. PREREQUISITE: Ch-444(B).

Ch-460(A) NATURE OF THE CHEMICAL BOND (3-0). A study of concepts involved in chemical bonding including energetics and the correlation of bond properties to permit qualitative prediction of structure and reactivity. TEXTS: PAULING, Nature of the Chemical Bond; COULSON, Valence. PREREQUISITE: Ch-444(B).

Ch-462(A) QUANTUM MECHANICS IN CHEMISTRY (3-0). The application of quantum mechanics to chemical problems. Study of modern theory of the electronic structure of atoms and molecules in their stationary states. TEXT: PAULING and WILSON, Introduction to Quantum Mechanics. PREREQUISITE: Ch-444(B).

Ch-464(A) ELECTROCHEMISTRY (3-0). A detailed treatment of modern electrochemistry and the structure of solutions. TEXT: ROBINSON and STOKES, Electrolyte Solutions, 2nd Ed. PREREQUISITE: Ch-444(B).
Ch.E-521(A) PLASTICS (3-2). A study of the general nature of plastics, their applications and limitations as engineering materials; and correlation between properties and chemical structure. In the laboratory, plastics are made, molded, tested and identified. TEXTS: Kinney, Engineering Properties and Applications of Plastics. PREREQUISITE: Ch-101(C) or Ch-121(B).

Ch.E-522(A) PLASTIC AND HIGH POLYMERS (3-2). A study of the nature of plastics and high polymers. Emphasis is placed on the correlation between properties and chemical structure; applications and limitations as engineering materials. The laboratory exercises consist of the preparation of typical plastics, molding experiments, a study of their physical properties and identification tests. TEXT: Kinney, Engineering Properties and Applications of Plastics. PREREQUISITE: Organic Chemistry.

Ch.E-542(A) REACTION MOTORS (3-2). A study of the fundamentals of rocket motors. The subject matter includes the basic mechanics of jet propulsion engines, properties of solid and liquid propellents, the design and performance parameters and rocket motor testing. In the laboratory periods representative problems are solved. TEXT: Sutton, Rocket Propulsion Elements. PREREQUISITE: Ch.E-621(A) or Ch.E-631(A).

Ch.E-543(A) REACTION MOTORS (0-2). Laboratory work in reaction motors illustrating and applying principles that were presented in Ch.E-542. Experiments include the static firing of rocket motors and the analysis of the data, combustion and burning rate studies on propellents, evaluation of propellent characteristics, the formulation of small amounts of solid propellents. TEXT: Instructor's notes. PREREQUISITE: Ch.E-542(A).

Ch.E-544(A) PROPELLANTS AND SPECIAL FUELS (0-2). Advanced laboratory work on propellants and special fuels. TEXT: Assigned reading. PREREQUISITE: Ch.E-543, Ch.E-112(A).

Ch.E-551(A) RADIOCHEMISTRY (2-4). Discussions on important aspects of radioactivity from standpoint of the chemical transformations which accompany it and which it may induce; techniques for measurement and study of ionizing radiation; methods of separation of unstable nuclides, identification and assay. TEXT: Friedlander and Kennedy, Nuclear and Radiochemistry. PREREQUISITE: Ch-442(C), Ph-642(B), Ph-643(B).

Ch.E-552(A) RADIOCHEMISTRY (3-4). A discussion of chemical properties and behaviors of unstable elements. Topics considered are the formation and decay schemes of the more important unstable nuclides, methods of isolation and purification and analysis of mixtures; exchange reactions; reactions that take place in consequence of nuclear reactions. TEXTS: Friedlander and Kennedy, Nuclear and Radiochemistry; Bruce and others, Process Chemistry. PREREQUISITE: Ch-551(A).

Ch.E-553(A) NUCLEAR CHEMICAL TECHNOLOGY (3-3). The chemistry of nuclear fuels, fission products, and special materials required in nuclear reactors; chemical engineering aspects in their production, purification and recovery. TEXT: Benedict and Pegford, Nuclear Chemical Engineering. PREREQUISITE: Ch-511, Ch.E-611, CH.E-701 or CH.E-711.

Ch.E-555(A) RADIOCHEMISTRY (2-3). An advanced course in radiochemical techniques and applications offered to well qualified students only. Experiments in analysis of complex mixtures of active nuclides; activation analysis. Consent of curricula office and the instructor required. PREREQUISITE: Ch-551(A).

Ch.E-571(A) EXPLOSIVES (3-2). Modes of behavior and principles of use of explosive substances as related to their chemical and physical properties; underlying principles of explosives testing and evaluation. Trends in new developments are surveyed. Independent exploratory work is encouraged in the laboratory in such areas as manner of initiation, sensitivity, brisance, power, heats of explosion and combustion. PREREQUISITES: One term each of Thermodynamics and Physical Chemistry.

Ch.E-591(A) BLAST AND SHOCK EFFECTS (3-0). Nature of explosions, propagation of shock waves in air, scaling laws for damage from explosions, thermal radiation and incendiary effects; ionizing radiation effects; principles of protection of personnel against damage. TEXT: Hirschfelder, The Effects of Atomic Weapons. PREREQUISITES: Physical Chemistry and Thermodynamics.

Ch.E-592(A) SHOCK AND BLAST EFFECTS (0-3). Laboratory work illustrating and applying the principles that were presented in Ch.E-591. TEXT: Instructor's notes. PREREQUISITE: Ch.E-591(A).

Ch.E-611(C) ENGINEERING THERMODYNAMICS (3-2). The fundamentals of engineering thermodynamics. The subject matter includes the concepts of energy and entropy, the first and second laws of thermodynamics, and the thermodynamic properties of substances with emphasis on ideal gases. In the laboratory period representative problems are solved. TEXT: Kiefer, Kinney and Stuart, The Principles of Engineering Thermodynamics. PREREQUISITE: Ch-101(C).

Ch.E-612(C) ENGINEERING THERMODYNAMICS (3-2). Thermodynamic properties of non-ideal gases and the thermodynamics of the flow of compressible fluids. The subject matter includes the application of the laws of thermodynamics to non-ideal gases, the flow of compressible fluids. TEXT: Kiefer, Kinney and Stuart, The Principles of Engineering Thermodynamics. PREREQUISITE: Ch-611.

Ch.E-613(A) CHEMICAL ENGINEERING THERMODYNAMICS (3-2). Application of engineering thermodynamics to the analysis and solution of problems in chemical engineering and chemistry. The subject matter includes equilibrium and criteria of equilibria for systems undergoing changes in composition. In the laboratory period representative problems are analyzed and solved. TEXT: Weber and Meissner, Thermodynamics for Chemical Engineers. PREREQUISITE: Engineering Thermodynamics.
Ch.E-614(A) ENGINEERING THERMODYNAMICS (3-2). Thermodynamic properties of non-ideal gases. The subject matter includes the application of the laws of thermodynamics to non-ideal gases, and the construction and use of thermodynamic diagrams. In the laboratory period, thermodynamic diagrams of gas mixtures of interest in ordnance or propulsion are constructed. TEXT: KIEFER, KINNEY and STUART, The Principles of Engineering Thermodynamics. PREREQUISITE: Ch.E-611(C).

Ch.E-624(A) ENGINEERING THERMODYNAMICS (3-2). The flow of incompressible and of compressible fluids. The subject matter includes a thermodynamic analysis of different types of flow and shock front behavior. In the laboratory period representative flow problems in engineering are solved and a flow chart for the adiabatic flow of an ideal gas is constructed. TEXTS: WEBER and MEISSNER, Thermodynamics for Chemical Engineers; KIEFER, KINNEY and STUART, The Principles of Engineering Thermodynamics. PREREQUISITE: Ch.E-614(A).

Ch.E-625(A) THERMODYNAMICS (2-2). Thermodynamics of materials at high temperatures; the effect of chemical dissociation. Numerical computations form an integral part of the course. TEXT: National Bureau of Standards, Circular 564. PREREQUISITE: Physical Chemistry Ch.E-614 or Ch.E-631.

Ch.E-631(A) CHEMICAL ENGINEERING THERMODYNAMICS (3-2). A course in the fundamentals of engineering thermodynamics to supply the minimum background requisite for subsequent courses in reaction motors, explosives and interior ballistics. TEXTS: SMITH, Introduction to Chemical Engineering Thermodynamics; KIEFER, KINNEY and STUART, Principles of Engineering Thermodynamics. PREREQUISITE: Ch-561(A).

Ch.E-701(C) CHEMICAL ENGINEERING CALCULATIONS (3-2). Engineering problems involving mass and energy relationships in chemical and physical-chemical reactions; stoichiometric treatment of the combustion of fuels; reacting materials at high temperature; gaseous and liquid-vapor equilibria. TEXTS: WILLIAMS and JOHNSON, Stoichiometry for Chemical Engineers; HOUGEN and WATSON, Chemical Process Principles, Part I. PREREQUISITE: Ch-101(C).

Ch.E-711(C) CHEMICAL ENGINEERING CALCULATIONS (3-2). An introductory course in chemical engineering, with ordnance applications of especial interest, material and energy balances in various chemical and physical-chemical processes in addition to unit operations. TEXTS: KAMMERMEYER and OSBURN, Process Calculations; HOUGEN and WATSON, Chemical Process Principles, Part I. PREREQUISITE: Ch-101(C).

Ch.E-721(B) UNIT OPERATIONS (3-2). An introduction to the study of the unit operations of chemical engineering. Selection of and primary emphasis on particular unit operations will be made on the basis of current student specialties; e.g., Petroleum Engineering. Among the unit operations, treatment will be given to flow of fluids, filtration, agitation, mixing, sedimentation, heat transmission, evaporation, and drying. TEXTS: BROWN, Unit Operations; PERRY, Chemical Engineers' Handbook. PREREQUISITE: Ch.E-701(C).

Ch.E-722(A) UNIT OPERATIONS (3-2). A continuation of Ch.E-721(B). Size reduction, sizing, crystallization, gas absorption, liquid-liquid extraction, batch and continuous distillation; fractionation columns. TEXTS: BROWN, Unit Operations; PERRY, Chemical Engineers' Handbook. PREREQUISITE: Ch.E-721(B).

Ch.E-731(A) PETROLEUM REFINERY ENGINEERING (3-0). A study of the chemistry and chemical engineering aspects of the production of fuels and lubricants from crude oil. TEXT: Instructor's Notes. PREREQUISITE: Ch.E-722(A) (Unit Operations).

Ch.E-732(A) PETROLEUM REFINERY ENGINEERING (3-2). A continuation of Ch.E-731(A). In the laboratory period representative problems are solved. TEXT: Instructor's Notes. PREREQUISITE: Ch.E-731(A).

Ch.E-740(B) HEAT TRANSFER (2-2). The fundamentals of heat transfer by convection, conduction and radiation and their application to problems in ordnance. Representative problems are solved in the laboratory period. TEXT: SCHENCK, Heat Transfer Engineering. PREREQUISITE: Ch.E-624(A).

Ch.E-741(B) HEAT TRANSFER (3-2). The fundamentals of heat transfer by conduction, convection, and radiation, and their application to problems in ordnance. In the laboratory periods illustrating these principles are solved. TEXTS: ECKERT and DRAKE, Introduction to the Transfer of Heat and Mass; JAKOB, Heat Transfer. PREREQUISITE: Ch.E-624.

Ch.800(A) CHEMISTRY SEMINAR. This course involves library investigations of assigned topics; reports on articles in the current technical journals, and reports on thesis work in progress.

COMMUNICATIONS ENGINEERING

Co-221(C) COMMUNICATIONS PLANNING I (3-2). A study of the functions and facilities of naval communications, including details of tactical communications and preparation of communications-electronics plans and orders both of a general nature and pertaining to the various specialized types of naval operations. TEXTS: Classified Naval Publications.

Co-222(C) COMMUNICATIONS PLANNING II (3-2). A continuation of Co-221(C). TEXTS: Classified Naval Publications. PREREQUISITE: Co-221(C).

Co-230(C) NAVAL COMMUNICATION ANALYSIS (3-0). A brief summary of general principles, organization and methods of communications in the Naval Establishment followed by instruction in the application of operations analysis to administration and to operational communications. TEXTS: DNC 5; NWIP 16-1; JANAP 195.
COURSE DESCRIPTIONS—CRYSTALLOGRAPHY

COURSE 4th STUDY LEVEL (3-2).

CRYSTALLOGRAPHY

Cr-271(B) Crystallography and X-ray Techniques (3-2). The essential concepts of crystallography, the stereographic projection, modern x-ray diffraction and radiographic apparatus and techniques, the theory of x-ray diffraction, high temperature diffraction techniques. The laboratory work includes a study of crystal models for symmetry, forms, and combinations; the construction of stereographic projections; and actual practice in making and interpreting of x-ray diffraction photographs. TEXTS: Buerger, Elementary Crystallography; Azaroff and Buerger, The Powder Method. PREREQUISITE: Ch-101(C).

Cr-301(B) Crystallography and Mineralogy (3-4).

Designed primarily for the student who will continue with courses in mineralogy, geology, and petrology. The student is introduced to the fundamental concepts of crystallography, the stereographic projection, the theory of x-ray diffraction, and the application of x-ray powder methods as applied to identification of minerals. The laboratory work includes a study of crystal models, construction of stereographic projections, and determination of minerals by x-ray powder diffraction patterns. TEXTS: Rogers, Introduction to the Study of Minerals. PREREQUISITE: Ch-101(C).

Cr-311(B) Crystallography and Mineralogy (3-2). Subject matter similar to Cr-301, but designed for students who will continue with courses in chemistry. TEXT: Rogers, Introduction to the Study of Minerals. PREREQUISITE: Ch-101(C).

ELECTRICAL ENGINEERING

EE-021(C) Direct-Current Circuits and Machinery (5-3). A basic presentation of the direct-current circuits and of direct-current machines and applications. Topics include: electrical and magnetic fields, general circuit theory, basic measurement and metering shunt series and compound motors. Laboratory work illustrates the basic theory and provides experience. TEXT: Dawes, Electrical Engineering, Vols. I, 4th Edition. PREREQUISITES: PH-013(C) and MA-053(C).

EE-111(C) Fundamentals of Electrical Engineering (3-2). Basic concepts of direct-current circuits and static electric and magnetic fields are considered. Electrical units, resistivity, electromotive forces, basic measurements and metering equipment, Kirchhoff's laws, magnetism, typical magnetic circuits, and simple electrostatic fields are studied. TEXT: Dawes, Electrical Engineering, Vol. I, 4th Edition. PREREQUISITES: Differential and Integral Calculus and Elementary Physics.

EE-151(C) Direct Current Circuits and Fields (3-2). An intermediate level course for those curricula that do not require a thorough background in circuits and fields. Basic electrostatic and electromagnetic field theory is presented at a level that requires no mathematics beyond the calculus. The most commonly used theorems and methods are developed for electric and magnetic circuit analysis. TEXT: Corcoran and Reed, Introductory Electrical Engineering. PREREQUISITES: Differential and Integral Calculus and Elementary Physics.

EE-171(C) Electrical Circuits and Fields (3-4). A basic course in electricity and magnetism for those curricula majoring in electrical science. Direct current circuits, electrostatic and electromagnetic fields and ferromagnetism are studied in considerable detail at a level requiring no mathematics beyond the calculus. TEXT: Corcoran and Reed, Introductory Electrical Engineering. PREREQUISITES: Differential and Integral Calculus and Elementary Physics.

EE-231(C) Circuits and Machines (3-2). General principles of DC machines, their control and application. The characteristics of machines are developed from basic principles, then a study of the theory of alternating currents is begun. Experiments are performed to demonstrate machine characteristics and the use of control devices. TEXT: Dawes, Electrical Engineering, Vols. I and II, 4th Edition. PREREQUISITE: EE-111(C).

EE-241(C) Alternating Current Circuits (3-2). A short course for those curricula that do not require an extensive coverage of the subject. Single phase and balanced polyphase circuits are analyzed by using the conventional network theorems and methods. Coupled circuit theory and non-sinusoidal wave analysis are included along with a limited amount of laboratory work. TEXTS: Kerchner and Corcoran, Alternating Current Circuits, 3rd Edition; Skroder and Helm, Circuit Analysis by Laboratory Methods, 2nd Edition. PREREQUISITE: EE-151(C).

EE-251(C) Alternating Current Circuits (3-4). An intermediate level course which covers the essentials of alternating current circuit theory. Single phase and polyphase circuits are analyzed by using the conventional network theorems and methods. Coupled circuit theory, non-sinusoidal wave analysis, metering and elementary bridge methods are included. Laboratory experiments illustrate the basic principles. TEXTS: Kerchner and Corcoran, Alternating Current Circuits, 3rd Edition; Skroder and Helm, Circuit Analysis by Laboratory Methods, 2nd Edition. PREREQUISITE: EE-151(C).

EE-271(C) Alternating Current Circuits 1 (3-2). A basic course in alternating current circuit analysis for those curricula that require a thorough treatment of the subject. This course is followed by EE-272 Alternating Current Circuits for the coverage required for those curricula majoring in electrical science. Single phase and balanced polyphase circuit steady-state analysis, wave analysis and power measurements are covered in detail. Laboratory requirements illustrate the basic principles. TEXTS: Kerchner and Corcoran, Alternating Current Circuits, 3rd Edition; Skroder and Helm, Circuit Analysis by Laboratory Methods, 2nd Edition. PREREQUISITE: EE-171(C).
EE-272(B) ALTERNATING CURRENT CIRCUITS II (3-2). A continuation of EE-271. Topics covered include unbalanced polyphase circuits, power measurements, coupled circuits and symmetrical components. Laboratory experiments illustrate the basic principles. TEXTS: Kerchner and Corcoran, Alternating Current Circuits, 3rd Edition; Skroder and Helm, Circuit Analysis by Laboratory Methods, 2nd Edition. PREREQUISITE: EE-271(C).

EE-273(C) ELECTRICAL MEASUREMENTS I (2-3). An introduction to the measurement of the fundamental quantities: current, voltage, capacitance, inductance, and the magnetic properties of materials. TEXT: Stout, Basic Electrical Measurements. PREREQUISITE: EE-251(C).

EE-274(B) ELECTRICAL MEASUREMENTS II (2-3). A continuation of EE-273(C) Alternating-current bridge circuits, components, and accessories; measurement of the properties of dielectrics. TEXT: Stout, Basic Electrical Measurements. PREREQUISITE: EE-273(C).

EE-281(C) BASIC ELECTRICAL PHENOMENA (3-0). The first of a series of four courses designed to present an advanced treatment of the fundamentals of fields and circuits as a necessary background for advanced courses in control and guidance. An introduction to the theory of electric and magnetic fields presented in a unified manner which satisfies the prerequisites for circuits and machinery. TEXT: Kraus, Electromagnetics. Instructor’s Notes. PREREQUISITES: Vector Analysis and Ordinary Differential Equations.

EE-282(B) BASIC CIRCUIT ANALYSIS (3-2). An extension of EE-281. The circuit concept is developed by the complete analysis of simple circuits. Steady-state analysis is continued for more complex circuits, and the phasor concept with ac forcing functions is introduced. Poly-loop and poly-phase circuits are analyzed and basic network theorems are presented. TEXTS: Van Valkenburg, Networks Analysis; Instructor’s Notes. PREREQUISITE: EE-281(C).

EE-283(B) ADVANCED CIRCUIT ANALYSIS (3-4). A continuation of EE-282. A universal coverage of steady-state circuit analysis applicable to any problem in electrical engineering is completed. A detailed analysis of the general network is begun by considering circuits with two energy storage elements. The theory of the electronic analog computer is presented. Representative problems are solved with the computer in the laboratory. TEXT: Van Valkenburg, Network Analysis, Instructor’s Notes. PREREQUISITE: EE-282(B).

EE-284(A) CIRCUIT ANALYSIS (3-2). A coordinated continuation of EE-281, EE-282 and EE-283 which stresses the universal character of electric circuits. The mathematics of circuit analysis is developed and additional network theorems are introduced, along with concepts of transient impedance and transfer functions. Mechanical and electro-mechanical circuits are analyzed and electro-mechanical analogs developed. TEXTS: Van Valkenburg, Network Analysis; Instructor’s Notes. PREREQUISITE: EE-283(B).

EE-351(C) DIRECT-CURRENT MACHINERY (2-2). Fundamentals of direct-current machinery with emphasis upon operating characteristics and applications. The external characteristics are developed from basic relations. Problems and laboratory work. TEXT: Dawes, Electrical Engineering, Vol. I. PREREQUISITE: EE-151(C) or EE-171(C).

EE-371(C) DIRECT-CURRENT MACHINERY (2-2). A thorough presentation of the theory of direct-current machines and control devices. Armature windings, armature reaction and commutation are fully covered. The characteristics of generators and motors are developed from basic relations. Laboratory work supplements the work of the classroom. TEXTS: Dawes, Electrical Engineering, Vol. I, 4th Edition; Fitzgerald and Kingsley, Electric Machinery. PREREQUISITE: EE-171(C).

EE-451(C) TRANSFORMERS AND SYNCHROS (2-2). This course followed by EE-452(C) provides a general study of alternating current machinery for those curricula that do not require an extensive coverage of the subject. Topics covered include the theory and performance characteristics of single and polyphase transformers and synchro devices for control circuits. Laboratory experiments illustrate the basic principles. TEXTS: Puchstein, Lloyd and Conrad, Alternating Current Machines, 3rd Edition; Fitzgerald and Kingsley, Electric Machinery. PREREQUISITE: EE-251(C).

EE-452(C) ALTERNATING CURRENT MACHINERY (3-4). A continuation of EE-451. Basic principles and performance characteristics of alternators, synchronous motors, single and polyphase induction motors are covered in considerable detail at an intermediate level. Laboratory experiments illustrate the basic principles. TEXTS: Puchstein, Lloyd and Conrad, Alternating Current Machines, 3rd Edition; Fitzgerald and Kingsley, Electric Machinery. PREREQUISITE: EE-451(C).

EE-453(B) ALTERNATING CURRENT MACHINERY (3-4). A combined alternating current machinery course for those curricula not majoring in electrical science. The topics covered include the theory and performance of single and polyphase transformers, single and polyphase induction motors, alternators, synchronous motors and synchros for control circuits. Laboratory experiments illustrate the basic principles. TEXTS: Puchstein, Lloyd and Conrad, Alternating Current Machines, 3rd Edition; Fitzgerald and Kingsley, Electric Machinery, PREREQUISITE: EE-251(C).

EE-455(C) ASYNCHRONOUS MOTORS (2-2). An elementary presentation of the principles and operating characteristics of the induction motor and of single-phase commutator motors. Emphasis is placed upon the unbalanced operation of the two-phase symmetrical induction motor. Laboratory and problem work supplement the theory. TEXTS: Heire and Harness, Electrical Circuits and Machinery, Vol. II; Fitzgerald and Kingsley, Electric Machinery. PREREQUISITE: EE-451(C).
EE-461(C) TRANSFORMERS AND SYNCHROS (3-2).
Single-phase transformer principles, constructional features and operating characteristics. Special transformers. Synchro and induction motor windings. Single-phase and polyphase synchro constructional features. Mathematical analysis of synchros operating under normal and fault conditions. Synchros in control circuits. Laboratory and problem work illustrate the basic principles. TEXT: HEHRE and HARNES, Electrical Circuits and Machinery, Vol. II; Ordinance Pamphlet 1303. PREREQUISITE: EE-241(C) or EE-251(C).

EE-462(B) SPECIAL MACHINERY (4-2).

EE-463(C) SPECIAL MACHINERY (3-2).
The theory and performance of transformers at power and audio frequencies, synchros under normal operating conditions, induction motor principles and operating characteristics in control applications. A brief treatment of DC machinery and special machinery theory (amplitune, etc.) is included, using transfer functions and concepts important in control applications. TEXTS: DAWES, Electrical Engineering, Vols. I and II, 4th Edition; Ordinance Pamphlet 1303; FITZGERALD and KINGSLEY, Electric Machines. PREREQUISITE: EE-251(C).

EE-461(C) SPECIAL MACHINERY (3-4).
The electrical machines required for air and space craft electric power and control systems are covered in such a fundamental manner that future development will be anticipated as far as their theoretical background is concerned. Extensive problems and laboratory work cover the operational behavior and circuit characteristics of the machines studied. TEXTS: DAWES, Electrical Engineering, Vols. I and II, 4th Edition; FITZGERALD and KINGSLEY, Electric Machinery. PREREQUISITE: EE-251(C) or equivalent.

EE-471(C) ALTERNATING CURRENT MACHINERY I (3-4).
The basic alternating current machinery course for those curricula majoring in electrical engineering. Topics covered include the basic theory and operating characteristics of single and polyphase transformers, single and polyphase induction motors and special induction machines. Laboratory experiments illustrate the basic principles. TEXT: FITZGERALD and KINGSLEY, Electric Machinery. PREREQUISITE: EE-272(B).

EE-472(C) ALTERNATING CURRENT MACHINERY II (3-4).
A continuation of EE-471(C). Topics covered include the basic principle and operating characteristics of alternators and synchronous motors based on cylindrical rotor and the two-reaction theories. There is also included a mathematical analysis of synchro control devices and their operating characteristics under normal and fault conditions. Laboratory experiments illustrate the principles: TEXT: FITZGERALD and KINGSLEY, Electric Machinery. PREREQUISITE: EE-471(C).

EE-473(B) SYNCHROS (2-2)
Basic theory and mathematical analysis of single-phase and polyphase synchros. Voltage, current and torque relations under normal and fault conditions. Equivalent circuits and vector diagrams, control circuits using synchros. Laboratory and problem work supplement the study. TEXT: None. PREREQUISITE: EE-251(C) or EE-271(C).

EE-474(C) SYNCHROS AND SPECIAL MACHINES (2-0).
An introduction to the theory of transformers with application to synchros. Special emphasis on the synchro generator-control transformer combination. Elements of induction motor theory with emphasis on the two phases servo motor, its time constants and transfer function representation. TEXTS: Ordinance Pamphlet 1303; Department Notes.

EE-551(B) LINES AND NETWORK SYNTHESIS (3-2).
An intermediate level course for those curricula that do not major in electrical science. Transmission line equations, impedance matching with networks and subs, and network synthesis to provide frequency discrimination are covered at a lower level than in EE-571(B). A limited amount of laboratory work illustrates the basic principles. TEXT: WARE and REED, Communication Circuits, 3rd Edition. PREREQUISITE: EE-251(C).

EE-571(B) LINES AND NETWORK SYNTHESIS (3-4).
A comprehensive course for those curricula majoring in electrical science. Alternating current circuit theory is extended to lines with distributed constants. The topics covered include transmission line equations, impedance matching with networks and subs and network synthesis to provide frequency discrimination. Laboratory work illustrates the basic theory. TEXTS: WARE and REED, Communication Circuits, 3rd Edition; VAN VALKENBURG, Network Analysis. PREREQUISITE: EE-271(C).

EE-651(B) TRANSIENTS AND SERVOMECHANISMS (3-4).
Basic principles of electric transients and servomechanisms. DC and AC transients in series, parallel, series-parallel and coupled circuits. The solution of the differential equations by classical and Laplace operational methods. Servomechanisms with viscous damping and differential and integral control. TEXTS: KURTZ and CORCORAN, Introduction to Electric Transients; THALER and BROWN, Analysis and Design of Feedback Control Systems, 2nd Edition; WHEELER, Basic Theory of the Electronic Analog Computer. PREREQUISITES: EE-451(C) and EE-781(C) or EE-751(C).

EE-652(B) TRANSIENTS AND SERVOMECHANISMS (3-2).
Covers the same field as EE-651(B) with emphasis on the performance features of particular interest in air craft applications. TEXTS: SKILLING, Electrical Engineering Circuits; THALER, Elements of Servomechanisms. PREREQUISITES: EE-282(B), EE-752(C).

EE-653(A) NUCLEAR REACTOR INSTRUMENTATION AND CONTROL (3-4).
The basic principles and methods of nuclear reactor control are presented. The treatment of the elementary reactor with temperature and poisoning feedback is given using linear feedback control system analysis. The requirements for stable operation and accuracy of automatic neutron flux control are analyzed and demonstrated using a reactor kinetics simulator. TEXTS: SCHULTZ, Control of Nuclear Reactors and Power Plants; GLASHONE, Principles of Nuclear Reactor Engineering. PREREQUISITES: EE-651(B) or equivalent.
EE-651(A) NUCLEAR REACTOR POWER PLANT CONTROL (3-4). This course is a continuation of EE-653(A). The elementary thermodynamics of the plant control loop is established and the transfer functions obtained. The dynamic performance of the basic plant is analyzed under various load conditions. Automatic plant control stability and performance using external reactor control systems are investigated. TEXTS: SChuELTZ, Control of Nuclear Reactors and Power Plants; GLaSTONE, Principles of Nuclear Reactor Engineering. PRE-REQUISITE: EE-653(A).

EE-655(B) FILTERS AND TRANSIENTS (3-2). Basic principles of filters and electrical transients. T and Pi section filters and composite filters. DC and AC transients in series, parallel, series-parallel and coupled circuits. The solution of the differential equations by classical methods and Laplace operational methods. TEXTS: KERCHNER and CORCORAN, Alternating Current Circuits; KURZ and CORCORAN, Introduction to Electrical Transients. PRE-REQUISITE: EE-251(C).

EE-660(A) CIRCUIT ANALYSIS (3-2). The study of electric networks utilizing the pole and zero approach. Concepts of sinusoidal steady state response and transient response are unified using this method. The Cauer and Foster forms of reactive networks are studied along with filter circuits. TEXT: Tuttle, Network Synthesis, Vol. I. RESA and Seely Modern Network Analysis. PRE-REQUISITE: EE-251(C) or equivalent.

EE-661(A) CIRCUIT SYNTHESIS (3-2). The concepts studied in EE-660(A) are extended to form a foundation for the design of electrical networks. TEXT: Balarabian, Network Synthesis; Tuttle, Network Synthesis, Vol. I. PRE-REQUISITE: EE-660(A).

EE-667(A) INTRODUCTION TO SERVOMECHANISMS (3-3). The mathematical theory of linear feedback-control systems is presented in detail. This is a terminal course. Both frequency domain and time domain methods are covered. Topics include the Nyquist stability criterion, the Bode diagram and its use, the root locus method and pole and zero configurations. TEXTS: Thaler and Brown, Analysis and Design of Feedback Control Systems, 2nd Edition; Nixon, Principles of Automatic Controls. PRE-REQUISITE: EE-671(A).

EE-671(A) TRANSIENTS (3-4). The basic theory and practical applications of transient phenomena are treated in detail. Emphasis is on electric circuits and electromechanical system transients. The Laplace transform method is used. TEXTS: Gardner and Barnes, Transients in Linear Systems; Wheeler, Basic Theory of the Electronic Analog Computer; Van Valkenburg, Network Analysis. PRE-REQUISITE: EE-251(C) or EE-272(C).

EE-672(A) SERVOMECHANISMS (3-3). The mathematical theory of linear feedback-control systems is discussed in detail. Topics are: basic system equations, time domain and frequency domain relationships, methods for improving performance, damping, differentiation and integration and their relationship to phase concepts, polar and logarithmic plots, design calculations, introduction to the root locus method. Problems and laboratory work illustrate the theory. TEXT: Thaler and Brown, Analysis and Design of Feedback Control Systems, 2nd Edition. PRE-REQUISITES: EE-671(A), EE-452(C), or EE-473(B) and EE-751(C) or equivalent.

EE-673(A) NONLINEAR SERVOMECHANISMS (3-3). A detailed study of phase plane methods and describing function methods. Application of these methods in the analysis and design of nonlinear servos, with emphasis on relay servos. TEXTS: Chestnut and Mayer, Servomechanism and Regulating System Design, Vol. I. Departmental Notes. PRE-REQUISITE: EE-672(A).

EE-674(A) ADVANCED LINEAR SERVO THEORY (3-3). This course includes the following topics: system analysis in the time domain; pole zero, and root locations, and their interpretation in terms of system performance; root loci and their uses; correlations between the time domain and the frequency domain; methods for computing the transient response from the frequency response. TEXT: Thaler and Brown, Analysis and Design of Feedback Control Systems, 2nd Edition. PRE-REQUISITES: EE-671(A) and EE-672(A).

EE-675(A) SAMPLED DATA SERVO SYSTEMS (3-2). A study of the response of servo systems to discontinuous information. The effect of location of the sampler and of the rate of sampling, Z-transformation theory. Data smoothing and prediction. Application of phase plane techniques. TEXTS: Truxal, Automatic Feedback Control System Synthesis; Departmental Notes. PRE-REQUISITES: EE-673(A) and EE-674(A).

EE-676(A) LINEAR AND NONLINEAR SERVO COMPENSATION THEORY (3-2). Extension of normal compensation methods to multiple loop servos. Nonlinear compensation for otherwise linear servos. Linear and nonlinear servos. TEXT: Departmental Notes. PRE-REQUISITES: EE-673(A) and EE-674(A).

EE-677(A) SURVEY OF FEEDBACK CONTROL LITERATURE (1-0). An analysis of current developments in feedback control systems, as disclosed by papers in current technical journals. This course is intended only for candidates for the Doctor's Degree. TEXT: None. PRE-REQUISITES: EE-671(A) and EE-672(A).

EE-711(C) ELECTRONICS (3-2). Elementary theory of the control of electron motion by electric and magnetic fields in vacuum, gaseous conduction phenomena and electron tube characteristics are presented. Principles of the amplifier, rectifier and oscillator circuits. Laboratory work serves to integrate the principles of practical applications and circuits. TEXT: CORCORAN and PRICE, Electronics. PRE-REQUISITE: EE-251(C).

EE-731(C) POWER ELECTRONICS (3-2). Theory and application of various types of electron tubes is covered with particular emphasis on the thyatron. Principles of electronics.
circuitry as applied to control. Application in naval devices is stressed. The laboratory work demonstrates the theory. TEXT: CORCORAN and PRICE, Electronics. PREREQUISITE: EE-231(C).

EE-745(A) ELECTRONIC CONTROL AND MEASUREMENT (3-3). This course presents the principles and practice of electronic control and measurement. It includes the theory of vacuum tube voltmeters, direct coupled amplifiers, oscillators, timing circuits and frequency sensitive circuits with particular attention to their application in the measurement and control of current, voltage, frequency, speed, pressure, temperature, and illumination. Applications are studied in the laboratory. TEXT: Gray, Applied Electronics, 2nd Edition. PREREQUISITE: EE-751(C) or EE-772(B).

EE-751(C) ELECTRONICS (3-4). This is an introduction to the theory and practice of engineering electronics. Topics treated are: electron motion in electric and magnetic fields, thermionic emission, vacuum tube characteristics, gaseous discharge phenomena, gas tube characteristics, transistor theory and applications. TEXT: Ryder, Electronic Engineering Principles, 2nd Edition. PREREQUISITE: EE-251(C) or equivalent.

EE-752(C) ELECTRONICS (3-2). Covers the same field as EE-751(C) with emphasis on avionic rather than laboratory technique. TEXT: Ryder, Electronic Engineering Principles, 2nd Edition. PREREQUISITE: EE-282(B) or equivalent.

EE-755(A) ELECTRONIC CONTROL AND MEASUREMENT (3-4). The principles and practice of electronic control and measurement. Includes the theory of such basic circuits as vacuum tube voltmeters, direct coupled amplifiers, oscillators, timing circuits and frequency sensitive circuits with particular attention to their application in the measurement and control of current, voltage, frequency, speed, pressure, temperature and illumination. TEXT: Gray, Applied Electronics, 2nd Edition. PREREQUISITE: EE-751(C) or EE-772(B).

EE-756(A) ELECTRICAL MEASUREMENT OF NON-ELECTRICAL QUANTITIES (3-3). The measurement of pressure, speed acceleration, vibration strain, heat, sound, light, time, displacement, and other non-electrical quantities by electrical means. Consideration of special problems of measurement encountered in development of missiles and missile guidance systems. TEXT: Kinnard, Applied Electrical Measurement. PREREQUISITE: EE-751 or EE-772(B).

EE-771(B) ELECTRONICS (3-2). The theory of electron tubes and circuits for those curricula requiring advanced treatment. Topics covered include: electron motion in electric and magnetic fields, thermionic emission, gaseous discharge phenomena, vacuum and gas tube characteristics and the principles of such tubes as the ignitron, glow tube, cathode-ray tube, the photo-tube, and circuit applications. TEXT: Gray, Applied Electronics, 2nd Edition. PREREQUISITE: EE-251(C) or equivalent.

EE-772(B) ELECTRONICS (3-2). A continuation of EE-771(B). Topics covered include tuned amplifier circuit theory, class B power amplifiers, class C amplifiers and oscillators. Feedback amplifier theory is given as a basis for analog computer and electronic control applications. Transistor theory and transistor circuitry is presented. TEXT: Gray, Applied Electronics, 2nd Edition. PREREQUISITE: EE-771(B).

EE-773(B) MAGNETIC AMPLIFIERS (2-3). Basic principles of magnetic amplifiers and magnetic amplifier circuits, including feedback and biasing. Emphasis placed on circuits useful in industrial control and military applications. TEXTS: Storm, Magnetic Amplifiers; Instructor’s Notes. PREREQUISITE: EE-251(C).

EE-774(A) MAGNETIC AMPLIFIER CIRCUITS (3-3). Multiple core magnetic amplifier circuitry and design. The primary emphasis is on self saturating and voltage reset circuits. Also included are push-pull configurations and selected special purpose magnetic amplifier circuits. Laboratory includes design and performance testing. TEXT: Storm, Magnetic Amplifiers. PREREQUISITE: EE-773(A).

EE-791(A) MAGNETOHYDRODYNAMICS (3-2). The application of electromagnetic theory to the problems of ionized gases and space technology. TEXT: Cowling, Magnetohydrodynamics. PREREQUISITE: Course in Electromagnetism.

EE-851(B) MAGNETIC DESIGN (4-0). Selected topics in electromagnetic design principles to satisfy the requirements of a particular curriculum. Typical topics are synchro, transformers, relays, magnetic amplifiers, solenoids, and instruments. TEXT: None. PREREQUISITES: EE-111 and EE-251.

EE-871(A) MARINE ELECTRICAL DESIGN (2-4). A first course in the design and analysis of an electrical system and its components. Concurrently with the synchronous generator design, synchronous machine transients and stability are studied leading to the analysis of the designed alternator. Protective devices are studied and specified. Study of types of distribution systems is begun. TEXTS: Kimbark, Power System Stability (Vols. I, II, III); Stevenson, Power System Analysis; Fitzgerald and Kingsley, Electric Machinery; Still and Siekino, Elements of Electrical Machine Design. PREREQUISITE: EE-472(C).

EE-971(A) SEMINAR (1-0). In the seminar sessions, papers on research and developments in the field of electrical science are presented to the more advanced group of students. Some
appreciation for research methods is developed. In these sessions papers treating of student research in progress and matters of major importance in electrical engineering are presented by the faculty and by the students pursuing an advanced engineering curriculum. TEXT: None. PREREQUISITE: A background of advanced work in electrical engineering.

ELECTRONICS

Es-111(C) FUNDAMENTALS OF ELECTRIC CIRCUITS I (4-3). This course is the first of a sequence on electric circuit theory. The major topics are: basic concepts of electrostatic and magnetic fields; definition of the fundamental electric circuit parameters from the field point of view; relationship between Kirchhoff’s laws and field principles; the planar network as a linear graph; development of network theorems; solution of the planar network from nodal and loop methods; introduction of complex quantities and the phasor solution for steady state alternating current excitation. TEXTS: SEARS and ZEMANSKY, University Physics; SKILLING, Electrical Engineering Circuits. PREREQUISITE: Mathematics through calculus.

Es-112(C) FUNDAMENTALS OF ELECTRIC CIRCUITS II (4-3). This course is a continuation of the study of planar networks. The topics are: power relationships in A.C. circuits; mutual inductance; resonance; normalized resonance curves; Q relationships; coupled circuits; Fourier series and periodic driving functions; the complex frequency concept; “natural” and “driven” response of circuits; elementary use of pole-zero method for describing circuit behavior; matrix formulation and solution of the general planar network including Z, Y, transfer and hybrid matrices. TEXTS: SKILLING, Electrical Engineering Circuits; LEV, LUTZ, Linear Circuit Analysis. PREREQUISITE: Es-111(C), Note 1.

Es-113(C) CIRCUIT THEORY (4-2). The objective of this course is to develop facility in the complete solution of electrical circuits with emphasis on transient behavior. The topics are: the Laplace transform method of solution of linear differential equation; use of contour integration for the evaluation of the inverse integral; application to transient studies in electrical networks with illustrations in mechanical and electro-mechanical networks. TEXT: LEV, LUTZ, Linear Circuit Analysis. PREREQUISITE: Es-112(C), Note 1.

Es-120(A) CIRCUIT SYNTHESIS (3-3). Network synthesis is introduced and illustrated. The following are treated: realizability, properties of driving point and transfer functions, synthesis of LC, RC, RL and RLC driving point impedances, approximation, normalization, lattice networks and their transformation, synthesis of transfer functions with emphasis on RC networks TEXTS: STEWART, Circuit Theory and Design; TRELAX, Control System Synthesis; GUILLIN, Synthesis of Passive Networks. PREREQUISITES: Note 1.

Es-129(B) TRANSFORMS AND TRANSIENTS (3-2). The objective of this course is to provide a rigorous foundation in the analysis of linear electric circuits. The topics are: Fourier transforms, Laplace transforms, use of contour integration for evaluation of inversion integrals, description of transient behavior in time and frequency domains. The laboratory will include simulation of transient problems on the analog computer and solution of linear differential equations. TEXT: ASYLTINE, Transform Methods in Linear System Analysis. PREREQUISITE: DC and AC circuit theory, differential equations, previous or concurrent registration in complex variables.

Es-140(C) ELECTRONICS I (3-2). This is a series of three courses designed to give the Nuclear Engineering student an appreciation of electronic equipment used in this science. The first course takes the student through the analysis of network circuits and introduces elementary transient concepts, theory of vacuum and semiconductor diodes, and elementary two-terminal pair networks. TEXTS: SKILLING, Electrical Engineering Circuits; RYDER, Electronic Fundamentals and Applications, 2nd Edition. PREREQUISITES: Mathematics through calculus.

Es-211(C) PHYSICAL ELECTRONICS (3-2). A study of the internal physical behavior of vacuum, gaseous and semiconductor electron devices. A consideration of underlying physical principles, including the fundamental particles of matter, conductors, insulators, and semiconductors, and charge-carrier motion in vacuum and in solids is followed by the study of the basic properties of vacuum diodes, gas-filled tubes, semiconductor diodes, photoelectric devices, control-type vacuum tubes and transistors. TEXT: MILLMAN, Vacuum Tube and Semiconductor Electronics; RYDER, Electronic Fundamentals and Applications, 2nd Edition. PREREQUISITES: Note 1.

Es-212(C) ELECTRONIC CIRCUITS I (4-3). A study of electronic devices as linear or piece-wise linear circuit elements. Consideration is given to the ideal amplifier followed by the study of practical small-signal vacuum tube and transistor amplifiers, and untuned power amplifiers. TEXT: RYDER, Electronic Fundamentals and Applications. PREREQUISITES: Note 1.

Es-213(C) ELECTRONIC CIRCUITS II (4-3). A study of applications of electronic circuit analytical techniques to various basic circuits, including feedback amplifiers, wide-band amplifiers, waveform shaping circuits, tuned voltage amplifiers, and power supplies. TEXT: RYDER, Electronic Fundamentals and Applications. PREREQUISITES: Note 1.

Es-214(C) ELECTRONIC CIRCUITS III (4-3). The following topics are studied: with the objective of providing an engineering grasp of their performance characteristics: sine-wave oscillators, stable multivibrators, amplitude modulation, a-m detection, and frequency conversion, and frequency modulation. TEXT: RYDER, Active Networks; RYDER, Electronic Fundamentals and Applications. PREREQUISITES: Note 1 and basic noise consideration.

Es-215(C) ELECTRONIC DEVICES (3-3). The objective is to provide an understanding of switching circuits, high-frequency techniques and devices, and a description of new electron devices and their applications. Topics studied include monostable and bistable multivibrators, u-h-f effects in tube sand transistor circuits, and microwave tubes. TEXT: PETITT, Electronics Switching Timing and Pulse Circuits, 1st Edition; HARMA, Fundamentals of Electronic Motion. PREREQUISITES: Note 1.
Es-216(B) TRANSMITTERS AND RECEIVERS (3-6). The objective of this course is to give the student the opportunity to coordinate his previous theoretical background in the synthesis of increasingly complex electronic systems. The course is concerned expressly with the design of radio receivers and transmitters for the medium and high-frequency range, and with the considerations which lead to a successful system. The laboratory for this course is concerned with the special circuits peculiar to transmitters and receivers, and with the development of testing procedures for evaluation of system and equipment performance characteristics. TEXTS: Terman, Radio Engineers' Handbook; Sturley, Radio Receiver Design, Part I; Eitel-McCullogh, Inc., Power Tetrodes. PREREQUISITES: Note 1.

Es-220(A) MICROWAVE DEVICES (3-2). The principal topics presented are: circuit components; coupling methods between beams and circuits; matrix formulation of microwave circuit characteristics; analysis of gaseous, solid-state and beam-type microwave devices. TEXTS: Beck, Space Charge Waves; Watkins, Topics in Electromagnetic Theory. PREREQUISITES: Note 2.

Es-229(B) TRANSISTOR CIRCUITS (3-3). This course is to be a brief review, elaboration, and extension of transistor physics and circuits. Topics included are: high frequency equivalent circuits and parameters, high frequency amplification, video amplifiers, switching, class C amplifiers, oscillators, modulation and detection, d-c regulators, transistor-saturable core reactor circuits. TEXTS: Hurley, Junction Transistor Electronics; Shea, Transistor Circuit Engineering, G. E. Transistor Manual, 5th Edition. PREREQUISITES: Note 2.

Es-240(C) ELECTRONICS II (3-3). This course includes the common vacuum tube and transistor circuits, such as rectifiers, voltage amplifiers, and elementary feedback circuits. Special emphasis is placed on these circuits in regard to transient response, bandwidth, stability, and pulse shaping. TEXT: Ryder, Electronic Fundamentals and Applications, 2nd Edition; Schulz, Experiments in Electronics and Communication Engineering, 2nd Edition. PREREQUISITE: Es-140(C).

Es-241(C) ELECTRONICS I (3-2). The first term of a two-term course in fundamentals and applications of electron devices and circuits, primarily for students in curricula other than electronics. Topics studied include: electron emission, characteristics of vacuum tubes, cathode ray tubes, voltage and power amplifiers, feedback circuits. TEXT: Corcoran and Price, Electronics. PREREQUISITE: AC Circuits.

Note 2: Prerequisite for this course is the Basic Curriculum, or the equivalent.

Es-242(C) ELECTRONICS II (3-3). A continuation of Es-241(C). Principal topics include: Semiconductors and transistors, tuned amplifiers, oscillators, modulation and detection, and communication systems. TEXT: Terman, Electronic and Radio Engineering, 4th Edition. PREREQUISITE: Es-241(C).

Es-258(B) INTRODUCTION TO MICROWAVES (3-2). The objective of this course is to serve as an introduction to radar. The principal topics are: wave solutions to the transmission line equations, characteristics of lossless lines, impedance matching via Smith's Charts, lines as resonant circuit elements, common modes in waveguides and resonators, study of the internal and external characteristics of cathode ray tubes, klystrons, magnetrons, and traveling wave tubes. TEXT: Reich, and others, Microwave Principles. PREREQUISITE: Es-242(C).

Es-271(C) ELECTRONICS I (4-2). The first of a series of two courses designed to give the Naval Science student an introduction to the theory and principles of electronics. Appropriate laboratory demonstrations and exercises are utilized. Topics include: vacuum tubes, rectifiers, transistors, and amplifiers. TEXTS: Sheringold, Fundamentals of Radio Communication; Ryder, Electronic Fundamentals and Applications. PREREQUISITE: EE-022(C).

Es-272(C) ELECTRONICS II (4-2). A continuation of Es-272(C). Topics include: oscillators, modulators, antennas, receivers, transmitters, and other pertinent Naval electronic systems. TEXTS: Sheringold, Fundamentals of Radio Communication; Ryder, Electronic Fundamentals and Applications. PREREQUISITE: Es-271(C).

Es-320(A) SYSTEMS ENGINEERING (3-2). A study of the fundamental principles underlying the modern practice of systems engineering. Detailed study of several engineering "cases" illustrating integrated practice. Salient characteristics of various typical components: servos, computers, communication links, airframes, propulsion units; from the point of view of the system analyst or designer. Resume of feedback and stability theory. Fundamental philosophy of system analysis. Formula- tion of system performance indices. System optimization methods; component improvement, logical design, filtering and signal processing. Statistical formulation of the system optimization problem. Simulation and partial system test. Reliability engineering and field performance monitoring. TEXT: Goode and MacMillan, System Engineering. PREREQUISITE: Ma-322 (A), Note 2.

Es-321(B) THEORY OF RADAR (3-3). A study of the fundamental principles of pulsed radar. The principal topics are: the theory of operation of radar timing circuits, indicators, modulators, transmitters, f-f systems, receivers, the radar range equation. TEXTS: Ridenour, Radar System Engineering; M.I.T. Radar School Staff, Principles of Radar (Third Edition). PREREQUISITE. Note 2.

Es-322(B) RADAR SYSTEM ENGINEERING (3-3). A study of the fundamental principles and design considerations for all types of radar. The principal topics are: FM radar, pulse doppler radar, mono-pulse radar, moving target indication, data presentation, track while scan systems. TEXTS: Ridenour, Radar System Engineering; M.I.T. Radar School Staff, Principles of Radar (Third Edition). PREREQUISITE: Es-321(B).
Es-328(B) ELECTRONIC COUNTERMEASURES (3-3). This is a study of radio frequency radiations, and the characteristics of devices used for detecting and interfering with these radiations. The course includes passive and active systems, spectrum analyzers, wideband video amplifiers, noise figure problems, antennas, direction-finding systems, frequency scanning and memory systems, data presentation. A term paper concerning some aspect of ECM is written during the term which is followed by an oral report to the class discussing pertinent areas of the term paper. Course material is classified secret, thus requiring a secret clearance and a need to know for enrollment in the course. TEXT: Instructor’s notes, classified thesis and documents. PREREQUISITES: Note 2.

Es-329(B) SONAR SYSTEMS ENGINEERING (3-3). A study of sonar theory including echo ranging equations, sonar transducers, sonar systems components and characteristics. This course also includes the trends and new developments in this field. TEXT: Navy Instruction Manuals; Current technical literature. PREREQUISITES: Ph-431(B), Note 1.

Es-330(A) AUTOMATION AND SYSTEM CONTROL (3-3). A study of basic techniques and problems in the integration of electronic computers, data transfer links, mechanized material handling, power modulators, and display and monitor functions, to achieve automatic control of complex system functions such as machine tool control, automatic production, ballistic missile launching, target surveillance and weapon control for automatic tactical systems. Analysis of the component design, economic, and system considerations which must be met for successful application of automation methods. Basic principles of computer-control. Methods of specifying fixed system performance dynamics. Formulation of desired performance parameters. Synthesis of computer structure and programs to achieve desired overall characteristics. Integration of command, monitor, and operator functions to achieve maximum effectiveness and reliability. TEXT: Grabbe, Ramo and Wooldridge, Handbook of Automation, Computation, and Control, Vol. 2 Computer and Data Processing. PREREQUISITES: Note 2.

Es-331(B) GUIDANCE AND NAVIGATION (4-0). A study of the fundamental theoretical principles underlying systems of guidance and navigation. The principal topics are: radio, inertial, infra-red and celestial techniques available for guidance and navigation; fundamental limits on accuracy of the available techniques; kinematics and dynamics of radiolocation, flight, control characteristics; terrestrial and celestial references; sensors. TEXT: Locke, Guidance. PREREQUISITES: Note 2.

Es-332(B) GUIDANCE SYSTEM ENGINEERING (3-3). A study of the basic problem of integrating navigational information to achieve stable control of a given vehicle. In addition to theoretical study, representative missile guidance systems are studied and the problems of evaluation and testing are considered; including techniques of telemetering, computer simulation, test range instrumentation, and statistical evaluation of overall performance. TEXT: Locke, Guidance. PREREQUISITE: Es-331(B).

Note 1: Prerequisites for this course are the Basic Curriculum courses preceding this course, or the equivalent.

Es-336(A) SONAR SYSTEMS I (3-3). A study of the theory and engineering practices of active sonar systems. Emphasis is placed on the new developments in modern active sonar systems, and the trend of the future. Characteristics and capabilities of existing active sonar systems are determined in the laboratory. TEXTS: Instructor’s Notes; Equipment Instruction Books; Current Literature. PREREQUISITE: Ph-432(A); Ph-461(A), Note 2.

Es-337(A) SONAR SYSTEMS II (2-3). A study of the theory and engineering practices of passive sonar systems. Emphasis is placed on the new developments in modern passive sonar systems, and the trend of the future. Characteristics and capabilities of existing passive sonar systems are determined in the laboratory. TEXTS: Instructor’s notes; Equipment Instruction Books; Current Literature. PREREQUISITE: Es-336(A).

Es-347(B) MISSILE GUIDANCE (3-3). A study of the fundamental principles of missile guidance systems. The principal topics are: radio, inertial, infra-red and celestial techniques available for guidance, reference systems, testing, and range instrumentation. TEXTS: Locke, Guidance; Classified reports. PREREQUISITES: Es-352(B), Es-540(B).

Es-351(B) PULSE TECHNIQUES AND RADAR FUNDAMENTALS (3-3). A study of clipping, differentiating, and integrating circuits, clamping, coupling circuits, relaxation oscillators, pulse amplifiers, transistor pulse techniques, and fundamental principles of radar. TEXTS: N.I.T. RADAR SCHOOL STAFF, Principles of Radar (3rd Edition); MILLMAN, RAUD, Pulse and Digital Circuits; RIDENOUR, Radar System Engineering. PREREQUISITE: Es-258(B).

Es-352(B) RADAR SYSTEMS (3-3). A continuation of Es-351(B). The course content includes a study of search, fire-control, and radar guidance systems with particular emphasis on pulse, FM, doppler and mono-pulse systems. TEXTS: RIDENOUR, Radar System Engineering; Classified Documents. PREREQUISITE: Es-351(B).

Es-407(A) DETECTION THEORY (4-0). A study of the technical literature pertaining to the application of statistical decision theory to the problem of the detection of signals in noise. Recent developments in various fields of communication systems engineering will be emphasized. TEXT: None. PREREQUISITES: Graduate standing and consent of instructor.

Es-408(A) SIGNAL PROCESSING METHODS (3-0) A study of the literature pertaining to signal processing techniques. Independent projects and student research will be encouraged. TEXT: None. PREREQUISITE: Es-407(A).

Es-410(B) COMMUNICATION THEORY (4-0). This course considers the characteristics of noise, noise handling concepts, periodic signals, random signals, stationary and ergodic random processes, correlation function, signal spectra, sampling theory, transmission of signals through linear systems, impulse response of linear transmission systems, and signal matching. The elements of information theory, including information measure, channel capacity, and coding concepts are also considered. TEXTS: Chapters 1, 5-6, Schwartz, Information Transmission, Modulation and Noise; Chapters 6 and 7, Mason - Zimmermann, Electronic Circuits, Signals and Systems. PREREQUISITE: Note 2.
Es-419(C) ELECTRONIC COMPUTERS (3-3). Basic principles of digital, analog, and incremental computers. Elements of numerical analysis, Boolean algebra, logical design. Basic computer programming. Principles of simulation. The laboratory is devoted to applications practice on the three types of computers. TEXT: Ledley, Digital Computer and Control Engineering. PREREQUISITES: Note 1.

Es-420(A) OPTIMUM COMMUNICATION SYSTEMS (3-2). Optimization criteria and considerations in circuits and systems subjected to signal inputs having stochastic components. Optimum linear and non-linear data processing operators for both continuous and sampled data systems. Signal detection criteria are compared, and standard engineering methods are evaluated and compared with optimum techniques. Laboratory exercises will include analog and digital computer simulation of problems of current scientific interest. TEXTS: Selected technical reports and references from scientific periodicals. PREREQUISITES: Ma-322(A), Note 2.

Es-421(B) MODERN COMMUNICATIONS I (3-3). A statistical comparative study of information content and signal to noise properties of frequency, phase, amplitude, modulation, pulse modulation, coding, and single-sideband. Additional topics are: double-sideband and synchronous detection, FSK, Kineplex, and multiplexing. Emphasis will be placed upon system compatibility of the transmitter, medium, and receiver in the communication link. TEXTS: Chapter 8, Mason-Zimmermann, Electronic Circuits, Signals and Systems; Nichols and Rauch, Radio Telemetry. PREREQUISITES: Note 2.

Es-422(B) MODERN COMMUNICATIONS II (3-3). A continuation of Es-421(B). Topics include: Facsimile, television, noise modulation systems, correlation and matched filter techniques, low noise detectors, space communication, and other communications topics of current interest. TEXT: Instructor's notes; Equipment Manuals, Research and Development Documents. PREREQUISITE: Es-421(B).

Es-439(A) DATA PROCESSING METHODS (3-2). A study of the characteristics of modern large scale electronic computing systems. Problem analysis, programming, and data handling procedures useful in the application of computers to system control. TEXT: Ralston-Wulf, Mathematical Methods for Digital Computers. PREREQUISITES: Note 2.

Es-510(C) ELECTRONIC MEASUREMENTS (3-6). A treatment of the principles and techniques of measurement over the entire frequency band, using lumped, transmission line and waveguide components. The areas considered are: measurement of frequency, power, phase, and impedance by means of lines, bridges, and resonance methods. The laboratory allows the student to acquire an ability to analyze new problems, and to plan and implement a method of solution. TEXTS: Terman and Pettit, Electronic Measurements; Hartshorn, Radio Frequency Measurements. PREREQUISITES: Note 1.

Es-520(B) AERO INSTRUMENTATION (3-2). A study of the instrumentation problem as encountered in modern high-performance aircraft. The performance characteristics and accuracy of conventional cockpit instruments such as air-speed indicators, barometric altimeters, rate-of-climb indicators, and basic gyro instrumentation are covered, as well as more advanced systems such as landing systems, ILS, GCA, Tacon, Omnimage, etc. The emphasis is toward pilot-oriented instrumentation rather than fully automatic data transducers. TEXT: Sandretto, Electronic Aviation Engineering. PREREQUISITE: Es-332(B).

Es-540(B) RADIO TELEMETRY AND SIMULATION (3-3). A survey of telemetering and missile guidance methods including consideration of time and frequency division multiplexing, pulse modulation techniques, FM/FM telemetry, transducers, data recording devices, analog and digital computation, simulation of the tactical problem. TEXT: Locke, Guidance; Nichols and Rauch, Radio Telemetry. PREREQUISITES: Es-351(B).

Es-611(C) INTRODUCTION TO DISTRIBUTED CONSTANT NETWORKS (4-3). The objective of this course is to introduce the distributed constant network and its relationship to the general iterative lumped constant network. The topics are: solution of the transmission line as an example of the wave equation; transient and steady state behavior of the transmission line; the circle diagrams and their usage; matching and impedance measurement; the lumped constant iterative transmission line equivalent; general iterative networks; constant k, m-derived filters; matching half-sections. TEXT: Stewart, Circuit Analysis of Transmission Lines. PREREQUISITES: Note 1.

Es-612(C) INTRODUCTION TO ELECTROMAGNETICS (4-0). An introduction to the concepts utilized in electromagnetic theory. The material covered includes vector analysis, field theorems, the electrostatic field, dielectric materials, electric current, the magnetic field, Maxwell's hypothesis, plane waves, radiation, antennas, wave guides, and resonators. TEXT: Skilling, Fundamentals of Electric Waves (Second Edition). PREREQUISITES: Note 2.

Es-620(B) THEORY OF ANTENNAS (3-3). This course is intended to make the student familiar with the more common types of antennas and feed systems. The attack is essentially an engineering approach, applying to practical systems, the mathematics and field theory presented in earlier courses. The laboratory is directed to the measurement of field intensities, antenna patterns, input impedances and feed systems. TEXT: Kraus, Antennas. PREREQUISITES: Note 2.

Es-621(B) ELECTROMAGNETICS I (5-0). Phasor notation; generalized coordinates; rectangular, cylindrical, and spherical harmonics; Bessel functions; Maxwell's equations for time varying fields; displacement current density; retarded potentials;

Note 2: Prerequisite for this course is the Basic Curriculum, or the equivalent.
circuit concepts from fields; impedance; skin effect; Poynting’s theorem, propagation of plane waves; phase velocity and Snell’s law; pseudo-Brewster angle; waves in imperfect media; guided waves. TEXT: *Rasio and Whinnery, Fields and Waves in Modern Radio (Second Edition).* PREREQUISITES: Note 2.

Es-622(A) ELECTROMAGNETICS II (4-0). A continuation of Es-621(B). TEM, TE, TM waves; rectangular and cylindrical wave guides; miscellaneous guiding systems; resonant cavities; fields from dipole antenna; gain; image antenna; field from rhombic antenna; antenna arrays; induced EMF method; pseudo-Maxwell’s equations; parabolic reflector; slot antennas; horns, biconical antenna; driving point impedance of cylindrical antenna; receiving antenna. TEXT: *Rasio and Whinnery, Fields and Waves in Modern Radio (Second Edition).* PREREQUISITE: Es-621(B).

Es-627(A) ANTENNA SYSTEMS THEORY (3-2). A discussion of the relationship of the antenna to the utilization of the antenna-derived information in the communication system. Topics described include: Application of communication theory to antenna design; “optimum” antennas. Data processing antennas with particular reference to radio astronomy and airborne synthetic arrays, Antenna pattern synthesis using computer logic and time modulated antenna patterns. TEXT: Instructor’s notes. PREREQUISITE: Es-620(B), Note 2.

Es-628(B) INTRODUCTION TO DISTRIBUTED CONSTANTS CIRCUITS (4-3). The course treats distributed circuits in general. Starting with development of the wave equation properties and behavior of smooth lines are developed for steady state and transient conditions. Also treated are principles and design of constant k, m-derived filter networks. Characteristic impedance, input impedance, surge impedance, iterative impedance, impedance matching, and propagation constants are studied. Graphical as well as mathematical solutions of the transmission line are developed and their use explored. TEXT: *Brodwell and Beam, Theory and Applications of Microwaves; Everett and Anner, Communication Engineering, 3rd Edition.* PREREQUISITE: Mathematics through calculus, Basic electric circuit theory.

Es-629(B) AIRBORNE ANTENNAS AND PROPAGATION (3-3). The antenna topics are: stub antennas, I’s, arrays, lenses, slots, flush mounts, driven structures, radomes, reflectors, frequency independent antennas, and others. Propagation topics include: effects of relative motion, doppler, scatter, polarization, etc; ionospheric and atmospheric effects for space vehicle to earth links; effects of flames and hypersonic induced discontinuities; modeling and testing procedures. TEXTS: *Kraus, Antennas; Locke, Guidance.* PREREQUISITES: Note 2.

Es-630(B) THEORY OF PROPAGATION (4-0). A study of the theory and technology concerning the transmission of radio frequency energy through space. The course includes: ground wave, sky wave, and tropospheric propagation; effects of terrain and weather on path, penetration of VLF in sea water, ionospheric layers, effects of ionospheric perturbations on transmission path, atmospheric noise, prediction of usable frequencies; ducting, and humidity effects, propagation into polar regions.

Note 1: Prerequisites for this course are the Basic Curriculum courses preceding this course, or the equivalent.

Es-639(B) CONTROL OF ELECTROMAGNETIC ENVIRONMENT (4-3). This course is designed to emphasize the requirements for system performance and capability where many radiating systems are operated in close proximity. The topics include shielding, sources of radiation, system coupling, effects of coupling, effects of terrain, and structures, noise sources and noise control, ground effects, and factors influencing choice of site, etc. TEXT: Instructor’s notes. PREREQUISITES: Graduate standing and consent of instructor.

Es-920(A) SYSTEMS SEMINAR (3-0). This seminar provides an opportunity to apply the techniques and methods studied in the course in system engineering and serves to integrate the student’s entire program of study. Groups of students undertake the overall specification and design of an integrated weapon's systems, ECM, navigational, or communications system, under the instructor’s consultation and guidance. Emphasis is on the integration of electronic devices and evaluation of system performance. TEXTS: Selected Technical Reports and Periodicals. PREREQUISITE: Es-320(A).

GEOLOGY

Ge-101(C) PHYSICAL GEOLOGY (3-2). The study of the various geological phenomena. Topics discussed are: rock-forming minerals; igneous, sedimentary, and metamorphic rocks; weathering and erosion; steam sculpture; glaciation; surface and sub-surface waters; volcanism, dynamic processes; structural geology; and interpretation of topographic maps. The course stresses those topics of particular interest to the petroleum engineer. TEXT: *Gilluly, Principles of Geology.* PREREQUISITE: Ge-401(C).

Ge-201(B) CRYSTALLOGRAPHY AND GEOLOGY (3-0). A course directed towards the specific needs of the Nuclear Engineering groups. About half the time is spent on modern concepts of crystallography including atomic bonding, lattices, point groups, space lattices, x-ray diffraction theory and techniques, polymorphism and isomorphism. Minerals, rocks, and physical geology are then covered with special emphasis on dynamic principles and seismology. TEXTS: *Dana and Hurlbut, Manual of Mineralogy; Gilluly, Principles of Geology.* PREREQUISITES: Ph-240(C), Ph-635(B), Ch-412(C).

Ge-241(A) GEOLOGY OF PETROLEUM (2-4). Seminars and discussion on the origin, accumulation, and structures which aid in the accumulation of petroleum, its general occurrence, and distribution. This course is supplemented by reading assignments in the current petroleum and geology journals. TEXT: *Lalicker, Principles of Petroleum Geology.* PREREQUISITE: Ge-101(C).
Ge-302(C) DETERMINATIVE MINERALOGY (1-4). The lectures are designed to familiarize the student with the principles and techniques involved in determining minerals in the laboratory. The laboratory periods are spent in the determination of some fifty of the more common minerals by blowpipe, chemical, x-ray diffraction and crystallographic methods. TEXTS: Lewis and Hawkins, Determinative Mineralogy; Dana and Ford, Textbook of Mineralogy. PREREQUISITE: Cr-301(B) or Cr-311(B).

Ge-401(C) PETROLOGY AND PETROGRAPHY (2-3). The various igneous rock series on the basis of physical chemical theories; the characteristics, structures and textures of igneous rocks; the metamorphic rocks, mineral alteration metamorphism and the resultant rock types. The laboratory work consists of the study of the various rocks in hand specimens, and in thin sections under the petrographic microscope. The course is supplemented by trips to nearby localities. TEXTS: Passon and Knopp, Rocks and Rock Minerals; Grout, Petrography and Petrology. PREREQUISITE: Cr-301(B) or Cr-311(B).

LECTURE PROGRAM
LP-101(L) NPS LECTURE PROGRAM I (0-1). A series of weekly lectures to be delivered by authorities in education and government, designed to extend the knowledge of the officer students in the fields of world politics, international affairs and economics.

LP-102(L) NPS LECTURE PROGRAM II (Space Technology) (0-1). A series of weekly lectures to be delivered by authorities in the scientific fields associated with Space Technology. Topics will be chosen from among the new developments most prominent or promising in the advancing field of outer space exploration for delivery at an appropriate level of technical sophistication.

MATHEMATICS

Ma-011(C) BASIC ALGEBRA AND TRIGONOMETRY II (3-0). Vectors. Exponential and logarithmic equations. Trigonometric identities. Determinants and systems of linear equations. Quadratic and higher order equations. Straight line and conic section. TEXT: Andres, Miser and Reingold, Basic Mathematics for Engineers. PREREQUISITE: Ma-010(C).

Ma-021(C) INTRODUCTION TO ALGEBRAIC TECHNIQUES (5-0). Algebraic techniques are developed from the postulates for integers. TEXT: Lowenstein, Beginning Algebra. PREREQUISITE: None.

Ma-022(C) CALCULUS AND FINITE MATHEMATICS I (5-0). The concept of function is introduced with polynomials and rational functions used for examples. The basic ideas of differentitation and integration are presented. Introductory concepts of set theory are considered. TEXTS: Cooley, First Course in Calculus; Kemeny, Snell, Thompson, Introduction to Finite Mathematics. PREREQUISITE: Ma-021(C).

Ma-023(C) CALCULUS AND FINITE MATHEMATICS II (5-0). Basic concepts of probability and matrix theories; elementary logic; linear programming; applications in social sciences are stressed. TEXT: Kemeny, Snell, Thompson, Introduction to Finite Mathematics. PREREQUISITE: Ma-022(C).

Ma-050(C) SURVEY OF ANALYTIC GEOMETRY AND ELEMENTARY CALCULUS (4-0). Concepts of function, limit, continuity. Analytic geometry of the straight line and conic sections. Elements of the differential and integral calculus with emphasis on polynomials and the simpler transcendental functions. Applications are stressed throughout. TEXT: Denbow and Goedicke, Foundations of Mathematics. PREREQUISITE: Recent course in algebra and trigonometry.

Ma-051(C) CALCULUS AND ANALYTIC GEOMETRY I (5-0). Fundamentals of plane analytic geometry, concepts of function, limit, continuity. The derivative and differentiation of algebraic and trigonometric functions with applications. Derivatives of higher order. Differentials. Formal integration of elementary functions. Rolle’s theorem, areas, volumes of revolution. TEXTS: Thomas, Calculus and Analytic Geometry; Granville, Smith and Longley, Elements of the Differential and Integral Calculus. PREREQUISITE: Ma-031(C) or its equivalent.

Ma-052(C) CALCULUS AND ANALYTIC GEOMETRY II (5-0). Selected topics from plane analytic geometry. Differentiation and integration of transcendental functions. Hyperbolic

Ma-053(C) CALCULUS AND ANALYTIC GEOMETRY III (3-0). Partial derivatives, directional derivatives, total differential. Chain rule differentiation. Multiple integration and applications. Introduction to Infinite Series. TEXT: THOMAS, Calculus and Analytic Geometry. PREREQUISITE: Ma-052(C), Ma-081(B) must be taken concurrently.

Ma-071(C) CALCULUS I (5-0). The calculus of functions of a single independent variable with emphasis on basic concepts. Derivatives, differentials, applications. Rolle's theorem and the mean value theorem. Infinite integral with applications. Elementary transcendental functions. Topics from plane analytic geometry to be introduced as necessary. Polar coordinates. TEXT: THOMAS, Calculus and Analytic Geometry. PREREQUISITES: Ma-031(C) or its equivalent, and previous work in calculus.

Ma-073(B) DIFFERENTIAL EQUATIONS (5-0). A continuation of Ma-072(C). Series of constants; power series; Fourier series; first order ordinary differential equations; ordinary linear differential equations with constant coefficients; simultaneous solution of ordinary differential equations; series solution of ordinary differential equations, including Bessel's Equation. TEXTS: THOMAS, Calculus and Analytic Geometry; KAPLAN, Advanced Calculus; GOLOB and SHANKS, Elements of Ordinary Differential Equations. PREREQUISITE: Ma-072(C) or Ma-061(C).

Ma-081(B) INTRODUCTION TO VECTOR ANALYSIS (2-0). Solid analytic geometry using vector methods. Vector equations of motion. Differentiation and integration of vector functions. Space curves, arc length, curvature. The gradient vector. Line integrals. TEXT: THOMAS, Calculus and Analytic Geometry. PREREQUISITES: Ma-052(C) or Ma-071(C). Ma-053(C) or Ma-072(C) must be taken concurrently.

Ma-103(B) PROJECTIVE GEOMETRY (3-0). Transformations in Euclidean geometry, invariants; perspectivities, invariants; Desargue's triangle theorem; principle of duality; homogeneous coordinates of points and lines; linear combinations of points and lines; cross ratio, a projective invariant; harmonic division, properties of complete quadrangles and complete quadrilaterals; projective transformations, the projective group; projective theory of conics, related to affine and metric properties. TEXTS:GRAUSTEIN, Introduction to Higher Geometry; STEURK, Analytic and Projective Geometry. PREREQUISITE: Consent of Instructor.

Ma-104(A) ALGEBRAIC CURVES (3-0). An introduction to the study of algebraic geometry is given by means of a selection of topics from the theory of curves, centering around birational transformations and linear series. TEXT: WALKER, Algebraic Curves. PREREQUISITES: Ma-103(A) and Ma-105 (A) or consent of instructor.

Ma-105(A) FUNDAMENTALS OF MODERN ALGEBRA I (3-0). Concepts of integral domain and field based on real integers and rational numbers; concept of ring based on polynomials; groups of transformations, cyclic and permutation groups; concepts of isomorphism, automorphism, homomorphism, equivalence. Vectors and vector spaces. TEXT: BIRKHOFF and MACLANE, A Survey of Modern Algebra (Revised edition). PREREQUISITE: Consent of instructor.

Ma-106(A) FUNDAMENTALS OF MODERN ALGEBRA II (3-0). Continuation of Ma-105(A). Algebra of matrices; algebra of classes, Boolean algebra, lattices; theory of rings and ideals with applications to geometry and linear algebra; algebraic number fields; introduction to Galois Theory. TEXT: BIRKHOFF and MACLANE, A Survey of Modern Algebra (Revised Edition). PREREQUISITE: Ma-105(A).

Ma-107(A) INTRODUCTION TO GENERAL TOPOLOGY (3-0). Review of usual topology in Euclidean Fundamentals of point set topology, e.g., compactness, connectivity, homeomorphism, etc. Hausdorff, metrizable, regular spaces, and embedding theorems. Applications. TEXT: SPENCER and HALL, Elementary Topology. PREREQUISITE: Ma-109(A) or consent of instructor.

Ma-109(A) FUNDAMENTALS OF ANALYSIS I (3-0). Elements of set theory and topology in Euclidean vector valued functions, differentials and Jacobians; functions of bounded variation. TEXTS: APOLST, Fundamentals of Analysis; COURANT, Differential and Integral Calculus. PREREQUISITE: A course in differential and integral calculus.

Ma-110(A) FUNDAMENTALS OF ANALYSIS II (3-0). Theory of Riemann-Stieljes integration, multiple integrals, sequences and series of functions. TEXTS: APOLST, Fundamentals of Analysis; COURANT, Differential and Integral Calculus. PREREQUISITE: Ma-109(A).

Ma-111(C) INTRODUCTION TO ENGINEERING MATHEMATICS (4-0). Partial differentiation; multiple integrals; hyperbolic functions. The laboratory periods are devoted to a review of selected topics in basic calculus. TEXTS: GRANVILLE, SMITH and LONGLEY, Elements of the Differential and Integral Calculus; Wylie, Advanced Engineering Mathematics; KAPLAN, Advanced Calculus. PREREQUISITES: A former course in differential and integral calculus, and Ma-120(C) or Ma-150 (C) to be taken concurrently.

Ma-112(B) DIFFERENTIAL EQUATIONS and INFINITE SERIES (5-0). A continuation of Ma-111(C). Constant term series; series of functions, convergence concepts; Taylor's formula; Fourier series and integral; orthogonal functions, ordinary differential equations of first order, elementary solutions; linear equations with constant coefficients; systems of linear equations; power series solution of linear equations. TEXT: KAPLAN, Advanced Calculus; Wylie, Advanced Engineering Mathematics. PREREQUISITE: Ma-111(C).
Ma-113(B) VECTOR ANALYSIS and PARTIAL DIFFERENTIAL EQUATIONS (4-0). A continuation of Ma-112(B). Calculus of vectors; differential operators; line and surface integrals; Green's, Stokes' and divergence theorems. Separation of variables; boundary conditions; applications to heat flow. TEXTS: Wylie, Advanced Engineering Mathematics; Spiegel, Vector Analysis. PREREQUISITE: Ma-112(B).

Ma-114(A) COMPLEX VARIABLES, FOURIER AND LAPLACE TRANSFORMS (3-0). A continuation of Ma-113(B). Fourier and Laplace Transforms. Complex Algebra. Analytic Functions; Integration; Taylor and Laurent series; Residue Theory; conformal mapping; inversion integrals. TEXTS: Wylie, Advanced Engineering Mathematics; Churchill, Complex Variables. PREREQUISITE: Ma-113(B).

Ma-116(A) MATRICES AND NUMERICAL METHODS (3-2). Finite differences, interpolation, numerical differentiation and integration; numerical solution of polynomial equations; numerical methods for initial value and boundary value problems involving ordinary and partial differential equations; solution of systems of linear algebraic equations; elementary properties and types of matrices; matrix algebra; latent roots and characteristic vectors of matrices; numerical methods for inversion of matrices. TEXTS: Booth, Numerical Method; Kunz, Numerical Analysis; Milne, Numerical Calculus. PREREQUISITES: Ma-113(B), or Ma-156(B), or Ma-183(B), or Ma-245(A), or Ma-246(A).

Ma-120(C) VECTOR ALGEBRA AND SOLID ANALYTIC GEOMETRY (3-1). Real number system. Algebra of complex numbers. Vectors and their algebra. Analytic geometry of space; points, lines, and planes in scalar and vector notation. Determinants, matrices and linear systems; linear dependence. Special surfaces. Laboratory periods devoted to review of essential topics in trigonometry and plane analytic geometry. TEXTS: Smith, Gale and Neely, New Analytic Geometry; Weatherburn, Elementary Vector Analysis; Churchill, Introduction to Complex Variables; USNPS Notes; Brand, Vector Analysis; Spiegel, Theory and Problems of Vector Analysis. PREREQUISITE: A course in plane analytic geometry.

Ma-125(B) NUMERICAL METHODS FOR DIGITAL COMPUTERS (2-2). Numerical solution of systems of linear algebraic equations, polynomial equations, and systems of non-linear algebraic equations; finite differences, numerical interpolation, differentiation, integration; numerical methods for solving initial value and boundary value problems involving ordinary and partial differential equations. TEXTS: Booth, Numerical Methods; Kunz, Numerical Analysis; Milne, Numerical Calculus. PREREQUISITE: Ma-113(B) or Ma-156(B) or Ma-183(B), or Ma-245(A), or Ma-246(A).

Ma-126(B) NUMERICAL METHODS FOR DIGITAL COMPUTERS (3-2). Lagrangian polynomial approximations to real functions. Introduction to best polynomial approximations in the sense of least squares. Minimax polynomial approximations. Numerical methods for solving equations and systems of equations. Difference calculus, numerical differentiation and integration. Selected numerical methods for solving initial value and boundary value problems involving ordinary and partial differential equations. The laboratory periods include sample problems solved on hand-operated keyboard calculators; emphasis is given to methods which are useful with large scale automatic digital computers. TEXTS: Milne, Numerical Calculus; Kunz, Numerical Analysis. PREREQUISITE: Ma-152(B) or equivalent.

Ma-127(B) SCIENTIFIC COMPUTATION WITH DIGITAL COMPUTERS (3-2). Numerical methods for solution of scientific and engineering problems using a high speed digital computer; reduction of problems to mathematical language and the design of programs for their solution; computer evaluation of functions; systems of linear equations and differential equations; laboratory periods will be devoted to problem solving with a digital computer being used for demonstration. TEXTS: Milne, Numerical Calculus; Kunz, Numerical Analysis. PREREQUISITE: Ma-073(B) or equivalent.

Ma-131(C) PARTIAL DERIVATIVES AND MULTIPLE INTEGRALS (3-1). Concepts of function and limit. Fundamentals of sequences and series. Elementary properties of power series and Fourier series. Derivatives and partial derivatives of scalar and vector functions. Leibnitz's Formula. Partial and multiple integrals. Laboratory period will be used for review of elementary calculus. TEXTS: Sokolnikoff and Sokolnikoff, Higher Mathematics; Granville, Smith and Longley, Elements of Differential and Integral Calculus. PREREQUISITE: A course in differential and Integral Calculus and Ma-120(C) or Ma-150(C) to be taken concurrently.

Ma-150(C) VECTORS AND MATRICES WITH GEOMETRIC APPLICATIONS (4-1). Real number system. Algebra of complex numbers. Vector algebra. Analytic geometry of space, points, lines and planes in scalar and vector notation. Special surfaces. Frenet-Serret formulae, directional derivative, gradient and curl. Determinants, matrices and linear systems; linear dependence. Laboratory periods devoted to review of essential topics in algebra, trigonometry and plane analytic geometry. TEXTS: Smith, Gale, Neely, New Analytic Geometry; Brand, Vector Analysis; Churchill, Introduction to Complex Variables, USNPS Notes. PREREQUISITE: A course in plane analytic geometry and calculus.

Ma-152(B) INFINITE SERIES (3-0). Convergence of a series, uniform convergence. Taylor series in one and two variables; associated approximation methods. Expansion of function in Fourier series; even and odd functions. Series solution of differential equations, introducing method of Frobenius. TEXTS: GRANVILLE, SMITH and LONGLEY, Elements of the Differential and Integral Calculus; SOKOLNIKOFF and SOKOLNIKOFF, Higher Mathematics for Engineers and Physicists. PREREQUISITE: Ma-151(C) or equivalent. (May be taken concurrently.)

Ma-153(B) VECTOR ANALYSIS (3-0). Differential and integral relations involving vectors. Gradients, divergence and curl. Normals and tangents to lines and surfaces. Line and surface integrals. Theorems of Gauss, Green, and Stokes, and applications. Curvilinear coordinates. TEXTS: PHILLIPS, Vector Analysis; SPIEGEL, Theory and Problems of Vector Analysis. PREREQUISITE: Ma-120(C) or Ma-150(C).

Ma-156(A) PARTIAL DIFFERENTIAL EQUATIONS (3-0). Solution of boundary value problems by separation of variables. Orthogonal functions and introduction to Sturm-Liouville theory. Problems involving expansions in Bessel functions and Legendre polynomials. TEXT: CHURCHILL, Fourier Series and Boundary Value Problems. PREREQUISITE: Ma-152(B).

Ma-158(B) SELECTED TOPICS FOR AUTOMATIC CONTROL (4-0). Analytic functions. Cauchy's theorem and formula. Taylor and Laurent series residues, contour integration, conformal mapping. The Laplace transform and its use in solving ordinary differential equations; inversion integral. Systems of linear differential equations. Stability criteria. TEXTS. CHURCHILL, Introduction to Complex Variables and Applications; CHURCHILL, Modern Operational Mathematics in Engineering. PREREQUISITES: Ma-120(C) and Ma-151(C).

Ma-162(C) INTRODUCTION TO CALCULUS (5-0). The limit concept. The derivatives of elementary functions. Elementary applications of derivatives. Differentials, higher order derivatives and curvature. The integral as an antiderivative and as an area. Elementary applications of integration. TEXT: GRANVILLE, SMITH and LONGLEY, Elements of Differential and Integral Calculus. PREREQUISITE: Ma-161(C) or satisfactory evidence of competence in analytic geometry.

Ma-163(C) CALCULUS AND VECTOR ANALYSIS (4-0). Elementary vector operations. Partial derivatives, total derivatives and total differentials with applications. Partial and multiple integrals. Differentiation of vectors; gradient, divergence and curl. Introduction to line integrals. TEXTS: PHILLIPS, Vector Analysis; GRANVILLE, SMITH and LONGLEY, Elements of the Differential and Integral Calculus. PREREQUISITE: Ma-162(C) or a recent course in differential and integral calculus.

Ma-170(C) CALCULUS FOR MANAGEMENT (3-0). Review of elementary calculus. Emphasis on applications to probability, statistics, and the management sciences. TEXT: GRANVILLE, SMITH and LONGLEY, Elements of the Differential and Integral Calculus. PREREQUISITE: A previous course in integral calculus.

Ma-193(A) SET THEORY AND INTEGRATION (2-0). Set theoretic concepts. Basic concepts in the theories of Riemann, Lebesgue, and Stieltjes integrals with emphasis on applications to probability theory. TEXTS: MUNROE, Introduction to Measure and Integration. PREREQUISITE: Ma-181(C) or equivalent.

Ma-196(A) MATRIX THEORY (3-0). Algebra of matrices; characteristic value of matrices; Hamilton-Cayley and Sylvester's theorems; Matrix methods in the solution of systems of differ-
COURSE DESCRIPTIONS—MATHEMATICS

Ma-230(C) CALCULUS OF SEVERAL VARIABLES (4-0). Review calculus of one variable. Differential calculus of functions of several variables, directional derivatives, gradient vectors, geometry of tangent planes to surfaces. Double and triple integration in rectangular coordinates. TEXTS: GRANVILLE, Smith and Longley, Elements of Differential and Integral Calculus; KAPLAN, Advanced Calculus. PREREQUISITE: A previous course in calculus and Ma-120(C), or Ma-150(C), (may be taken concurrently).

Ma-240(C) ELEMENTARY DIFFERENTIAL EQUATIONS (2-0). Elements of differential equations including basic types of first order equations and linear equations of all orders with constant coefficients. Systems of linear equations. TEXTS: COHEN, Differential Equations. PREREQUISITE: Ma-230(C), (may be taken concurrently).

Ma-241(C) ELEMENTARY DIFFERENTIAL EQUATIONS (3-0). A longer version of Ma-240(C) including more emphasis on first order equations. TEXT: COHEN, Differential Equations. PREREQUISITE: Ma-230(C). (May be taken concurrently).

Ma-244(C) ELEMENTARY DIFFERENTIAL EQUATIONS AND INFINITE SERIES (4-0). A combination of Ma-250(C) and Ma-240(C) given together in this order. TEXTS: KAPLAN, Advanced Calculus. PREREQUISITE: Ma-230(C).

Ma-245(A) PARTIAL DIFFERENTIAL EQUATIONS (3-0). Solution of boundary value problems by separation of variables; Sturm-Liouville theory; Fourier Bessel series solutions. TEXTS: CHURCHILL, Fourier Series and Boundary Value Problems. PREREQUISITE: Ma-251(B) and Ma-240(C).

Ma-246(A) PARTIAL DIFFERENTIAL EQUATIONS (4-0). Series solution of linear differential equations, generalized orthogonal functions; solution of boundary value problems by separation of variables; Sturm-Liouville theory; Fourier Bessel series solutions. TEXT: CHURCHILL, Fourier Series and Boundary Value Problems. PREREQUISITE: Ma-250(B) and Ma-240(C).

Ma-250(B) ELEMENTARY INFINITE SERIES (2-0). Sequences and series, convergence tests; power series, Taylor series expansions; uniform convergence; introduction to Fourier series. TEXT: KAPLAN, Advanced Calculus. PREREQUISITE: Ma-230(C), (may be taken concurrently).

Ma-251(B) ELEMENTARY INFINITE SERIES (3-0). A longer version of Ma-250(B) including series solution of linear differentiation equations. Bessel and Legendre functions. generalized orthogonal functions. TEXT: KAPLAN, Advanced Calculus. PREREQUISITE: Ma-230(C) and Ma-240(C).

Ma-260(B) VECTOR ANALYSIS (3-0). Vector differential and integral calculus including differential geometry of lines and surfaces, line and surface integrals, change of variable formulas and curvilinear coordinates. TEXT: SPIEGEL, Vector Analysis. PREREQUISITE: Ma-120(C) and Ma-230(C). Ma-270(B) COMPLEX VARIABLES (3-0). Analytic functions; series expansions; integration formulas; residue theory. TEXT: CHURCHILL, Introduction to Complex Variable. PREREQUISITE: Ma-120(C), Ma-230(C), Ma-250(C).

Ma-271(B) COMPLEX VARIABLES (4-0). A longer version of Ma-270(B) including more emphasis on Contour integration as required for transform theory. TEXT: CHURCHILL, Introduction to Complex Variables. PREREQUISITES: Ma-120(C), Ma-230(C), Ma-250(C).

Ma-280(B) LAPLACE TRANSFORMATIONS (2-0). Definitions and existence conditions; applications to systems involving linear difference, differential and integral equations; inversion integral. TEXT: CHURCHILL, Modern Operational Mathematics in Engineering. PREREQUISITE: Ma-240(C), Ma-250(C), and Ma-270(C), (the latter may be taken concurrently).

Ma-302(B) SECOND COURSE IN PROBABILITY (4-0). A continuation of Ma-301(C). Central limit Theorem. Jointly distributed random variables. Probability laws of function of random variables and generating function. TEXT: PARZEN, Modern Probability Theory and its Application. PREREQUISITE: Ma-301(C) and Ma-181(C) or equivalent.

Ma-303(B) THEORY AND TECHNIQUES IN STATISTICS I (3-2). Descriptive statistics. Point estimation; principles of choice and properties of estimators; methods for calculation, Confidence intervals; applications. Texting hypotheses; concepts of power, most powerful tests; applications. TEXTS: BRUNK, An Introduction to Mathematical Statistics; BOWER and LIEBERMAN, Engineering Statistics. PREREQUISITE: Ma-302(B).

Ma-304(B) THEORY AND TECHNIQUES IN STATISTICS II (3-0). A continuation of Ma-303(B). Regression and correlation; least squares. Elements of Analysis of Variance; multiple comparisons. Sequential sampling. Quality Control; Sampling Inspection. TEXTS: BRUNK, An Introduction to Mathematical Statistics; BOWER and LIEBERMAN, Engineering Statistics. PREREQUISITE: Ma-303(B).

Ma-305(A) DESIGN OF EXPERIMENTS (3-0). Theory of the general linear hypothesis. Planning of experiments. Analysis of variance. Randomized blocks and Latin squares. Factorial experiments. Analysis of covariance. Confounding and fractional replication. Models for determining the optimum combination of factor levels. TEXTS: DAVIES, Design and Analysis of Industrial Experiments; COX, Planning of Experiments. PREREQUISITE: Ma-304(B) or consent of instructor.
Ma-306(A) SELECTED TOPICS IN ADVANCED STATISTICS (3-0). Topic will be selected by instructor to fit the needs and background of the students. Areas of choice to include the fields of sequential analysis, non-parametric methods and multivariate analysis. The course may be repeated for credit if the topic changes. TEXT: To be announced. PREREQUISITE: Ma-304(B), or consent of instructor.

Ma-308(A) INTRODUCTION TO TIME SERIES ANALYSIS (3-0). Spectral Theory of discrete processes. Problems of inference in time series analysis. Estimation of parameters, spectral density and distribution functions. Hypothesis testing and confidence intervals. TEXT: HANNAN, Time Series Analysis. PREREQUISITE: Ma-304(B), or consent of instructor.

Ma-311(B) INTRODUCTION TO PROBABILITY AND STATISTICS (4-0). Simple probability models. Sample space, random variable, discrete and continuous distribution functions. Limiting distribution. Sampling. Presentation and description of data. Elements of hypothesis testing and estimation. Applications to fields of interest of the class. TEXT: BOWKER and LIEBERMAN, Engineering Statistics. PREREQUISITE: A course in differential and integral calculus.

Ma-321(B) PROBABILITY AND STATISTICS (4-2). Elements of set theory. Foundations of probability and basic rules of computation. Sample space, random variable, discrete and continuous distribution functions. The classical distribution functions. Joint marginal and conditional distribution functions. Limit theorems. Elements of hypothesis testing and estimation. Applications to fields of interest of the class. TEXT: Derman and Klein, Probability and Statistical Inference for Engineers. PREREQUISITE: Ma-230(C) or the equivalent.

Ma-352(B) INDUSTRIAL STATISTICS II (2-2). Tests of hypothesis and estimation. Analysis of variance. Statistical quality control, control charts. Sampling inspection by attributes and by variables, continuous sampling inspection. TEXT: BOWKER and LIEBERMAN, Engineering Statistics. PREREQUISITE: Ma-351(B).

Ma-355(A) RELIABILITY AND LIFE TESTING (3-0). Poisson processes, exponential distributions; sampling theory of order statistics, and distribution theory of extreme values with applications in systems reliability and life testing. Statistical theory of sequential and truncated testing; tests of statistical hypotheses, estimation and prediction with applications in reliability and life testing. TEXTS: FELLER, An Introduction to Probability Theory and Its Applications; GUMBELE, Statistics of Extremes. Current literature in the field. PREREQUISITE: Ma-392(B) or the equivalent.

Ma-361(B) PROBABILITY AND STATISTICAL INFERENCE FOR ENGINEERS I (2-1). Basic probability theory and rules of computation. Sample space, random variables, discrete and continuous distribution functions. Elementary sampling theory. Introduction to the principles of testing hypotheses and estimation. TEXT: To be announced. PREREQUISITE: Ma-181(C).

Ma-362(B) PROBABILITY AND STATISTICAL INFERENCE FOR ENGINEERS II (2-1). Sampling distributions. Regression and correlation. Design of experiments and analysis of variance. Acceptance sampling. TEXT: To be announced. PREREQUISITE: Ma-361(B).

Ma-371(C) MANAGEMENT STATISTICS (3-0). Elements of probability theory. Descriptive statistics. Statistical inference as an aid to decision-making. TEXTS: CHERNOFF and MOSS, Elementary Decision Theory. PREREQUISITE: Ma-170(C), or the consent of the instructor.

Ma-381(C) ELEMENTARY PROBABILITY AND STATISTICS (4-2). Elements of the theory of probability. The classical probability distributions. Elements of statistical inference and statistical presentation. Applications in the field of the group. TEXTS: BOWKER and LIEBERMAN, Engineering Statistics; PANOFSKY and BRIER, Applications of Statistics to Meteorology (Meteorology groups only). PREREQUISITE: Ma-163(C) or Ma-181(C).

Ma-392(B) **BASIC STATISTICS** (3-2). A continuation of Ma-391(C). Some sampling distributions. Theory of point and interval estimation. Theory of hypothesis testing. Applications, including linear models. TEXT: **Frazer, Statistics, An Introduction.** PREREQUISITE: Ma-391(C) or the equivalent.

Ma-394(A) **ADVANCED STATISTICS** (3-0). Selected topics in statistics, to include the theory and application of sequential analysis and nonparametric inference. TEXTS: **Wald, Sequential Analysis; Frazer, Nonparametric Methods in Statistics; Mood, Introduction to The Theory of Statistics.** PREREQUISITE: Ma-392(B).

Ma-411(B) **DIGITAL COMPUTERS AND MILITARY APPLICATIONS** (4-0). Description of a general purpose digital computer, command structure and commands, flow charts and preparation of problems for programming; applications such as war gaming, simulation of systems, logistics and data processing; demonstrations on a computer. TEXT: **McCracken, Digital Computer Programming.** PREREQUISITE: Ma-073(B) or equivalent.

Ma-420(L) **COMPUTER OPERATION** (1-1). (For 5 weeks). This is a NON-CREDIT course designed for students whose course or thesis work requires a knowledge of computer operation. In a combination of lecture and laboratory periods details of operation of computer and peripheral equipment are covered as well as input-output techniques and power-on, power-off procedures. TEXTS: Programming Manuals. PREREQUISITE: Ma-421 or equivalent.

Ma-421(B) **INTRODUCTION TO DIGITAL COMPUTERS** (3-2). Octal and binary number systems. Fundamentals of programming for general purpose digital computers. Engineering applications of digital computers. Elements of Boolean algebra with applications to information retrieval problems. A portion of the laboratory period is devoted to operating the computers. TEXTS: Programming Manuals: McCracken, Digital Computer Programming. PREREQUISITE: Ma-112(B).

Ma-423(A) **ADVANCED DIGITAL COMPUTER PROGRAMMING** (4-0). Theory and design of sub-routines, assembly routines and compilers. Symbol manipulation. Problem oriented language and control languages. TEXT: Selected articles from publications. PREREQUISITE: Ma-421(B).

Ma-425(A) **APPLICATIONS OF DIGITAL COMPUTERS** (3-2). Effective exploitation of modern digital computers in areas of system simulations and real time control, data editing and processing, engineering computations. Derivative and recursive techniques in digital computation. Efficient use of input-output equipment. The use of sub-routine and program check-out aids in program planning. Laboratory periods will be spent in programming, checking out, running and evaluating results of one or more problems in above areas. TEXTS: Selected Articles from Publications. PREREQUISITE: Ma-421(B).

Ma-441(B) **INTRODUCTION TO DIGITAL COMPUTERS** (3-0). Description of a general purpose digital computer. Command structure and commands. Flow charts and programming. Applications to problems in science, logic and data processing. TEXT: **McC racken, Digital Computer Programming.** PREREQUISITE: Ma-071(C) or equivalent.

Ma-471(B) **ELECTRONIC DATA PROCESSING AND MANAGEMENT CONTROL** (3-0). Functional description of a general purpose digital computer; its control, memory, arithmetic and input-output units. Binary number system and representation of information in a computer or on magnetic tape. Boolean Algebra and information retrieval. Use of computers to solve management problems associated with inventory control, personnel records, reports and assignment. TEXT: **Ganning, Electronic Data Processing for Business and Industry.** PREREQUISITE: Ma-371(C).

Ma-751(A) **TENSOR ANALYSIS I** (3-0). The basic concepts of differential geometry. Definition of a tensor. Physical interpretations. The metric tensor. Covariant differentiation. Geodesics. TEXTS: **Weighburn, Differential Geometry, Vol. I; Burington and Tortrance, Higher Mathematics; Ehrenhart, Riemannian Geometry.** PREREQUISITES: Ma-120(C), Ma-181(C), and Ma-182(B), or the equivalent.

Ma-752(A) **TENSOR ANALYSIS II** (3-0). A continuation of Ma-751(A). Parallel displacement and curvature. Introduction to relativity theory. Formulation of the laws of mechanics and electromagnetism in relativistic form. TEXT: **Bergmann, Introduction to the Theory of Relativity.** PREREQUISITE: Ma-751(A) and a sound background in classical mechanics and electromagnetism.

MECHANICAL ENGINEERING

ME-111(C) ENGINEERING THERMODYNAMICS I (4-2). The laws and processes of transforming energy from one form to another, first law analysis, second law analysis and cycle analysis for reversible processes. Irreversible processes and available energy. TEXT: FAIRES, Thermodynamics. PREREQUISITE: Ma-112(B).

ME-112(C) ENGINEERING THERMODYNAMICS II (4-2). Continuation of ME-111. Applications of thermodynamic principles to marine power plant equipment, combustion engines, turbines; combustion; reversed cycles; gas-vapor mixtures. TEXT: FAIRES, Thermodynamics. PREREQUISITE: ME-111 (C).

ME-122(C) ENGINEERING THERMODYNAMICS II (3-2). Continuation of ME-111. Applications of thermodynamic principles to marine power plant equipment, steam power plants and steam cycles with and without regeneration and reheating. TEXT: FAIRES, Thermodynamics. PREREQUISITE: ME-111 (C).

ME-132(C) ENGINEERING THERMODYNAMICS II (4-2). Continuation of ME-111. Applications of thermodynamic principles to marine power plant equipment, steam power plants and steam cycles, gas-vapor mixtures. TEXT: FAIRES, Thermodynamics. PREREQUISITE: ME-111 (C).

ME-210(C) APPLIED THERMODYNAMICS (3-2). Continuation of the applications of thermodynamic principles, flow of compressible fluids, elements of heat transfer. Complementary laboratory experiments. TEXT: FAIRES, Thermodynamics. PREREQUISITE: ME-132(C).

ME-211(B) THERMODYNAMICS OF COMPRESSIBLE FLOW (3-4). Continuation of applications of thermodynamic principles, compressible flow, including flow through turbines, thermodynamic experiments on power generating naval machinery and compressible flow. TEXT: SHAPIRO, Thermodynamics of Compressible Flow, Vol. I. PREREQUISITE: ME-112(C).

ME-212(A) ADVANCED THERMODYNAMICS (3-2). Imperfect gases and other advanced topics in thermodynamics; the mathematical development of property relations and their use with experimental data. TEXT: KIEFFER, KINNEY and STUART, Engineering Thermodynamics. PREREQUISITE: ME-211(B).

ME-216(A) MARINE POWER PLANT ANALYSIS AND DESIGN (2-4). This course, in continuation of ME-215(A), carries to completion the project work of the latter, with additional project work in preliminary investigation of main propulsion equipment and other major equipment items. TEXTS: SEWARD, Marine Engineering, Vols. I and II; CHURCH, Steam Turbines, 3rd Edition. PREREQUISITE: ME-215(A).

ME-222(C) THERMODYNAMICS LABORATORY (1-4). Laboratory experiments applying thermodynamic principles to gas turbine engine, diesel engine, refrigeration plant, air compressor, nuclear reactor, compressible flow metering and heat transfer. TEXT: FAIRES, Thermodynamics. PREREQUISITE: ME-221(C).

ME-240(B) NUCLEAR POWER PLANTS (4-0). Survey of nuclear power engineering. The reactor as a power source as affected by technical feasibility and economics. Elementary nuclear reactor physics. Engineering considerations in core design, including problems of core design, power removal and utilization and shielding. Discussion of reactor types. TEXT: STEPHENSON, Introduction to Nuclear Engineering. PREREQUISITES: ME-210(C) or equivalent; and Ph-610(B).

ME-241(A) NUCLEAR PROPULSION SYSTEMS I (3-2). The first of a two course sequence covering engineering aspects of nuclear power reactors. Reactor types, characteristics, and criteria for selection. Advanced heat transfer, fluid mechanics and thermodynamics as applied to characteristic cycles. TEXT: GLASTONE, Principles of Nuclear Reactor Engineering. PREREQUISITES: ME-310(B) and Ph-642(B).

ME-310(B) HEAT TRANSFER (4-2). The fundamentals of heat transfer mechanisms; one and two dimensional conduction, free and forced convection, condensation, boiling, thermal radiation, transient and periodic systems, and heat exchanger analysis. Use of the thermal circuit, analog, numerical, and graphical techniques. TEXT: Kasten, Principles of Heat Transfer. PREREQUISITES: Ma-113(B) and ME-112(C).

ME-411(C) MECHANICS OF FLUIDS (3-2). Mechanical properties of fluids, hydrostatics, and buoyancy. Energy aspects of fluid flow, flow metering and control. Impulse-momentum principles and analysis. Dimensional analysis and similarity, fluid machinery. Laboratory experiments and problem work. TEXT: Streeter, Fluid Mechanics. PREREQUISITE: Ma-111(C).

ME-412(A) ADVANCED MECHANICS OF FLUIDS (4-2). Potential flow theory; use of vector notation, complex variables and conformal transformations. Linearized subsonic and supersonic flows. Navier-Stokes equations and applications for the real fluid. Elements of boundary layer theory. TEXT: Streeter, Fluid Dynamics. PREREQUISITES: ME-411(C) and Ma-114(A).

ME-421(C) MECHANICS OF FLUIDS I (3-2). First course in a sequence of two. A study of fluid properties, hydrostatics, buoyancy, energy concepts of ideal and real fluid flow, dynamic analysis, fluid metering and control, dimensional analysis and similarity. TEXT: Vennard, Elementary Fluid Mechanics. PREREQUISITE: Ma-111(C).

ME-422(B) MECHANICS OF FLUIDS II (2-2). Detailed analysis of fluid machinery and fluid systems, Elements of hydrodynamic lubrication. Laboratory experiments and problem work. TEXT: Shepherd, Principles of Turbomachinery. PREREQUISITES: ME-421(C) and Ma-113(B).

ME-500(C) MECHANICS OF SOLIDS (3-2). Stress, strain, Hook’s law, tension and compression, shear stresses, connections, thin vessels, torsion, statics of beams, stresses in beams, deflections of beams, combined loadings and combined stresses, columns. Supporting laboratory work. TEXT: Timoshenko and MacCullough, Elements of Strength of Materials; Muilenbruch, Testing of Engineering Materials. PREREQUISITES: Ma-111(C), and Mc101(C) or ME-501(C).

ME-501(C) STATICS (4-0). Laws of statics, Force systems, equilibrium. Simple structures, distributed forces, friction, virtual work. TEXT: Housner and Hudson, Applied Mechanics--Statics. PREREQUISITE: Ma-100(C) or Ma-120(C) (may be taken concurrently).

ME-511(B) MECHANICS OF SOLIDS II (5-0). Methods of elastic analysis of statically indeterminate structures, strain energy and slope deflection analysis, beam columns, curved beams, unsymmetrical bending, shear center, beams on elastic foundations, plates and shells, applications of these topics to ship structures. TEXTS: Timoshenko, Strength of Materials, Vols. I and II. PREREQUISITE: ME-506(C).

ME-512(A) TOPICS OF ELASTICITY (4-0). Stress tensor, strain tensor, theories of failure, fundamentals of the theory of elasticity, torsion of noncircular sections, thick walled cylinders, rotating disks, stresses due to localized loading, thermal stresses, stress concentration. TEXTS: Timoshenko, Strength of Materials, Vols. I and II; Timoshenko and Goodier, Theory of Elasticity. PREREQUISITE: ME-511(B).

ME-521(C) MECHANICS OF SOLIDS II (4-0). Statically indeterminate problems in bending, symmetrical beams of variable cross section, beams of two materials, unsymmetrical bending, strain energy and impact, curved bars, beams with combined axial and lateral loads. TEXTS: Timoshenko, Strength of Materials, Vols. I and II. PREREQUISITE: ME-500(C).

ME-561(C) MECHANICS I (STATICS) (4-0). Forces and force systems, moments and couples, resultants, equilibrants, free body diagrams, equilibrium of a free body, two force members, trusses, many force members, friction, cables, first and second moments, centroids. TEXT: FAIRMAN and CUTSHALL, Engineering Mechanics. PREREQUISITE: Ma-052(C).

ME-562(C) MECHANICS II (DYNAMICS) (4-0). Kinematics of a particle, rotation, Newton’s laws, d’Alembert’s principle, work and energy, impulse and momentum, applications to satellites and space vehicles. TEXT: FAIRMAN and CUTSHALL, Engineering Mechanics. PREREQUISITES: ME-561(C) and Ma-053(C).

ME-622(B) EXPERIMENTAL STRESS ANALYSIS (2-2). Theory and applications of resistance strain gages for static and dynamic analyses. Instrumentation systems and transducer applications. Elements of photoelasticity and brittle lacquer techniques. Complementary laboratory experiments. TEXT: PERRY and LISSNER, Strain Gage Primer; LEE, An Introduction to Experimental Stress Analysis. PREREQUISITE: ME-522(B) or equivalent.

ME-711(B) MECHANICS OF MACHINERY (4-2). Velocity and acceleration of machine parts, static and dynamic forces on machine members. Kinematic analysis of cams and gears. TEXTS: HAM and CRANE, Mechanics of Machinery; FAIRB, Kinematics. PREREQUISITE: ME-502(C).

ME-712(A) MECHANICAL VIBRATIONS (3-2). Undamped and damped, free and forced vibrations for one, two and many degrees of freedom. Vibration isolation and absorbers, instrumentation. Methods of Rayleigh, Stodola, Holzer, Applications to multi-cylinder engines. Laboratory experiments illustrate basic principles of vibration and its control. TEXTS: DEN HARTOG, Mechanical Vibrations; THOMSON, Mechanical Vibrations. PREREQUISITES: Ma-114(A), ME-711(B) and ME-500(C).

ME-713(A) ADVANCED DYNAMICS OF MACHINERY (3-0). Special topics such as: shock and vibration mounts, torsional vibrations of crank shafts, vibration absorbers, special bearings, gear lubrication, sleeve bearings with pulslating loads, oil film whirl, turbine blade vibration, nonlinear vibration problems. TEXTS: DEN HARTOG, Mechanical Vibrations; KARMAN and BIOT, Mathematical Methods in Engineering. PREREQUISITES: ME-712(A) and ME-812(B).

ME-722(B) MECHANICAL VIBRATIONS (3-2). Free and forced vibrations, with and without damping for one, two and many degrees of freedom. Vibration isolation and absorbers, torsional vibration, instrumentation. Laboratory experiments illustrate basic principles of vibration and its control. TEXTS: DEN HARTOG, Mechanical Vibrations; THOMSON, Mechanical Vibrations. PREREQUISITES: Ma-114(A), ME-711(B) and ME-500(C).

ME-811(B) MACHINE DESIGN I (3-2). First of a two-course sequence. Studies of fits, tolerances, allowances, material selection, stress concentration, bearings, shafting, screws, belts, chains, brakes, clutches and cams. TEXT: FAIRB, Design of Machine Elements. PREREQUISITES: ME-512(A) and ME-711(B).

ME-812(B) MACHINE DESIGN II (3-4). Continuation of ME-811; springs, gearing, and advanced design problems. Machine design projects of a comprehensive nature. TEXT: FAIRB, Design of Machine Elements. PREREQUISITES: ME-811(B) and ME-712(A).

ME-820(C) MACHINE DESIGN (2-4). Studies of fits, tolerances, allowances, stress concentration, material selection, bearings, gears, shafting, cams, springs, screws, brakes and clutches. TEXT: FAIRB, Design of Machine Elements. PREREQUISITES: ME-522(B) and ME-711(B).

ME-900(A) ADVANCED TOPICS IN MECHANICAL ENGINEERING (4-0). Investigation of selected advanced Mechanical Engineering topics. PREREQUISITE: Department approval.

MECHANICS

ME-101(C) ENGINEERING MECHANICS I (2-2). Review of statics; free-body diagrams; distributed forces; centroids; moments and products of inertia of areas; hydrostatics; friction, general principles of dynamics; dimensional analysis; kinematics of a particle; relative and absolute time rate of change of a vector; Carlis’s acceleration. TEXT: HOUSEN and HUDSON, Applied Mechanics. PREREQUISITE: A previous course in mechanics is desirable. Ma-120(C) or Ma-150(C) to be taken concurrently.

ME-102(C) ENGINEERING MECHANICS II (2-2). Dynamics of a particle; impulse and momentum; work and energy; potential; conservation of energy; vibrating systems, free and forced, with and without damping; impact; dynamics of rigid bodies; moments and products of inertia; principal axes of inertia; the gyroscope. TEXT: HOUSEN and HUDSON, Applied Mechanics. PREREQUISITE: ME-101(C).
Mc-201(A) METHODS IN DYNAMICS (2-2). The principles of linear momentum, angular momentum, work and energy, power and energy, conservation of energy, virtual work, and d’Alembert are developed and discussed in detail. This work is followed by a development and interpretation of Lagrange’s equations of motion. Application of these various principles to obtain the differential equations of motion of dynamical systems is given particular attention. TEXTS: SYNGE and GRIFFITH, Principles of Mechanics; TIMOSHENKO and YOUNG, Advanced Dynamics. PREREQUISITE: Mc-102(C).

Mc-311(A) VIBRATIONS (3-2). Kinematics of vibrations; free and forced vibrations of systems with one degree of freedom; theory of vibration measuring instruments and of vibration insulation; systems with many degrees of freedom; normal modes of vibration; computation of fastest and slowest modes by matrix methods; vibrations of strings, beams, shafts and membranes; Rayleigh’s method; Stodola’s method; critical speeds; self-excited vibrations; effect of impact on elastic structures. TEXTS: Thomson, Mechanical Vibrations (2nd edition); Den Hartog, Mechanical Vibrations (3rd edition); Frankland, Effects of Impact on Simple Elastic Structures (TM Report 481). PREREQUISITES: Mc-102(C) and a course in beam deflection theory.

Mc-402(A) MECHANICS OF GYROSCOPIC INSTRUMENTS (3-0). Review of the vector kinematics and dynamics involved in the angular motion of rigid bodies; steady, free and forced precession and general motion of a gyro; stability of a free gyro; the gyrocompass and gyro pendulum; gyro angular velocity indicator; the stable platform; Shuler tuning of inertial guidance instruments. TEXTS: Synge and Griffith, Principles of Mechanics (2nd edition); Wrigley, Shuler Tuning of Navigational Instruments; Russell, Inertial Guidance for Rocket-Propelled Missiles; Draper, Wrigley and Hovorka, Inertial Guidance. PREREQUISITE: Mc-102(C).

Mc-403(A) KINEMATICS OF GUIDANCE (3-0). Kinematics and geometry of guidance and interception systems; special coordinates; inertial reference frames; accelerometers; inertial guidance; Dovap; introductory study of the guidance of a ballistic missile and of an interceptor for a ballistic missile; optimum thrust programming for a rocket. TEXTS: Locke, Guidance; USNPGS Notes. PREREQUISITE: A course in differential equations and Mc-102(C).

Mc-404(A) MISSILE MECHANICS (3-0). A survey of ballistic missile dynamics including discussions of atmospheric structure; standard conditions; drag; stability derivatives; equations of yawing, swerving and angular motion; electronic digital integration of equations of motion; effects of variations from standard conditions; rocket motor thrust and torque; tricyclic motion; aeroballistic range measurements of stability derivatives; contributions of aerodynamic jump and drift to dispersion; dynamic wind tunnel test; dynamic stability; resonance instability. TEXT: Classroom Notes. PREREQUISITE: Mc-402(A).

METALLURGY

Mt-002(C) BASIC METALLURGY (4-3). An elementary survey course in metallurgy designed for students in the Naval Science School. The subject matter includes a study of the properties and heat treatment of the commercially important metals and alloys and their engineering applications. The laboratory experiments are designed to illustrate the material taken up in class and includes microscopic examination of metal specimens in varying mechanical and heat treated conditions. TEXT: To be selected. PREREQUISITES: A course in general chemistry.

Mt-101(C) PRODUCTION METALLURGY (2-0). An introduction to the study of metallurgy including discussion of the nature of metal-bearing raw materials and the fundamental processes, materials and equipment of extractive metallurgy. TEXT: Hayward, an Outline of Metallurgical Practice. PREREQUISITE: Elementary General Chemistry (may be taken concurrently).

Mt-102(C) PRODUCTION OF STEEL (3-0). A discussion of the occurrence and composition of various iron ores, blast furnace products, the various methods of steel production, and the production of grey, white and malleable cast iron. TEXT: Bray, Ferrons Process Metallurgy. PREREQUISITE: Ch-101 (C) or equivalent.

Mt-103(C) PRODUCTION OF NON-FERROUS METALS (3-0). A discussion of the sources, the strategic importance of, and the methods of production of copper, zinc, lead, tin, aluminum, magnesium, and other metals of technical interest. TEXTS: Bray, Non-Ferrous Production Metallurgy. PREREQUISITE: Ch-101(C) or equivalent.

Mt-104(C) PRODUCTION METALLURGY (4-0). A condensation of the material of Mt-102 and Mt-103 into a one-term course. TEXTS: Bray, Non-Ferrous Production Metallurgy; Bray, Ferrons Process Metallurgy. PREREQUISITE: Ch-101(C) or equivalent.

Mt-201(C) INTRODUCTORY PHYSICAL METALLURGY (3-2). An introduction to Physical Metallurgy. Topics include: (a) The nature and properties of metals, (b) a study of phase equilibria, (c) the correlation of microstructure and properties with phase diagrams, (d) mechanical properties and heat treatment, (e) descriptions of non-ferrous alloys of commercial importance. The laboratory experiments introduce methods available to the metallurgist for the study of metals and alloys. TEXTS: Coonan, Principles of Physical Metallurgy.
Mt-202(C) FERROUS PHYSICAL METALLURGY (3-2). A continuation of Mt-201. Topics include: (a) Iron-carbon alloys, (b) Effect of various heat treatments on the structure and properties of steel, (c) Reaction rates and hardenablecity, (d) The effect of alloying elements on steel, (e) Surface hardening methods, (f) Cast Irons, (g) Characteristics and properties of various steels. The laboratory experiments include heat treatment, mechanical testing, and metallographic examination of ferrous alloys. TEXTS: COONAN, Principles of Physical Metallurgy; CLARK and VARNEY, Physical Metallurgy for Engineers. PREREQUISITE: Mt-201(C).

Mt-212(C) PHYSICAL AND PRODUCTION METALLURGY (4-2). This course covers the same material as Mt-202 and includes in addition the production of iron and steel. One period each week is devoted to this latter topic. TEXTS: COONAN, Principles of Metallurgy, BRAY, Ferrous Process Metallurgy; CLARK and VARNEY, Physical Metallurgy for Engineers. PREREQUISITE: Mt-201(C).

Mt-203(B) PHYSICAL METALLURGY (Special Topics) (2-2). A continuation of material presented in Mt-201 and Mt-202, including a discussion of powder metallurgy, welding and casting, fatigue, properties of metals at low temperatures, and surveys of the alloys of aluminum and magnesium. TEXTS: COONAN, Principles of Physical Metallurgy; HELVER, Engineering Physical Metallurgy; CLARK and VARNEY, Physical Metallurgy for Engineers; WOLDMAN, Metal Process Engineering. PREREQUISITE: Mt-202(C).

Mt-204(A) NON-FERROUS METALLOGRAPHY (3-3). An expansion of material introduced in Mt-201, Mt-202 and Mt-203 with greater emphasis on the intrinsic properties of specific non-ferrous metals and alloys. TEXT: None. PREREQUISITES: Mt-201(C) and Mt-202(C).

Mt-205(A) ADVANCED PHYSICAL METALLURGY (3-4). The subject matter includes equilibrium in alloy systems, the crystallography of metals and alloys, phase transformations and diffusions. The laboratory time is devoted to X-ray techniques used in metallurgical studies. TEXTS: BARRETT, Structure of Metals; CULLITY, Elements of X-ray Diffraction; RHINES, Phase Diagrams in Metallurgy. PREREQUISITE: Mt-202(C).

Mt-206(A) ADVANCED PHYSICAL METALLURGY (3-4). The subject matter is an extension of that offered in Mt-205 (A) but is primarily concerned with dislocations and other imperfections and their influences on the physical properties of metals. TEXTS: COTTRELL, Dislocations and Plastic Flow in Crystals; READ, Dislocations in Crystals.

Mt-207(B) PHYSICS OF SOLIDS (3-0). A course for engineers intended as an introduction to the physics of solids. Topics discussed include introductory statistical mechanics, atomic structure and spectra, introductory quantum mechanics, binding and energy bands, crystal structure and imperfections in crystals. TEXT: SPROULL, Modern Physics. PREREQUISITE: Mt-202(C).

Mt-208(C) PHYSICAL AND PRODUCTION METALLURGY (4-2). This course covers the same material as Mt-212.

Mt-301(A) HIGH TEMPERATURE MATERIALS (3-0). A course concerned with the effect of elevated temperatures on the properties of metals, especially as related to reaction motors, guided missiles, rockets, air frames and allied components. Methods of evaluating elevated temperature performance. Development of alloys, ceramics, cermets and refractory coatings for high temperature service. TEXTS: COONAN, High Temperature Materials (Instructor's Notes). PREREQUISITE: Mt-202(C).

Mt-302(A) ALLOY STEELS (3-3). A thorough study of the effects of the alloying elements, including carbon, commonly used in steel making, on the characteristics of steels in the annealed, the hardened and the hardened and tempered conditions. TEXT: E. C. BAIN, The Alloying Elements in Steel. PREREQUISITE: Mt-202(C).

Mt-303(A) METALLURGY SEMINAR. Hours to be arranged. Papers from current technical journals will be reported on and discussed by students. TEXT: None. PREREQUISITE: Mt-203(B) or Mt-205(A).

Mt-305(B) CORROSION AND CORROSION PROTECTION (3-0). Designed for Engineering Materials Curriculum. Corrosion theories and methods of corrosion protection. TEXT: None. PREREQUISITES: Mt-202 and Ch-101 or equivalent.

Mt-307(A) HIGH TEMPERATURE STUDIES (0-3). A laboratory course designed to familiarize the student in the study of fundamentals at high temperatures. Students working in small groups will be given an opportunity to undertake some original investigation with the purpose of developing an understanding of problems involved and methods of analysis in high temperature studies of materials. PREREQUISITE: Mt-301(A) (may be taken concurrently).

Mt-401(A) PHYSICS OF METALS (3-0). A discussion of crystal chemistry and modern theories of the solid state. TEXTS: KITTRELL, Solid State Physics; selected references. PREREQUISITES: Mt-205(A) and either Ph-610(B) or Ph-640(B).

Mt-402(B) NUCLEAR REACTOR MATERIALS—EFFECTS OF RADIATION (3-0). A course designed for students in nuclear engineering. Includes a study of materials of reactor construction; factors in materials selection; commercially available materials; liquid metal coolants; nature of radiation damage on materials. TEXTS: The Reactor Handbook—General Properties Materials; FINNISTON and HOWE, Metallurgy and Fuels; DRENER and VINEYARD, Radiation Effects in Solids. PREREQUISITE: Mt-202(C), Mt-207(B), or equivalent.

Mt-501(A) WELDING METALLURGY (3-3). A study of the various materials, equipment and processes employed for joining metals by both the plastic and the fusion welding methods, and of the mechanical, electrical, and metallurgical factors essential to successful welding. TEXTS: None. PREREQUISITE: Mt-203(B).

Mt-601(B) TECHNIQUES FOR ANALYSIS AND TESTING OF MATERIALS (2-4). An introduction to some of the more advanced experimental techniques, including X-ray and gamma
COURSE DESCRIPTIONS—METEOROLOGY

Mr-204(B) UPPER-AIR AND SURFACE PROGNOSIS (3-9). Continuation of Mr-203(C). Techniques of upper-air prognosis including long and short waves, movement of height-change centers, vorticity, CAVT, space-mean, eccentricity, vertical consistency and continuity considerations. Techniques of surface prognosis using objective methods; graphical numerical prediction techniques. Laboratory practice includes prognosis of upper-air and surface charts using objective methods, with introduction of subjectivity plus practice in graphical numerical weather prediction techniques. TEXTS: Same as Mr-203(C). PREREQUISITES: Mr-203(C), Mr-301(B).

Mr-206(C) NAVAL WEATHER SERVICE ORGANIZATION AND OPERATION (1-9). Detailed descriptions of functions and responsibilities of Naval Weather Service, including operational aspects of fleet weather centers/facilities, naval air stations and shipboard units; procedures for aviation and synoptic briefings; familiarization with communications network and publications. Laboratory practice includes analysis and prognosis of all necessary data for the preparation of flight-clearance forms, flight cross sections, and mock briefings of operational commanders. TEXTS: Selected NavAer, AWS and NWRW publications; departmental notes. PREREQUISITE: Mr-215(B).

Mr-215(B) THE MIDDLE ATMOSPHERE (2-9). Objectives and techniques of high-tropospheric and low-stratospheric analysis and prognosis including jet stream, maximum wind layer, tropopause, climatology of middle atmosphere, and stratospheric wind extrapolations. Laboratory practice includes analysis and prognosis of middle-atmosphere charts plus forecasting of winds at stratospheric levels. TEXTS: Various NavAer, AWS Manuals; departmental notes. PREREQUISITE: Mr-204(B).

Mr-218(B) TROPICAL AND SOUTHERN HEMISPHERE METEOROLOGY (3-6). Southern hemisphere synoptic meteorology; tropical synoptic models (with emphasis on the tropical cyclone); tropical forecasting. In laboratory specially prepared series of charts covering southern and tropical latitudes are analyzed and forecasts made. TEXTS: Riehl, Tropical Meteorology; departmental notes. PREREQUISITES: Mr-215(B) and Mr-322(A).

Mr-220(B) SELECTED TOPICS IN APPLIED METEOROLOGY (3-0). Polar meteorology; the general circulation; mean-circulation and weather-type methods of extended forecasting; other topics as time permits. TEXTS: Petterson, Jacobs and Haynes, Meteorology of the Arctic; NavAer publications; departmental notes. PREREQUISITES: Mr-302(B) and Mr-402(C).

Mr-228(B) TROPICAL AND SOUTHERN HEMISPHERE METEOROLOGY (3-0). Southern hemisphere synoptic meteorology; tropical synoptic models (with emphasis on the tropical cyclone); tropical forecasting. TEXT: Riehl, Tropical Meteorology. PREREQUISITE: Mr-321(A).

Mr-229(A) THE GENERAL CIRCULATION AND EXTENDED FORECASTING (2-0). Models of the general circulation. Mean-circulation and weather-type methods of extended forecasting. TEXTS: Halstner and Martin, Dynamical and Physical Meteorology; selected NavAer, AWS, and USBW publications; departmental notes. PREREQUISITES: Mr-322(A) and Ma-331(B).

Mr-100(C) FUNDAMENTALS OF ATMOSPHERIC CIRCULATION (2-0). Primarily designed to give non-meteorological officer students a survey of meteorology. Topics included are essentially the same as in Mr-200; however, there is greater emphasis on large-scale and small-scale circulations. TEXT: PETTERSSEN, Introduction to Meteorology.

Mr-120(C) INTRODUCTION TO METEOROLOGY AND OCEANOGRAPHY (3-0). Distribution of the properties of the atmosphere and the oceans; the mean pattern of the general circulation and the seasonal and short-term variations from the mean; methods of predicting atmospheric and oceanographic conditions. TEXTS: SHEPARD, Submarine Geology; NavAer 50-1R-242, Application of Oceanography to Sub-surface Warfare; PETTERSSEN, Introduction to Meteorology.

Mr-200(C) INTRODUCTION TO METEOROLOGY (3-0). A general course which treats descriptively the composition and vertical structure of the atmosphere, physical processes, general circulation, air masses, fronts, cyclones and anticyclones. TEXT: PETTERSSEN, Introduction to Meteorology.

Mr-201(C) ELEMENTARY WEATHER-MAP ANALYSIS (3-9). Objectives and techniques of surface and upper-air analysis, including contour (isobar), isotherm and frontal analyses. Laboratory practice in upper-air and surface analysis of weather charts and interpretation of weather type and recognition of synoptic patterns. TEXTS: BERRY, BOLLAY and BEERS, Handbook of Meteorology; departmental notes. PREREQUISITES: Mr-200(C) and a knowledge of weather codes and observations.

Mr-202(C) WEATHER-MAP ANALYSIS AND INTRODUCTION TO WEATHER ELEMENTS (3-9). Continuation of Mr-201(C). Structure of frontal wave cyclones; graphical arithmetic; basic extrapolation techniques; control-line methods of weather chart prognosis. Air masses and related stability; cloud analyses; objective forecasting techniques. Laboratory practice extends surface and upper-air analysis to include control-line prognosis, basic extrapolation techniques, graphical arithmetic, and daily weather charts. TEXTS: Same as Mr-201(C) plus NavAer 50-1P-502, Practical Methods of Weather Analysis and Prognosis; departmental notes. PREREQUISITE: Mr-201(C).

Mr-203(C) FORECASTING WEATHER ELEMENTS (2-9). Continuation of Mr-202(C). Significance of time-space cross sections; consideration of topographical effects; objective forecasting of hydrometeors, and surface/upper-air temperatures. Introduction to arctic forecasting. Meso-scale weather features. Laboratory practice includes analysis of time-space cross sections, objective forecasting techniques, meso-scale synoptic analysis, and arctic analysis. TEXTS: Same as Mr-202(C) plus various Navy, AWS, and Weather Bureau publications; departmental notes. PREREQUISITE: Mr-202(C).

Mr-206(C) NAVAL WEATHER SERVICE ORGANIZATION AND OPERATION (1-9). Detailed descriptions of functions and responsibilities of Naval Weather Service, including operational aspects of fleet weather centers/facilities, naval air stations and shipboard units; procedures for aviation and synoptic briefings; familiarization with communications network and publications. Laboratory practice includes analysis and prognosis of all necessary data for the preparation of flight-clearance forms, flight cross sections, and mock briefings of operational commanders. TEXTS: Selected NavAer, AWS and NWRW publications; departmental notes. PREREQUISITE: Mr-215(B).

Mr-215(B) THE MIDDLE ATMOSPHERE (2-9). Objectives and techniques of high-tropospheric and low-stratospheric analysis and prognosis including jet stream, maximum wind layer, tropopause, climatology of middle atmosphere, and stratospheric wind extrapolations. Laboratory practice includes analysis and prognosis of middle-atmosphere charts plus forecasting of winds at stratospheric levels. TEXTS: Various NavAer, AWS Manuals; departmental notes. PREREQUISITE: Mr-204(B).

Mr-218(B) TROPICAL AND SOUTHERN HEMISPHERE METEOROLOGY (3-6). Southern hemisphere synoptic meteorology; tropical synoptic models (with emphasis on the tropical cyclone); tropical forecasting. In laboratory specially prepared series of charts covering southern and tropical latitudes are analyzed and forecasts made. TEXTS: Riehl, Tropical Meteorology; departmental notes. PREREQUISITES: Mr-215(B) and Mr-322(A).

Mr-220(B) SELECTED TOPICS IN APPLIED METEOROLOGY (3-0). Polar meteorology; the general circulation; mean-circulation and weather-type methods of extended forecasting; other topics as time permits. TEXTS: Petterson, Jacobs and Haynes, Meteorology of the Arctic; NavAer publications; departmental notes. PREREQUISITES: Mr-302(B) and Mr-402(C).

Mr-228(B) TROPICAL AND SOUTHERN HEMISPHERE METEOROLOGY (3-0). Southern hemisphere synoptic meteorology; tropical synoptic models (with emphasis on the tropical cyclone); tropical forecasting. TEXT: Riehl, Tropical Meteorology. PREREQUISITE: Mr-321(A).

Mr-229(A) THE GENERAL CIRCULATION AND EXTENDED FORECASTING (2-0). Models of the general circulation. Mean-circulation and weather-type methods of extended forecasting. TEXTS: Halstner and Martin, Dynamical and Physical Meteorology; selected NavAer, AWS, and USBW publications; departmental notes. PREREQUISITES: Mr-322(A) and Ma-331(B).
Mr-301(B) ELEMENTARY DYNAMIC METEOROLOGY I (4-0). The equations of motion; trajectories and streamlines; thermal wind; mechanism of pressure changes and kinematics of pressure systems. TEXT: HALTINER and MARTIN, Dynamical and Physical Meteorology. PREREQUISITES: Mr-200(C), Ph-191(C) and Ma-162(C).

Mr-302(B) ELEMENTARY DYNAMIC METEOROLOGY II (4-0). A continuation of Mr-301(B). Vorticity and circulation; applications of vorticity theorem; dynamical forecasting by numerical methods; selected topics including fronts and frontogenesis. TEXT: Same as Mr-301(B). PREREQUISITES: Mr-301(B), Mr-402(C) and Ma-163(C).

Mr-321(A) DYNAMIC METEOROLOGY I (3-0). The equations of motion; horizontal flow; geostrophic and barotropic winds; vertical variations of wind and pressure systems; kinematics of pressure systems; continuity and tendency equations; convergence and divergence in trough-ridge systems. TEXT: HALTINER and MARTIN, Dynamical and Physical Meteorology. PREREQUISITES: Mr-413(B) and Ma-132(B).

Mr-322(A) DYNAMIC METEOROLOGY II (3-0). A continuation of Mr-321(A). Circulation theorems; vorticity equation and applications; solution of hydrodynamic equations by (a) perturbation methods, (b) by numerical integration; barotropic and baroclinic models; fronts and frontogenesis. TEXT: Same as Mr-321(A). PREREQUISITES: Ma-125(B) concurrently, Ma-133(A) and Mr-321(A).

Mr-323(A) DYNAMIC METEOROLOGY III (TURBULENCE AND DIFFUSION) (3-0). The general effects of viscosity and turbulence; equations of motion for viscous and turbulent flows; diffusion of momentum; wind variation in the surface layer; diffusion of other properties including heat, water vapor, smoke, etc.; diurnal temperature variation; transformation of air masses; statistical properties of turbulence. TEXTS: HALTINER and MARTIN, Dynamical and Physical Meteorology; SUTTON, Micrometeorology. PREREQUISITES: Mr-322(A), Ma-125(B) and Ma-331(B).

Mr-324(A) DYNAMICAL PREDICTION (3-0). The solution of the hydrodynamical equations for meteorological phenomena by analytical and numerical methods. Objective analysis. TEXT: THOMPSON, Numerical Weather Analysis and Prediction. PREREQUISITES: Mr-323(A), Ma-421(A) and Ma-426(A) concurrently.

Mr-331(A) NUMERICAL WEATHER PREDICTION I (2-0). Dynamical analysis of simple atmospheric waves; barotropic and two-level baroclinic models; automatic data processing; objective analysis; vertical motion, cloud and precipitation forecasting; hurricane trajectory forecasting; ship routing; quasiempirical prediction models. TEXT: departmental notes. PREREQUISITES: Mr-322(A), Ma-125(B), Ma-133(A) or equivalent.

Mr-332(A) NUMERICAL WEATHER PREDICTION II (2-0). A continuation of Mr-331(A). Dynamical analysis of more complex atmospheric waves and vortices; non-divergent, non-geostrophic models; influence of latent heat and heat exchange between atmosphere and surface; numerical models of the general circulation. TEXT: departmental notes. PREREQUISITE: Mr-331(B).

Mr-335(A) THEORETICAL METEOROLOGY (3-0). Advanced topics in theoretical meteorology to fit the needs of the students. PREREQUISITE: Consent of the instructor.

Mr-402(C) INTRODUCTION TO METEOROLOGICAL THERMODYNAMICS (3-2). A treatment of elementary thermodynamics and its application in meteorology, with particular emphasis on thermodynamic charts and diagrams. Atmospheric stability, instability phenomena, and forecasting techniques are discussed. TEXT: HALTINER and MARTIN, Dynamical and Physical Meteorology. PREREQUISITES: Ph-191(C) and Ma-162(C) or equivalent.

Mr-403(B) INTRODUCTION TO MICROMETEOROLOGY (4-0). Properties of radiating matter in general; solar and terrestrial radiation and their effects on the temperature distribution; the heat budget; structure of the wind (in the friction layer) and its significance in turbulent transfer; air-mass modification; forecasting the micrometeorological variables and their use in diffusion from point and line sources. TEXT: Same as Mr-402(C). PREREQUISITES: Mr-302(B) and Ma-381(C) or equivalent.

Mr-410(C) METEOROLOGICAL INSTRUMENTS (2-2). Principles of design and operation of meteorological instruments used in naval meteorology with special emphasis on new developments and requirements. Application of electronic meteorological instruments used by the fleet meteorologist. TEXTS: MIDDLETON and SPILHAUS, Meteorological Instruments; selected papers and departmental notes. PREREQUISITES: Ma-162(C) or equivalent and Ph-196(C) or equivalent.

Mr-412(A) PHYSICAL METEOROLOGY (3-0). Solar and terrestrial radiation; absorption, scattering and diffuse reflection of solar radiation; terrestrial radiation and the atmospheric radiation chart; applications to air mass modification and minimum-temperature forecasting; heat budget of earth-atmosphere system; selected topics in atmospheric optics and electricity. TEXTS: HALTINER and MARTIN, Dynamical and Physical Meteorology; NEUBERGER, Introduction to Physical Meteorology. PREREQUISITE: Mr-413(B).

Mr-413(B) THERMODYNAMICS OF METEOROLOGY (3-2). The physical variables; equations of state; first law of thermodynamics; properties of gases; properties of water and moist air; thermodynamic diagrams; air mass identification indices; geopotential determinations; altitude; instability phenomena and criteria. TEXTS: HOLMBOE, FORSYTHE and GUSTIN, Dynamic Meteorology; HALTINER and MARTIN, Dynamical and Physical Meteorology. PREREQUISITES: Ma-131(C) and Ph-196(C).

Mr-415(B) RADAR METEOROLOGY (2-0). Characteristics of radar sets; propagation of electromagnetic waves in standard and non-standard atmospheres: scattering by hydrometeors; attenuation; quantitative precipitation estimates; applications of radar in convective clouds, mesometeorology and larger-scale weather systems. TEXT: BATTAN, Radar Meteorology. PREREQUISITES: Mr-321(A) or Mr-301(B), Ma-331(B) or Ma-381(C).
Mr-420(B) UPPER-ATMOSPHERE PHYSICS (4-0). The atmosphere, balloon and rocket research; sounding the atmosphere by acoustic and radio techniques; the ozonosphere; tidal tides and magnetic effects; solar, magnetic and ionospheric disturbances; meteoroids, cosmic rays and satellites. TEXT: MASSEY and BOYD, The Upper Atmosphere. PREREQUISITES: Ph-360(B) and Ph-671(B).

Mr-422(A) THE UPPER ATMOSPHERE (5-0). The composition of the upper atmosphere; temperature and wind structure as deduced from several lines of observation; variations of electron concentration in the ionosphere; terrestrial magnetic variations; solar disturbances and their effects in the upper atmosphere; the aurora. TEXTS: Massey and Boyd, The Upper Atmosphere; GORDON, The Physics of the Stratosphere; departmental notes. PREREQUISITES: Mr-323(A), Mr-415(B), and Ma-331(B).

Mr-510(C) CLIMATOLOGY (2-0). The distribution with respect to season, geography, and orography of the major meteorological elements. Definitions of climatic zones and types according to Koppen and their meteorological descriptions; micrometeorology; regional climatology of the oceans; climatology as a tool in objective forecasting. TEXT: HAURWITZ and AUSTIN, Climatology. PREREQUISITE: Mr-200(C).

Mr-521(B) SYNOPSIS CLIMATOLOGY (2-2). The study and statistical evaluation of meteorological elements in relation to the macro- and microclimates; the Koppen system; methods of presenting climatological data to non-meteorological personnel; construction and use of forecast registers; the climatology of objective forecasting techniques. TEXTS: Haurwitz and Austin, Climatology; CONRAD and POLLAR, Methods in Climatology. PREREQUISITES: Mr-200(C) and Ma-381(C) or Ma-331(B) concurrently.

Mr-610(B) OCEAN WAVES (3-0). The generation and propagation of ocean waves; their spectral, statistical, and mechanical properties; interactions between waves and ships; wave observations. TEXTS: H.O. 603; departmental notes. PREREQUISITES: Ma-381(C), and Ma-163(C) or instructor’s permission.

Mr-611(B) OCEAN WAVES AND WAVE FORECASTING (3-6). The generation and propagation of ocean waves; their spectral, statistical, and mechanical properties; interactions between waves and ships; wave observations. Waves from tropical storms, synoptic wave charts, methods of ship routing, forecasting in the laboratory. TEXTS: H.O. 603 and other H.O. Pubs., departmental notes. PREREQUISITES: Ma-381(C) or equivalent, Mr-202(C).

Mr-810(A) SEMINAR IN METEOROLOGY AND OCEANOGRAPHY (2-0). Students perform original research or prepare summaries of recent findings in the fields of meteorology or oceanography and present synopses for group discussion. PREREQUISITES: Mr-422(A) or Mr-403(B), Mr-521(B), Oc-621(B), and Ma-331(B) or Ma-381(C).

OCEANOGRAPHY

OC-110(C) INTRODUCTION TO OCEANOGRAPHY (3-0). A survey course treating physical and chemical properties of sea water, marine biology, and submarine geology; the heat budget of the oceans; water masses and the general circulation; currents, waves, and tides. TEXTS: Sverdrup, Oceanography for Meteorologists; SHEPARD, Submarine Geology; NAVYER 50-1R-242, Application of Oceanography to Subsurface Warfare.

OC-210(B) PHYSICAL OCEANOGRAPHY (3-0). The physics of ocean currents, tides and internal waves; currents and water masses in various oceans; Arctic Ocean circulation. TEXTS: SVERDRUP, JOHNSON and FLEMING, The Oceans; departmental notes. PREREQUISITES: Oc-110(C), Ma-163(C) and Ph-196(C) or Ph-191(C); or equivalents.

OC-212(B) TIDES AND TIDAL CURRENTS (3-0). Theories of the astronomical tides; the tide-producing forces; tidal oscillations in ocean basins; geographical variation of the tides; analysis and prediction of tides; tidal datum planes. Meteorological tides, Stiches. Tidal currents. TEXTS: Marmer, The Tides; Marmer, Tidal Datum Planes. PREREQUISITES: Ma-111(C) and Ph-142(B) or their equivalents.

OC-213(B) SHALLOW-WATER OCEANOGRAPHY (3-0). Types and characteristics of continental shelves, coasts and beaches; surf, breaking waves, littoral currents, and other shallow-water phenomena, and their influence upon amphibious operations; storm tides. TEXT: Departmental notes. PREREQUISITES: Oc-110(C) and Mr-611(B).

OC-220(B) OCEAN CURRENTS AND DIFFUSION (3-0). Dynamics of ocean currents; advection and diffusion, including that of radioactive substances; the natural flushing of contaminants from harbors and estuaries; boundary-layer flow in the sea. TEXTS: Sverdrup, Johnson and Fleming, The Oceans; Shepard, Submarine Geology; NavyER 50-1R-242, Application of Oceanography to Subsurface Warfare. PREREQUISITES: Oc-110(C), and Ma-163(C) and Ph-196(C) or their equivalents.

OC-230(A) WAVE PHENOMENA IN THE SEA (3-0). The mechanics of simple water waves, ocean-wave spectra, statistical properties of ocean waves, wave forces, and wave pressures; the movement of ships in irregular seas; tides, tidal currents, and the forces associated with them; sea-water transparency and underwater visibility. TEXTS: Sverdrup, Johnson and Fleming, The Oceans; H.O. 603, Practical Methods for Observing and Forecasting Ocean Waves; departmental notes. PREREQUISITES: Oc-110(C), Ma-152(B), and Ma-321(B) or equivalent.

OC-310(B) GEOLOGICAL OCEANOGRAPHY (3-0). Physiology of the sea floor, especially the continental shelf and slope, coral reefs, submarine canyons, and sea-mounts; marine processes that have shaped the ocean basins and coasts; character and distribution of sediment types and rates of deposition; origin of the ocean basins. TEXTS: Kuenen, Marine Geology; Shepard, Submarine Geology. PREREQUISITES: Oc-110(C) or equivalent. Ge-101(C) is desirable but not necessary.
OC-330(A) MARINE GEOLOGY AND GEOPHYSICS (3-0). Physical and engineering properties of marine sediments; geographical distribution of marine sediments; types of continental shelves and harbors; deposition and erosion on the sea floor; current scour around objects on the bottom; biological fouling organisms, distributions of foulers, and rates of fouling. TEXTS: Terzaghi and Peck, Soil Mechanics in Engineering Practice; Shepard, Submarine Geology; United States Naval Institute, Marine Fouling and Its Prevention; selected publications. PREREQUISITE: Oc-110(C).

OC-400(C) GENERAL OCEANOGRAPHY AND MARINE BIOLOGY (3-0). Physical and chemical properties of sea water; currents, waves, and tides; general circulation of the oceans; submarine geology; biology of the oceans; organisms responsible for noise making, sound scattering, bioluminescence, fouling and boring. TEXTS: Sverdrup, Johnson and Fleming, The Oceans. PREREQUISITE: Oc-110(C) or equivalent.

OC-410(B) BIOLOGICAL OCEANOGRAPHY (3-1). Plants and animal groups in the oceans; character of the plankton, nektos, and benthos; marine biological environments; oceanographic factors influencing populations; the effect of organisms on the physical-chemical properties of ocean water; organisms responsible for boring, fouling, sound and light production, and sound scattering. TEXT: Sverdrup, Johnson and Fleming, The Oceans. PREREQUISITE: Oc-110(C) or equivalent.

OC-510(B) CHEMICAL OCEANOGRAPHY (3-2). Chemical composition of sea water and sea ice; determination and distribution of salinity, density, dissolved gases, and plant nutrients; production of fresh water from sea water. TEXTS: Harvey, Recent Advances in the Biological Chemistry and Physics of Sea Water; Sverdrup, Johnson and Fleming, The Oceans. PREREQUISITES: Ch-101(C) or equivalent and Oc-110(C) or equivalent.

OC-612(B) ARCTIC SEA ICE (3-0). Arctic geography and oceanography; sea ice observations, formation, properties, growth, deformation and disintegration; ice drift in response to winds and currents. TEXT: H.O. Sea Ice Manual (unpublished). PREREQUISITES: Oc-210(B) or instructor's permission.

OC-613(B) ARCTIC SEA ICE AND ICE FORECASTING (3-4). Arctic geography and oceanography; sea ice observations, formation, properties, growth, deformation and disintegration; ice drift in response to winds and currents; forecasting in the laboratory. TEXT: H.O. Sea Ice Manual (unpublished). PREREQUISITES: Oc-210(B) and Mr-200(C).

OC-620(B) OCEANOGRAPHIC FACTORS IN UNDERWATER SOUND (3-0). The oceanographic factors involved in sound ranging, including thermal gradients, sound absorption properties of sea water, sound scattering and reflection characteristics of the sea surface and sea floor, scattering properties of marine organisms, and ambient noise arising in the sea. TEXTS: Navyer 50-IR-242, Application of Oceanography to Subsurface Warfare; departmental notes. PREREQUISITES: Oc-110(C) and Ph-196(C) or equivalent.

OC-621(B) OCEAN THERMAL STRUCTURE: VARIATION AND PREDICTION (2-2). Reviews variation of ocean-temperature structure and processes involved; techniques in forecasting thermal structure illustrated by laboratory exercises; practice in developing forecast methods from actual air and sea data. TEXT: Selected publications. PREREQUISITES: Oc-110(C), Oc-620(B) or Oc-210(B).

OPERATIONS ANALYSIS

OA-121(A) SURVEY OF OPERATIONS ANALYSIS (4-2). The nature, origin, and contemporary status of operations analysis; fundamental concepts with special emphasis on applications in the field of evaluating radar and sonar; introduction to game theory, linear programming, and other advanced techniques. TEXTS: Operations Evaluation Group, Report No. 54, Methods of Operations Research; Operations Evaluation Group, Report No. 56, Search and Screening; McCloskey and Trefethen, Operations Research for Management, Vols. I and II; Gass, Linear Programming; Tucker, Submarine Firing Phase Decisions, USNPS Thesis. PREREQUISITES: Ma-321(B) and Ma-322(A).

OA-151(B) SURVEY OF WEAPONS EVALUATION (3-0). Review of probability theory with military interpretations. Sources of firing errors and their relative contributions to the over-all errors. Damage probabilities. Selection of optimal weapon systems. Introduction to game theory and its application. TEXTS: Operations Evaluation Group, Report No. 54, Methods of Operations Research; classified official publications. PREREQUISITES: Ma-115(B).

OA-152(C) MEASURES OF EFFECTIVENESS OF MINES (3-0). Review of probability theory with military interpretations. Introduction to operations analysis. Errors in mine laying. Probability of damage. Theory of mine field operation. TEXTS: Classified official publications. PREREQUISITE: Ma-381(C).

OA-153(B) GAME THEORY AND ITS APPLICATIONS TO MINE FIELDS (3-0). A continuation of OA-152(C). Introduction to game theory. Operation of a mine field according to game theory. Analysis of countermeasures. TEXTS: Classified official publications. PREREQUISITE: OA-152(C).

OA-201(A) LOGISTICS ANALYSIS (3-2). Mathematical methods in logistics, with major emphasis on applications of linear programming to problems of transportation and sched-

OA-202(A) ECONOMETRICS (3-0). A continuation of OA-201(A). Inter-industry analysis; mathematical economic theory; review of current theoretical investigations of relationships between military programs and the national economy. TEXTS: Koopmans, Activity Analysis of Production and Allocation; RAND, Report R-245, An Introduction to the Theory of Dynamic Programming; Conolly, Interdiction Considerations in Leontief-Type Models of Land Logistic Networks (USNPS Thesis); Bellman, Dynamic Programming. PREREQUISITES: OA-201(A) and Ma-196(A).

OA-291(C) INTRODUCTION TO OPERATIONS ANALYSIS (4-0). Development of fundamental concepts and methods of operations analysis as illustrated in the field of submarine and anti-submarine warfare. Over-all measures of effectiveness of a submarine as a weapon system. Determination of effectiveness as a product of measure of detection, attack, and kill capabilities; Lanchester’s equations. TEXTS: Operations Evaluation Group, Report No. 54, Methods of Operations Research; Classified official publications; McCloskey and Trefethen, Operations Research for Management, Vols. I and II; Tucker, Submarine Firing Phase Decisions (USNPS Thesis). PREREQUISITES: Ma-391(C) and Ma-182(B). (The latter may be taken concurrently).

OA-293(B) SEARCH THEORY AND AIR DEFENSE (4-0). Theory of radar detection. Evaluation of the operational performance of search radars. Search theory. The design of screens and barrier patrols. Evaluation of fleet air defense. Applications of operations analysis to the problem of continental air defense. TEXTS: Morse and Kimmel, Methods of Operations Research; Koopman, Search and Screening; Operations Evaluation Group, Report No. 56, Search and Screening. PREREQUISITES: OA-292(B) and Ma-392(B).

OA-294(A) SPECIAL TOPICS IN OPERATIONS ANALYSIS (3-0). General formulation of the decision problem. Special types of decision problems, including game theory. Military applications of game theory. General concept of utility and its measurement. Group decisions. Scales of measurement. The broad scope of Operations Analysis. TEXTS: Luce and Raiffa, Game Theory and Decisions; Thrall, Decision Processes; Selected official publications. PREREQUISITE: OA-292(B).
sequences from an ergodic Markov chain; Shannon-Fano coding; detection. TEXTS: SHANNON and WEaver, THE MATHEMATICAL Theory of Communication; FELLER, Probability Theory and its Applications; FEinstein, Foundations of Information Theory; KHinchin, Mathematical Foundations of Information Theory. PREREQUISITES: Ma-120(C) or Ma-150(C) and Ma-321(B).

OA-471(B) OPERATIONS ANALYSIS FOR NAVY MANAGEMENT (4-0). The nature, origin and contemporary status of operations analysis; fundamental concepts with special emphasis on applications in the fields of transportation, inventory control and personnel management. Introduction to game theory, linear programming and queueing theory. TEXTS: McGossil and Trefethen, Operations Research for Management, Vols. I and II; Gass, Linear Programming; Williams, THE COMPLETE STRATEGIST; Chernoff and Moses, Elementary Decision Theory. PREREQUISITE: Ma-371(C).

OA-491(L) METHODS FOR COMBAT DEVELOPMENT EXPERIMENTATION (4-0). Introduction to the planning, analysis and reporting aspects of tactical field experiments. Examination of criteria from the military and statistical points of view. Discriminant Analysis. TEXT: None. PREREQUISITES: OA-291(C) and Ma-393(A).

OA-591(L) SEMINAR (1-0). Presentation, evaluation and critique of experiences and results of summer field trips. PREREQUISITE: Participation in summer field trip.

OA-891(L) ORIENTATION SEMINAR (0-1). Audition of OA-891(B) for guidance in later work.

OA-893(A) SEMINAR (2-2). Opportunity is given to students to prepare original material, or to choose current publications for study, and to present reports of this work as a phase of Operations Analysis. PREREQUISITE: A background of advanced work in Operations Analysis.

OA-896(B) SEMINAR (3-0). Opportunity is provided students preparing to teach at the U.S. Naval Academy to prepare lecture outlines and present lectures on probability theory and operations analysis. TEXTS: Wilks, Elementary Statistical Analysis; Fraser, Statistics, An Introduction. PREREQUISITES: OA-291(C) and Ma-392(B).

ORNANCE

Or-241(C) GUIDED MISSILES I (2-0). General concepts and theoretical problems involved in guidance, launching, propulsion, warhead design, stabilization, and simulation of guided missiles. Tactical problems and limitations of guidance systems. Organization of guided missile program. Test ranges and instrumentation. TEXTS: Classified official publications.

Or-242(B) GUIDED MISSILES II (2-0). Continuation of Or-241(C). Concepts of FM-CW and doppler radar; types of servos; the ballistic trajectory as applied to guided missiles. Application of guided missiles principles and uses as exemplified by Terrier, Talos, Regulus and Polaris. TEXT: Classified publications. PREREQUISITE: Or-241(C).

Or-292(C) MINE COUNTERMEASURES II (1-2). Continuation of Or-291(C). Theory of various countermeasures techniques. Laboratory periods are devoted to problem working and student presentations of reports on advanced countermeasure theories. TEXTS: Classified official publications. PREREQUISITE: Or-291(C).

Or-294(A) MINE WARFARE SEMINAR (2-0). Investigation and reports by students on assigned mine warfare topics. Occasional presentations and discussions by field representatives of mine warfare activities. PREREQUISITE: Or-293(C).

Or-392(B) MINEFIELD PLANNING (2-0). Theory of tactical and strategic mining. Limitations of current planning doctrine. New approaches to minefield design. TEXTS: Classified official publications. PREREQUISITES: Or-191(C) and a previous course in mine countermeasures.

PHYSICS

Ph-001 GENERAL PHYSICS I (Bachelor of Arts) (3-0). Mechanics - The purpose of this course as well as the following 3 units is to provide a knowledge of the principles of physics and thus to help the student understand the scientific background of modern civilization. This first unit deals with physical quantities and the concepts of motion, force, momentum and energy. TEXT: Smith and Cooper, Elements of Physics.

Ph-002 GENERAL PHYSICS II (Bachelor of Arts) (4-0). Harmonic Motion, Sound and Heat - This is a continuation of Ph-001 and considers simple harmonic motion, oscillating systems including those producing sound, the propagation of sound and wave motion. The mechanics of gases, thermometry, transfer of heat, and thermodynamics are among other topics considered. TEXT: Smith and Cooper, Elements of Physics. PREREQUISITE: Ph-001.

Ph-003 GENERAL PHYSICS III (Bachelor of Arts) (4-0). Electricity and Magnetism - This is a further continuation of General Physics I and II and presents the subjects of electrostatics, including coulombs law, potential and capacitance, electric current and electric circuits, magnetism, and induced electromotive force. TEXT: Smith and Cooper, Elements of Physics. PREREQUISITES: Ph-001 and Ph-002.
Ph-004 GENERAL PHYSICS IV (Bachelor of Arts) (4-0). Light and Modern Physics - This is the final unit of a four-term sequence of General Physics and treats selected topics in light including the geometrical optics of mirrors and lenses, interference and diffraction and optical instruments. A brief introduction to modern physics is also given. This includes the topics of atomic structure, optical and X-ray spectra, radioactivity, and nuclear structure. TEXT: Smith and Cooper, Elements of Physics. PREREQUISITES: Ph-001, Ph-002 and Ph-003.

Ph-011(C) GENERAL PHYSICS I (4-3). Mechanics—This course is designed to provide a knowledge of the principles of physics and to provide a scientific background for the study of engineering. It consists of lectures, recitations, problem sessions, and laboratory work dealing with force, motion, energy, momentum, elasticity, and hydrodynamics. TEXT: Sears and Zemansky, University Physics. PREREQUISITES: One term of calculus.

Ph-012(C) GENERAL PHYSICS II (4-3). Heat, Sound, and Light—This is a continuation of General Physics I and deals with molecular mechanics, behavior of gases, thermal expansion, calorimetry, the laws of thermodynamics, wave motion, vibrating bodies, reflection and refraction of light, dispersion, interference and diffraction, and optical instruments. TEXT: Sears and Zemansky, University Physics. PREREQUISITES: Ph-011(C) and Ph-012(C).

Ph-013(C) GENERAL PHYSICS III (3-3). Electricity and Magnetism—This is a continuation of General Physics I and II and deals with the fundamental principles of electrostatics, magnetism, electrochemistry, direct and alternating currents. TEXT: Sears and Zemansky, University Physics. PREREQUISITES: Ph-011(C) and Ph-012(C).

Ph-014(C) GENERAL PHYSICS IV (4-2). Modern Physics—This is a continuation of General Physics I, II and III and deals with the fundamentals of atomic and nuclear physics. Topics include: atomic and nuclear structure, optical spectra, radioactivity, nuclear processes, and particle accelerators. TEXT: Wehr-Richards, Physics of the Atom. PREREQUISITES: Ph-011(C), Ph-012(C) and Ph-013(C).

Ph-021(C) MECHANICS (4-0). A review and expansion of the mechanics portion of first-year college physics. Statics, linear, projectile, and satellite motion, work, energy, momentum, elasticity and harmonic motion, mechanics of fluids; wave motion. TEXT: Resnick and Halliday, Physics for Students of Science and Engineering. PREREQUISITES: College physics and calculus (may be taken concurrently).

Ph-022(C) ELECTROMAGNETISM (4-0). A review and expansion of the electricity portion of first-year college physics. Electric and magnetic fields, potential, current, resistance, dc circuits, dielectrics and capacitance, induced electromotive force, ferromagnetism, alternating current, electrical oscillations, and electromagnetic waves. TEXT: Resnick and Halliday, Physics for Students of Science and Engineering.

Ph-023(C) RADIATION (4-0). Propagation of waves; superposition, reflection, refraction, diffraction, interference, dispersion, attenuation and polarization of waves. TEXT: Resnick and Halliday, Physics for Students of Science and Engineering.

Ph-113(B) DYNAMICS (4-0). Fundamental dynamical concepts, oscillator theory, motion of a particle in two and three dimensions, motion in central fields with emphasis on atomic structure, motion of a system of particles. TEXT: Symon, Mechanics.

Ph-141(B) ANALYTICAL MECHANICS (4-0). Fundamental dynamical concepts, oscillator theory, curvilinear motion in a plane, energy concepts, statics and dynamics of a rigid body. Both analytical and vector methods are used. TEXT: Symon, Mechanics. PREREQUISITES: Ma-182(B). (May be taken concurrently.)

Ph-142(B) ANALYTICAL MECHANICS (4-0). Wave motion, fluid mechanics, constrained motion, Lagrange's equations. TEXT: Symon, Mechanics. PREREQUISITES: Ma-183(C) (may be taken concurrently) and Ph-141(B).

Ph-143(A) ANALYTICAL MECHANICS (4-0). The linear oscillator, central force motion, Lagrange's and Hamilton's equations. Kinematics of rigid bodies. Canonical transformations. Coupled systems and normal coordinates. TEXT: Goldstein, Classical Mechanics; lecture notes. PREREQUISITE: Ph-142(B) or equivalent.

Ph-151(C) MECHANICS I (4-0). Fundamental concepts and laws of motion, statics and equilibrium, motion of a particle in a uniform field, oscillatory motion. TEXT: Becker, Introduction to Theoretical Mechanics.

Ph-152(B) MECHANICS II (4-0). Motion of a system of particles, rigid body motion in a plane, motion in a central force field, accelerated reference frames. TEXT: Becker, Introduction to Theoretical Mechanics. PREREQUISITES: Ph-151(C) and Ma-181(C).

Ph-153(A) MECHANICS III (4-0). Motion of a rigid body in three dimensions, generalized coordinates, Lagrange's and Hamilton's equations, canonical transformations, coupled systems and normal coordinates, elastic media. TEXT: Becker, Introduction to Theoretical Mechanics. PREREQUISITES: Ph-152(B) and Ma-182(B).

Ph-154(A) CELESTIAL MECHANICS (4-0). Solar system, missile and satellite orbits, perturbation theory, mechanical problems of space flight. TEXT: Lecture Notes. PREREQUISITES: Ph-153(A) and Ma-175(B).

Ph-155(A) ADVANCED MECHANICS I (3-0). Review of elementary principles, Lagrange formulations with applications, Hamilton's principle with applications to non-conservative and non-holonomic systems. The two body central force problem, Kinematics of rigid body motion. Orthogonal transformation, Formal properties of transformation matrix. Infinitesimal rotation, Coriolis force. TEXT: Goldstein, Classical Mechanics. PREREQUISITES: Ph-142(B) or Ph-153(A), Ph-365(B) (may be taken concurrently).

Ph-161(A) HYDRODYNAMICS (3-0). Euler's equation and equation of continuity; solutions to Laplace's equation and flow in potential fields. General stress-strain relations in a viscous fluid. Dimensionless constants for flow similarity. TEXT: STREEETER, *Fluid Dynamics*. PREREQUISITES: Ae-100(C); Ae-121(C), Ma-175(B).

Ph-191(C) SURVEY OF PHYSICS II (3-0). A continuation of Ph-190(C). A survey of wave propagation, sound, electricity and magnetism, atomic structure, the properties of light, and other electromagnetic wave phenomena. TEXT: SMITH and COOPER, *Elements of Physics*. PREREQUISITE: Ph-190(C) or equivalent.

Ph-196(C) REVIEW OF GENERAL PHYSICS (5-0). A review of statics and dynamics. A survey of temperature, heat, kinetic theory, electricity and magnetism, wave motion and sound, and selected topics in light as time permits. TEXT: SEARS and ZEMANSKY, *University Physics*. PREREQUISITE: Ph-191(C) or equivalent.

Ph-220(B) RADIATION (3-3). Reflection and refraction of light, optical instruments. Fundamentals of wave phenomena, interference, diffraction, dispersion, polarization. Propagation of electromagnetic waves, the radar equation. Thermal radiation, the photoelectric effect, the Bohr atom, visibility and photometry. TEXTS: SEARS, *Optics*; JENKINS and WHITE, *Fundamentals of Optics*.

Ph-240(C) OPTICS AND SPECTRA (3-3). Reflection and refraction of light, optical systems, dispersion, interference, diffraction, polarization. Basic atomic structure, photoelectric effect, radiation from atoms, molecules and solids. TEXTS: SEARS, *Optics*; JENKINS and WHITE, *Fundamentals of Optics*.

Ph-260(C) PHYSICAL OPTICS (3-2). Reflection and refraction of light, optical systems, dispersion, interference, diffraction, polarization. Basic atomic structure, photoelectric effect, radiation from atoms, molecules and solids. TEXTS: SEARS, *Optics*; JENKINS and WHITE, *Fundamentals of Optics*.

Ph-270(B) PHYSICAL OPTICS AND SPECTRA (4-2). Wave phenomena and wave propagation, dispersion, interference, diffraction, polarization, basic atomic structure, photoelectric effect, radiation from atoms, molecules and solids. TEXT: JENKINS and WHITE, *Fundamentals of Optics*.

Ph-321(B) ELECTROMAGNETISM (3-0). Electromagnetic field theory; the electrostatic field, dielectrics, magnetic fields of currents; electromagnetic induction. Maxwell's Equations; plane waves. TEXT: SKILLING, *Fundamentals of Electric Waves*. PREREQUISITE: Ph-341(C) or equivalent.

Ph-341(C) ELECTRICITY AND MAGNETISM (4-2). DC and AC circuits, elementary electrostatics, vacuum tubes, coupled circuits, filters, lines, vacuum tube circuits. The treatment emphasizes the physical aspects of these phenomena. TEXTS: WINCH, *Electricity and Magnetism*; WILLIAMS, *Electronics*; STOUT, *Basic Electrical Measurements*; lecture notes. PREREQUISITE: Ma-182(C). (May be taken concurrently.)

Ph-361(A) ELECTROMAGNETISM (3-0). Electromagnetic field theory; electrostatics, dielectrics, magnetic fields of currents; vector potential; magnetic materials; magneto-motive force; electromagnetic induction; Maxwell's equations. TEXT: SLATER and FRANK, *Electromagnetism*. PREREQUISITES: Ma-183(B) and EE-272(B), or equivalent.

Ph-365(B) ELECTRICITY AND MAGNETISM (4-0). Electrostatics, dielectrics, magnetostatics, induced emf, magnetic materials, Maxwell's equations. TEXTS: WHITMER, *Electromagnetics and KRAUS, Electromagnetics*. PREREQUISITES: Ma-153(B) or Ma-186(B).

Ph-367(A) SPECIAL TOPICS IN ELECTROMAGNETISM (4-0). A continuation of Ph-366(B). Methods of solution to Laplace's equation and Poisson's equation. Hertz potential. Radiation, scattering and dispersion. TEXT: PANOSKY and PHILLIPS, *Classical Electricity and Magnetism*. PREREQUISITES: Ph-366(B) and Ma-175(B) or Ma-187(B).

Ph-368(A) ADVANCED ELECTROMAGNETIC THEORY I (3-0). Problems in electromagnetic radiation, optics and dispersion from electromagnetic point of view, retarded potentials, special theory of relativity, Lagrangian and Hamiltonian formulation of classical electrodynamics. TEXT: PANOSKY and PHILLIPS, *Classical Electricity and Magnetism*. PREREQUISITES: Ph-367(A), Ph-144(A) or Ph-155(A).

Ph-431(B) FUNDAMENTAL ACOUSTICS (4-0). An analytical study of the dynamics of free, forced, and damped simple harmonic oscillators, strings, bars and membranes. Development
of, and solutions to, the acoustic wave equation. Propagation of plane waves through pipes and between different media. Acoustic filters. Beam patterns and directivity of acoustics radiation from a piston. Radiation reaction. Loudspeakers and microphones. TEXT: Kinsler and Frey, Fundamentals of Acoustics. PREREQUISITE: Ma-113(B) or equivalent.

Ph-432(A) UNDERWATER ACOUSTICS (4-3). A continuation of Ph-431(B). Transmission of sound in the ocean, including problems of refraction, classical and molecular attenuation, scattering, reverberation, and channel propagation. Physical principles used in sonar systems. Experiments in acoustical measurements, transducer measurements and noise analysis. TEXTS: Kinsler and Frey, Fundamentals of Acoustics; NDRC, Technical Summary; Principles of Underwater Sound; Officer, Sound Transmission. PREREQUISITE: Ph-431(B).

Ph-433(A) PROPAGATION OF WAVES IN FLUIDS (3-0). A theoretical treatment of the propagation of acoustic waves in fluids including both ray and wave propagation characteristics as well as second order effects. TEXT: Instructor’s notes. PREREQUISITE: Ph-432(A).

Ph-435(B) UNDERWATER ACOUSTICS (3-2). A continuation of Ph-431(B). An analytic survey of the propagation of underwater acoustic waves as influenced by boundary conditions, refraction, reverberation, and attenuation. Physical characteristics of sonar transducers. Sonar systems and developments, experimental measurements in underwater acoustics. Laboratory includes experiments in underwater acoustic measurements. TEXTS: Kinsler and Frey, Fundamentals of Acoustics; NDRC Technical Summary; Principles of Underwater Sound; NDRC Technical Summary; Physics of Sound in the Sea. PREREQUISITE: Ph-431(B).

Ph-441(A) SHOCK WAVES IN FLUIDS (4-0). Simple oscillator. Hydrodynamics. Longitudinal wave equation. Propagation of acoustic waves in fluids. Propagation of explosive shock waves in fluids. Shock waves propagated from atomic explosions. TEXTS: Kinsler and Frey, Fundamentals of Acoustics; Cole, Underwater Explosions. PREREQUISITES: Ma-183(B) and Ph-152(B).

Ph-450(B) UNDERWATER ACOUSTICS (3-2) A survey of the fundamentals of acoustics, with particular emphasis on sound radiation and transmission problems encountered in underwater acoustics. TEXTS: Kinsler and Frey, Fundamentals of Acoustics; NDRC Technical Summary; Principles of Underwater Sound; NDRC Technical Summary; Physics of Sound in the Sea.

Ph-461(A) TRANSDUCER THEORY AND DESIGN (3-3). A theoretical treatment of the fundamental phenomena inherent to the design of crystal, magnetostrictive, and ceramic sonar transducers. Characteristics and parameters of various sonar transducer systems are studied in the laboratory. TEXTS: Huetter and Bolt, Sonics, NDRC Technical Summary; Crystal Transducers; instructor’s notes.

Ph-471(A) ACOUSTICS RESEARCH (0-3). Advanced laboratory work in acoustics. PREREQUISITE: Ph-432(A) or equivalent.

Ph-480(A) ACOUSTICS SEMINAR (2-0). Survey of current classified and unclassified acoustic literature in preparation for the student’s thesis.

Ph-530(B) THERMODYNAMICS (3-0). Fundamental theory of thermodynamics and application to physical problems. First and second laws of thermodynamics; introduction to classical phase rule. Gaseous reactions, thermodynamics of dilute solutions, specific heats of gases, the Nernst heat theorem. TEXT: Sears, Thermodynamics. PREREQUISITES: Ph-113(B) or Ph-142(B), and Ma-156(A) or Ma-183(B).

Ph-535(B) THERMODYNAMICS KINETIC THEORY AND STATISTICAL MECHANICS (5-0). Equations of state, first and second laws of thermodynamics; introduction to classical and quantum statistics, including Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac Statistics. TEXT: Allis and Herlin, Thermodynamics and Statistical Mechanics; Lecture Notes. PREREQUISITES: Ph-113(B) or Ph-142(B) or Ph-152(B) and Ma-113(B) or Ma-183(B) or equivalent.

Ph-541(B) KINETIC THEORY AND STATISTICAL MECHANICS (4-0). Maxwell-Boltzmann distribution, collision cross-sections, introduction to classical and quantum statistics, with application to radiant energy. TEXTS: Kennard, Kinetic Theory; Sears, Thermodynamics. PREREQUISITES: Ma-183(B) and Ph-142(B).

Ph-545(A) STATISTICAL PHYSICS I (3-0). Basic principles of statistical mechanics from an advanced viewpoint including the statistical explanation of the principles of thermodynamics. The Gibbs and Maxwell Distributions. Treatment of perfect gas using statistical methods. Fermi and Bose distributions. TEXT: Landau and Lifshitz, Statistical Physics; Lecture notes. PREREQUISITES: Ph-636(B) or Ph-671(B); Ph-153(A); Ph-366(H).

Ph-610(C) SURVEY OF ATOMIC AND NUCLEAR PHYSICS (3-0). An introductory course in atomic and nuclear physics. Elementary charged particles, photoelectricity, X-rays, radioactivity, atomic structure, nuclear reactions, nuclear fission. TEXT: Semat, Atomic Physics.

Ph-620(B) ATOMIC PHYSICS (4-0). Theory of structure of matter; kinetic theory, electrons as particles and waves, elementary quantum physics, interaction of fundamental particles, survey of nuclear behavior; atomic structure, X-rays and spectra, molecular structure, behavior of atoms in solids. TEXT: Sproull, Modern Physics. PREREQUISITES: Ph-191(C) or equivalent.
Ph-621(B) NUCLEAR PHYSICS (4-0). A descriptive and phenomenological course including properties of nucleons, nuclear structure, radioactivity, nuclear reactions, fission, and fusion. TEXT: KAPLAN, Nuclear Physics. PREREQUISITE: Ph-620(B).

Ph-635(B) ATOMIC PHYSICS I (5-0). Fundamental particles, kinetic theory of gases, particle-wave duality, Bohr model of the atom, Schrödinger equation, brief treatment of the operator approach to quantum mechanics, quantum mechanical solution for the hydrogen atom, transition probabilities, periodic table of the elements, quantum numbers as applied to many-electron atoms. TEXTS: SPROULL, Modern Physics; REITMYER, KENNARD and LAURITSEN, Modern Physics; Lecture notes on quantum mechanics. PREREQUISITES: Ma-181(C) and Ph-240(C).

Ph-636(B) ATOMIC PHYSICS II (4-3). Molecular structure, binding energies of molecules and solids, X-rays, diffraction and structure of crystals, band theory of solids, semiconductors, electron and nuclear spin resonance, crystal imperfections, plasticity, irradiation effects on materials, special theory of relativity. Laboratory: quantitative experiments related to the lecture material of Ph-635(B) and Ph-636(B). TEXTS: SPROULL, Modern Physics; REITMYER, KENNARD and LAURITSEN, Modern Physics. PREREQUISITE: Ph-635(B).

Ph-637(B) NUCLEAR PHYSICS I (3-0). Basic nuclear concepts, nuclear stability, static properties of the nucleus, and nuclear forces. TEXTS: HALLIDAY, Introductory Nuclear Physics; KAPLAN, Nuclear Physics. PREREQUISITES: Ph-635(B), Ph-636(B) or Ph-670(B), Ph-671(B), and Ph-305(B).

Ph-638(B) NUCLEAR PHYSICS II (3-3). A continuation of Ph-637(B). Nuclear models, dynamic properties of the nucleus, including radioactivity, nuclear reactions, and nuclear fission. TEXTS: HALLIDAY, Introductory Nuclear Physics; KAPLAN, Nuclear Physics; BLEULER and GOLDSMITH, Experimental Nuclear Physics. PREREQUISITE: Ph-637(B).

Ph-639(A) NUCLEAR THEORY (4-3). Nuclear forces; general theory of nuclear reactions. Applications of theory to experiments. TEXTS: BLATT and WEISSKOPF, Theoretical Nuclear Physics; BLEULER and GOLDSMITH, Experimental Nuclear Physics. PREREQUISITES: Ph-638(B) and Ph-721(A).

Ph-640(B) ATOMIC PHYSICS (3-3). Elementary charged particles, photoelectricity, Bohr model of the hydrogen atom, optical and x-ray spectra, Zeeman effect, Compton effect, electron diffraction, special theory of relativity, Schrödinger's wave equation. Includes laboratory. TEXTS: FINKELBERG, Atomic Physics; SEMAT, Atomic Physics. PREREQUISITES: Ph-142(B) and Ph-240(C).

Ph-642(B) NUCLEAR PHYSICS (4-3). Nuclear structure, radioactivity, nuclear reactions and nuclear fission. Includes laboratory. TEXTS: HALLIDAY, Introductory Nuclear Physics; KAPLAN, Nuclear Physics; BLEULER and GOLDSMITH, Experimental Nuclear Physics. PREREQUISITE: Ph-640(B).

Ph-646(A) ADVANCED NUCLEAR PHYSICS I (3-0). Partial wave analysis of scattering, the theories of nuclear reactions, nuclear forces. TEXTS: BLATT and WEISSKOPF, Theoretical Nuclear Physics; SACKS, Nuclear Theory; the periodicals of nuclear physics. PREREQUISITES: Ph-638(B), Ph-368(A), and Ph-712(A).

Ph-647(A) ADVANCED NUCLEAR PHYSICS II (3-0). Nuclear models, theory of beta-decay, theory of gamma emission, theory of alpha decay. TEXTS: BLATT and WEISSKOPF, Theoretical Nuclear Physics; SACKS, Nuclear Theory; the periodicals of nuclear physics. PREREQUISITE: Ph-646(A).

Ph-650(A) GASEOUS DISCHARGES (4-0). Basic phenomena in gaseous discharges and infrared spectroscopy; theory of detectors for nuclear reactions. TEXTS: VON ENGEL, Ionized Gases; REITMYER and KENNARD, Introduction to Modern Physics; Lecture notes. PREREQUISITE: Ph-640(A) or equivalent.

Ph-651(A) REACTOR THEORY I (3-0). Nuclear fission, the diffusion and slowing down of neutrons, homogenous thermal reactors. TEXT: GLASSTONE and ELDUN, The Elements of Nuclear Reactor Theory; MURRAY, Nuclear Reactor Physics. PREREQUISITES: Ph-640(B) or Ph-660(B), Ph-642(B), and Ma-113(B) or equivalent.

Ph-653(A) REACTOR PHYSICS LABORATORY (0-2). Experiments using the AGN-201 reactor including the measurement of basic reactor parameters and the study of its transient behavior. TEXTS: AEROJET-GENERAL, Elementary Reactor Experimentation; HUGHES, Pile Neutron Research; GLASSTONE and ELDUN, The Elements of Nuclear Reactor Theory. PREREQUISITES: Ph-651(A) and Ph-652(A). (May be taken concurrently).

Ph-654(A) PLASMA PHYSICS (4-0). This course is specifically concerned with the dynamics of plasma. The dynamics of single particles in a vacuum under the simultaneous influence of electric and magnetic fields is considered first. To account for the particle interaction a stochastic term is added and the Langevin equation for the average motion of a single particle is obtained. For the description of the ensemble averages the transport equations are derived from the discussion of the Boltzmann fundamental equation. Finally the Fokker-Planck equation is studied. PREREQUISITES: Ph-144(A) or Ph-153 (A), Ph-640(B), Ph-636(B) or Ph-671(B), Ph-366(B), and Ph-541(B) or Ph-535(B).

Ph-660(B) ATOMIC PHYSICS (4-3). Diffraction phenomena, charged particles, Rutherford's model of the atom and scattering of alpha particles, special theory of relativity, photoelectricity, Compton effect, Bohr model of the atom, optical spectra. Zeeman effects, x-rays, Moseley's Law. TEXT: SEMAT, Atomic Physics. PREREQUISITE: Ph-113(B) or equivalent.
Ph-670(B) ATOMIC PHYSICS I (3-0). Fundamental particles, special theory of relativity, relationship between particles and waves, Bohr model of the atom, quantum mechanics from the operator approach, quantum mechanical solution for the hydrogen atom. TEXTS: RICHTMYER, KENNARD and LAURITSEN, Modern Physics; BOHN, Quantum Mechanics. PREREQUISITES: Ph-152(B) or equivalent, Ma-175(B) or equivalent, and Ph-270(B).

Ph-671(B) ATOMIC PHYSICS II (3-3). Radiative transition probabilities, periodic table of the elements in terms of one-electron quantum numbers, quantum mechanics of many-electron systems, X-rays, binding in molecules, electron and nuclear spin resonance. Laboratory: Quantitative experiments related to lecture material of Ph-670(B) and Ph-671(B). TEXT: RICHTMYER, KENNARD and LAURITSEN, Modern Physics. PREREQUISITE: Ph-670(B).

Ph-711(A) QUANTUM MECHANICS I (3-0). The Schrödinger equation, eigenvalues and energy levels, the hydrogen atom, collision theory. TEXTS: SCHIFF, Quantum Mechanics; PAULING and WILSON, Introduction to Quantum Mechanics. PREREQUISITES: Ph-114(A) or Ph-156(A), Ph-367(A).

Ph-712(A) QUANTUM MECHANICS II (3-0). Matrix formulation of quantum mechanics, spin, atoms, time-dependent and time-independent perturbation theory. TEXT: SCHIFF, Quantum Mechanics. PREREQUISITE: Ph-711(A).

Ph-713(A) QUANTUM MECHANICS III (3-0). Semiclassical radiation theory, angular momentum and coupling, Dirac relativistic wave equation. TEXTS: SCHIFF, Quantum Mechanics; LANDAU and LIFSHITZ, Quantum Mechanics - Non Relativistic Theory. PREREQUISITES: Ph-712(A), Ph-368(A).

Ph-721(A) INTRODUCTORY QUANTUM MECHANICS (4-0). This course is designed to familiarize the student with the postulates and methods of Schrödinger's quantum mechanics, with application to such problems as the free particle, particle in a potential well, potential barriers, natural radioactivity, harmonic oscillator, free rotor, hydrogen atom and the one-dimensional potential lattice for the solid state. TEXT: ROJANSKY, Introductory Quantum Mechanics; SCHIFF, Quantum Mechanics. PREREQUISITES: Ph-114(A) and Ph-640(B) or equivalent.

Ph-724(A) THEORY OF QUANTUM ELECTRONIC DEVICES (4-0). Theory of the operation of electronic devices depending on energy states and the quantum nature of radiation; topics in quantum mechanics, spin resonance, rotating coordinates, relaxation times, internal fields; application to specific electronic devices such as masers, microwave and optical pumping devices, paramagnetic amplifiers, magnetic instruments. TEXTS: HERZBERG, Atomic Spectra and Atomic Structure; TOWNES and SCHAWLOW, Microwave Spectroscopy. PREREQUISITE: Ph-620(B) or equivalent.

Ph-730(A) PHYSICS OF THE SOLID STATE (4-2). Fundamental theory and related laboratory experiments dealing with solids, with emphasis on electronic properties; crystals, binding energy, anisotropy, lattice oscillations, band theory of electrons, Brillouin zones, "hole" concept, effective mass, electrical conductivity, insulators and semiconductors, fluorescence, junction rectifiers, transistors, magnetism, and dielectrics. TEXTS: SPROULL, Modern Physics; SINOTT, The Solid State for Engineers; KITTEL, Introduction to Solid State Physics. PREREQUISITE: Ph-620(B).

Ph-731(A) ADVANCED SOLID STATE PHYSICS I (3-0). Fundamental studies of selected topics in solid state physics. The material selected will be chosen from: Theory of specific heats, transport properties, one electron approximations, the cohesive energy, mechanical properties, optical properties, magnetic properties, and resonance methods. TEXTS: KITTEL, Introduction to Solid State Physics; SEITZ, Modern Theory of Solids; SEITZ and TURBULL, Solid State Physics; and current literature. PREREQUISITES: Ph-730(A) and Ph-711(A).

Ph-732(A) ADVANCED SOLID STATE PHYSICS II (3-0). A continuation of Ph-731(A) with emphasis on the study of the current scientific literature. PREREQUISITE: Ph-731(A). Ph-750(L) PHYSICS SEMINAR (0-1). Discussion of special topics of current interest in the field of physics and student thesis reports.

Ph-770(A) READING IN ADVANCED PHYSICS (3-0). Supervised reading from the periodicals in fields of advanced physics selected to meet the needs of the student.
UNITED STATES NAVAL POSTGRADUATE SCHOOL

Catalogue for 1961-1962

THE GENERAL LINE AND NAVAL SCIENCE SCHOOL

MONTEREY ★ CALIFORNIA
GENERAL LINE AND NAVAL SCIENCE SCHOOL

Director

ROBERT PARK BEEBE
Captain, U.S. Navy
B.S., USNA, 1931
A.M., Boston Univ., 1957
Naval War College, 1956
Naval War College, Advanced Study in Strategy and Sea Power, 1957
(To be detached, Summer, 1961)

DEPARTMENT OF NAVAL WARFARE

JOSEPH EDWARD HART, Captain, U.S. Navy; Head of Department; B.S., Univ. of Akron, 1936; Naval War College, 1949, 1956.

AMBROSE J. KINNIN, Commander, U.S. Navy; Instructor in Operational Planning; B.A., Univ. of New Hampshire, 1939.

ERNEST L. MEDFORD, Jr., Lieutenant Colonel, U.S. Marine Corps; Marine Corps Representative and Instructor in Amphibious Operations; B.A., St. John's College, 1939.

DAVID B. MAHER, Commander, U.S. Navy; Instructor in Anti-Submarine Warfare; B.S., USNA, 1943.

IRA W. BLAIR, Lieutenant Commander, U.S. Navy; Instructor in Amphibious Operations; B.S., USNA, 1947.

ROBERT P. BREWER, Commander, U.S. Navy; Instructor in Naval Aviation; A.B., University of North Carolina, 1939.

ERIC E. BOWER, Commander, U.S. Navy; Instructor in Naval Aviation.

FREDERICK E. LANE, Commander, U.S. Navy; Instructor in Operational Planning.

PAUL J. RAMSEY, Lieutenant Commander, U.S. Navy; Instructor in Guided Missiles and Outer Space; B.S., USNA, 1942.

RICHARD LEE WARREN, Lieutenant Commander, U.S. Navy; Instructor in Naval Ordnance and Fire Control; B.S., USNA, 1944.

JOHN K. BOLES, Lieutenant Commander, U.S. Navy; Instructor in Communications.

*The year of joining the Postgraduate School faculty is indicated in parentheses.

ALFRED LEROY GURNEY
Captain, U.S. Navy
A.B., St. Mary's College, 1935; General Line School, 1947; Industrial College of the Armed Forces, 1956
(To report, Summer, 1961)

Assistant Director for Women and Assistant Administrative Officer

DORIS A. PETERSON
Lieutenant Junior Grade, U.S. Naval Reserve
B.S., Univ. of San Francisco, 1958

Scheduling Officer

JAMES WILLIAM AMOS
Lieutenant Commander, U.S. Navy

WILLIS C. MCCLELLAND, Lieutenant Commander, U.S. Navy; Instructor in Naval Ordnance and Fire Control.

THOMAS L. TABOR, Lieutenant Commander, U.S. Navy; Instructor in Anti-Submarine Warfare.

FRANK C. HEBERT, Lieutenant Commander, U.S. Navy; Instructor in Anti-Submarine Warfare.

MARTIN JAY COOPER, Lieutenant Commander, U.S. Navy; Instructor in Restricted Weapons.

HAROLD J. YEARY, Lieutenant Commander, U.S. Navy; Instructor in Mine Warfare.

LEE S. HOUCHINS, Lieutenant Commander, U.S. Navy; Instructor in Restricted Weapons; B.S., Univ. of New Mexico, 1950.

CHARLES F. HICKEY, Lieutenant Commander, U.S. Navy; Instructor in Mine Warfare; B.S., USNA, 1949.

ROBERT G. JACKSON, Lieutenant, U.S. Navy; Instructor in Guided Missiles and Space Technology.

JAMES J. FINLAN, Lieutenant, U.S. Navy; Instructor in Tactics and CIC; B.S., Univ. of Vermont, 1952.

DEPARTMENT OF SEAMANSHIP AND ADMINISTRATION

WILLIAM H. PELLETT, Captain, U.S. Navy; Head of Department; B.S., USNA, 1942.

ARIEL L. LANE, Commander, U.S. Navy; Instructor in Navigation.
Fred C. Culver, Commander, U.S. Navy; Instructor in Logistics and Naval Supply and Personal Affairs; A.B., M.B.A., Univ. of Michigan, 1940; Naval War College, 1952.

Carl F. Barron, Commander, U.S. Navy; Instructor in Meteorology; B.S., St. Louis Univ., 1941; USNPS, 1947.

Allan R. Vastveit, Commander, U.S. Navy; Instructor in Navigation.

Floyd D. Richards, Commander, U.S. Navy; Instructor in Leadership and Administration; B.S., Central Normal College, 1942.

Robert V. Eckert, Commander, U.S. Navy; Instructor in Leadership and Administration.

Dan A. Dancy, Lieutenant Commander, U.S. Navy; Instructor in Seamanship; B.S., California Maritime Academy, 1943.

George A. Caldwell, Commander, U.S. Navy; Instructor in Naval Intelligence; B.S., USNA, 1945: Naval Intelligence, USNPS, 1955.

DEPARTMENT OF APPLIED ENGINEERING

William B. Paulin, Captain, U.S. Navy; Head of Department; B.S., UCLA, 1939; USNPS, 1950.

Stephen J. Nemeth, Commander, U.S. Navy; Instructor in Damage Control.

Arnold E. Downs, Commander, U.S. Navy; Instructor in Electricity-Electronics; B.S., S. Dakota State College, 1941; USNPS, 1950.

George F. Ziegler, Lieutenant Commander, U.S. Navy; Instructor in Physics; B.S., Neward College of Engineering, 1942; B.S., USNPS, 1951; M.S., UCLA, 1952.

Donald Walter Wilkinson, Lieutenant Commander, U.S. Navy; Instructor in Marine Nuclear Propulsion; B.S., Univ. of Michigan, 1953; Nav. Eng., Massachusetts Institute of Technology, 1952.

Mallie B. Moore, Lieutenant, U.S. Navy; Instructor in Marine Engineering.

Harry E. Conrad, Lieutenant, U.S. Navy; Instructor in Marine Engineering.

Donald E. Cunningham, Lieutenant, U.S. Navy; Instructor in Damage Control.

Craig Comstock, Lieutenant, U.S. Naval Reserve; Instructor in Mathematics; B.E.P., Cornell Univ., 1956.

David R. Slotboom, Lieutenant, Junior Grade, U.S. Naval Reserve; Instructor in Electricity; B.S., Univ. of Utah, 1958.

William B. Stauber, Lieutenant, Junior Grade, U.S. Naval Reserve; Instructor in Mathematics; B.A., Lake Forest College, 1958.

Paul V. Guthrie, Jr., Lieutenant, Junior Grade, U.S. Naval Reserve; Instructor in Electricity-Electronics; B.S., M.S., Univ. of Tennessee, 1959.

DEPARTMENT OF HUMANITIES

Emmett Francis O'Neil, Commander, U.S. Naval Reserve; Head of Department; A.B., Harvard Univ., 1931; A.M., Univ. of Michigan, 1932; Ph.D., 1941.

William D. Hoot, Commander, U.S. Navy; Instructor in International Law; A.B., Penn State, 1939; LL.B., Univ. of Michigan, 1942; Army JAG School, Univ. of Virginia, 1956.

Francis E. Biadasz, Commander, U.S. Navy; Instructor in International Relations; B.S., Worcester State Teachers College, 1935; M.A., Georgetown Univ., 1953; Ph.D., Georgetown Univ., 1961.

Hubert C. Gregory, Jr., Lieutenant Commander, U.S. Navy; Instructor in International Relations; A.B., Univ. of Southern California, 1951; Naval Intelligence, USNPS, 1953.

Donald E. Selby, Lieutenant Commander, U.S. Navy; Instructor in Military Justice; A.B., Brown University, 1948; LL.B., Univ. of Virginia, 1951; Army JAG School, Univ. of Virginia, 1960.

Loftur L. Bjarnason, Professor of Literature, (1958); A.B., Univ. of Utah, 1934; A.M., 1936; A.M., Harvard Univ., 1939; Ph.D., Stanford Univ., 1951.

Burton MacLynn Smith, Associate Professor of Speech, (1955); A.B., Univ. of Wisconsin, 1936; A.M., 1937.

Boyd Francis Huff, Associate Professor of History, (1958); A.B., Univ. of Washington, 1938; A.M., Brown Univ., 1941; Ph.D., Univ. of California, 1955.

William Clayton Boggs, Assistant Professor of Public Speaking (1956); B.S., Univ. of Southern California, 1953; M.S., 1954.

Russell Branson Bomberger, Assistant Professor of English (1958); B.S., Temple Univ., 1955; A.M., State Univ. of Iowa, 1956, 1961; M.S., Univ. of Southern Calif., 1961.
GENERAL INFORMATION

MISSION

The mission of the General Line and Naval Science School is to raise the educational level, broaden the mental outlook, and increase the professional and scientific knowledge of line officers in order that they may better perform the duties and meet the responsibilities of higher rank.

TASKS

The tasks for the General Line and Naval Science School are:

- To provide instruction of about two years’ duration leading to either a Bachelor of Science or Bachelor of Arts Degree, no major designated, to meet the educational and career requirements of those officers who do not have a baccalaureate degree.

- To provide instruction of about nine-and-one-half months duration which will prepare line officers with about 5 to 7 years commissioned service for more responsible duties in the operating forces.

- To provide special programs of instruction as may be directed for women officers, legal officers, public information officers, and foreign naval officers.

ORGANIZATION

The Director of the General Line and Naval Science School is responsible to the Superintendent, U.S. Naval Postgraduate School, for all phases of administration of the General Line and Naval Science School. The Director’s staff includes his administrative assistants, the Assistant Director, the Academic Chairman of the General Line and Naval Science School, the four heads of academic departments, the civilian faculty, and officer instructors.

The four academic departments, each of which is headed by an appropriately qualified officer, are:

- Department of Naval Warfare.
- Department of Seamanship and Administration.
- Department of Applied Engineering.
- Department of Humanities.

The Academic Chairman of the General Line and Naval Science School supervises the granting of advanced credit and the instruction given in all departments of the school.

Officer students enrolled in the General Line and Naval Science School are divided into sections for administrative purposes. The senior officer of each section is designated section leader with certain administrative responsibilities for the officers in his section. Each section has a member of the school staff assigned as its section advisor. The section advisor serves in the capacity of student counselor and provides a convenient link between the students and the school administration.

CALENDAR

The General Line and Naval Science School utilizes the Postgraduate School calendar which is based on five terms of ten weeks each and a two week Christmas leave period in a calendar year. The tenth week of each term is used as necessary for examinations and administrative transition to the next term.

BACCALAUREATE CURRICULA

The Baccalaureate Curricula include the Naval Professional courses of the General Line Curriculum (described below) and, in addition, sufficient coverage in the Humanities and Science-Engineering areas to adequately support Bachelor of Science and Bachelor of Arts degrees.

To be eligible for enrollment an officer must have acceptable advanced standing of 75 term credit hours (equivalent to 45 semester hours) which can be applied toward completion of the prescribed course of study. From 1 to 2 calendar years are allowed for those enrolled to complete the program.

Students pursuing this curriculum will carry an average load of 17 credit hours. The total of class hours and laboratory hours should average about 20 hours per week. Scheduling procedures are similar to those for the General Line Curriculum.

The Bachelor of Science and Bachelor of Arts Degrees will be awarded by the Superintendent, U.S. Naval Postgraduate School, to those officer students who successfully complete the curriculum with a minimum average quality point rating of 1.0 (i.e., an average grade of C). A minimum of at least 215 term credit hours (equivalent to 129 semester hours), representing college level course credit earned at the General Line and Naval Science School or through accepted advanced standing, is required. For the Bachelor of Science, the 215 term hours must be distributed in the following academic areas: 118 (55%) in Science-Engineering; 54 (25%) in Naval Professional; 43 (20%) in the Humanities. For the Bachelor of Arts, the 215 term hours must be distributed in the following academic areas: 118 (55%) in the Humanities; 54 (25%) in Naval Professional; 43 (20%) in Science-Engineering. A minimum of 3 terms (equivalent to one college year) in residence at the General Line and Naval Science School is also required.

The Baccalaureate Curricula schedules are shown on pages G-6 and G-7. Students are required to complete the courses listed there, or equivalents, either before admission to the curriculum or as part of it. Furthermore, it will be necessary to satisfy a basic English and Grammar requirement through attainment of satisfactory scores on a standard examination administered on arrival. Those who fail the test will be enrolled in English Composition (HCA) without credit. Elective courses may be selected from any programs of the Engineering School, General Line and Naval Science School, or Management School to substitute for required courses for which advanced credit has been allowed so as to fulfill the total term credit hour requirements.

NINE-AND-ONE-HALF MONTH GENERAL LINE CURRICULUM

The Nine-and-one-half Month General Line Curriculum extends over four terms and may be taken separately or as a component of the Bachelor of Science curriculum. Prescribed courses totaling 774 classroom and laboratory hours, chiefly in the Naval-Professional area, comprise the curriculum. An officer student enrolled in this program must take each of these courses or establish his qualifications for exemptions. All courses offered by the General Line and Naval Science School are available as electives if the student has the prerequisites and scheduling permits.
Exemptions for each officer student are determined on the basis of information obtained from a “Pre-Registration Questionnaire,” prior college record, and personal interview by staff members. In some cases examinations are given to determine qualifications in specific areas. Students pursuing this curriculum are expected to carry an average load of 21 class and laboratory hours, some of which may be electives.

SPECIAL PROGRAMS

The courses offered by the General Line and Naval Science School are also utilized in special programs individually designed to meet the needs of women officers, law officers, and foreign naval officers who are ordered to the school for instruction. In most cases special programs extend over four terms, except that women and law officers are usually limited to two terms.

READING ACCELERATION

Outside instruction is available from the Speech instructors for students who are slow readers. Early use of this assistance is urged for maximum benefit.

TABULATION OF COURSE OFFERINGS AND COURSE DESCRIPTIONS

A tabulation of the courses offered by the four departments of the General Line and Naval Science School, and a description of each course, is given on pages G7 - G12. Listed also are the courses given by the Engineering School which form a part of the General Line Curriculum.

BACHELOR OF SCIENCE CURRICULUM SCHEDULE

<table>
<thead>
<tr>
<th>FIFTH TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAO Amphibious Operations</td>
</tr>
<tr>
<td>ORW Restricted Weapons</td>
</tr>
<tr>
<td>OMW Mine Warfare</td>
</tr>
<tr>
<td>EGM Marine Engineering</td>
</tr>
<tr>
<td>ME561 Mechanics I (Statics)</td>
</tr>
<tr>
<td>Ph013 General Physics III</td>
</tr>
<tr>
<td>HSG Speech I</td>
</tr>
<tr>
<td>SLO Logistics and Naval Supply</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIXTH TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTC Tactics and CIC</td>
</tr>
<tr>
<td>EE021 Electrical Circuits and Machinery I</td>
</tr>
<tr>
<td>ME562 Mechanics II (Dynamics)</td>
</tr>
<tr>
<td>HEC Economics I</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEVENTH TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOA/OAV Naval Aviation</td>
</tr>
<tr>
<td>SNA Navigation</td>
</tr>
<tr>
<td>EDC Damage Control and ABC</td>
</tr>
<tr>
<td>Ex271 Electronics I</td>
</tr>
<tr>
<td>HIR Political Science 105</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EIGHTH TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAS Anti-Submarine Warfare</td>
</tr>
<tr>
<td>OMS Missiles and Space Operations</td>
</tr>
<tr>
<td>SNB Navigation II</td>
</tr>
<tr>
<td>Ex272 Electronics II</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NINTH TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME561 Mechanics I (Statics)</td>
</tr>
<tr>
<td>Ph013 General Physics III</td>
</tr>
<tr>
<td>HSG Speech I</td>
</tr>
<tr>
<td>SLO Logistics and Naval Supply</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TENTH TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAO Amphibious Operations</td>
</tr>
<tr>
<td>ORW Restricted Weapons</td>
</tr>
<tr>
<td>OMW Mine Warfare</td>
</tr>
<tr>
<td>EGM Marine Engineering</td>
</tr>
<tr>
<td>ME561 Mechanics I (Statics)</td>
</tr>
<tr>
<td>Ph013 General Physics III</td>
</tr>
<tr>
<td>HSG Speech I</td>
</tr>
<tr>
<td>SLO Logistics and Naval Supply</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

| BACHELOR OF ARTS CURRICULUM SCHEDULE |

<table>
<thead>
<tr>
<th>FIRST TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-021 Introduction to Algebraic Technique</td>
</tr>
<tr>
<td>*HCA English I</td>
</tr>
<tr>
<td>HEC Economics I</td>
</tr>
<tr>
<td>HSY Psychology I</td>
</tr>
<tr>
<td>HPA Political Science 101</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECOND TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-022 Calculus and Finite Mathematics I</td>
</tr>
<tr>
<td>HCB English 101</td>
</tr>
<tr>
<td>HED Economics 101</td>
</tr>
<tr>
<td>HLA Literature</td>
</tr>
<tr>
<td>HHC History 103</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THIRD TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-023 Calculus and Finite Mathematics II</td>
</tr>
<tr>
<td>HSG Speech I</td>
</tr>
<tr>
<td>HLB Literature II</td>
</tr>
<tr>
<td>Ph-001 General Physics I</td>
</tr>
<tr>
<td>HAH History 104</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
FOURTH TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCC English 102</td>
<td>3-0</td>
</tr>
<tr>
<td>HLC Literature 101</td>
<td>3-0</td>
</tr>
<tr>
<td>HHA History 101</td>
<td>4-0</td>
</tr>
<tr>
<td>Ph-002 General Physics II</td>
<td>4-0</td>
</tr>
<tr>
<td>HGA Geography 101</td>
<td>3-0</td>
</tr>
<tr>
<td>SLO Logistics and Supply</td>
<td>2-0</td>
</tr>
<tr>
<td>Total</td>
<td>19-0</td>
</tr>
</tbody>
</table>

FIFTH TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAO Amphibious Operations</td>
<td>3-0</td>
</tr>
<tr>
<td>ORW Restricted Weapons</td>
<td>3-0</td>
</tr>
<tr>
<td>OMW Mine Warfare</td>
<td>3-0</td>
</tr>
<tr>
<td>Total</td>
<td>9-0</td>
</tr>
</tbody>
</table>

SIXTH TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEI Economics 102</td>
<td>4-0</td>
</tr>
<tr>
<td>HLD Literature 102</td>
<td>3-0</td>
</tr>
<tr>
<td>HHU History 102</td>
<td>4-0</td>
</tr>
<tr>
<td>Ph-003 General Physics III</td>
<td>4-0</td>
</tr>
<tr>
<td>SNA Navigation I</td>
<td>2-2</td>
</tr>
<tr>
<td>Total</td>
<td>17-2</td>
</tr>
</tbody>
</table>

SEVENTH TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIL Political Science 106</td>
<td>5-0</td>
</tr>
<tr>
<td>HNS Political Science 102</td>
<td>3-0</td>
</tr>
<tr>
<td>HAP Political Science 104</td>
<td>4-0</td>
</tr>
<tr>
<td>Ph-004 General Physics IV</td>
<td>4-0</td>
</tr>
<tr>
<td>SNA Navigation II</td>
<td>2-2</td>
</tr>
<tr>
<td>Total</td>
<td>18-2</td>
</tr>
</tbody>
</table>

EIGHTH TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIR Political Science 105</td>
<td>3-0</td>
</tr>
<tr>
<td>HAD Political Science 103</td>
<td>3-0</td>
</tr>
<tr>
<td>HPH Political Science 108</td>
<td>4-0</td>
</tr>
<tr>
<td>OOP Operational Planning</td>
<td>3-0</td>
</tr>
<tr>
<td>OAS Anti-Submarine Warfare</td>
<td>4-0</td>
</tr>
<tr>
<td>OAA/OAV Naval Aviation</td>
<td>3-0</td>
</tr>
<tr>
<td>Total</td>
<td>20-0</td>
</tr>
</tbody>
</table>

NINTH TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPN Political Science 114</td>
<td>3-0</td>
</tr>
<tr>
<td>HPO Political Science 115</td>
<td>3-0</td>
</tr>
<tr>
<td>HPM Political Science 113</td>
<td>2-0</td>
</tr>
<tr>
<td>OTC Tactics and CIC</td>
<td>4-2</td>
</tr>
<tr>
<td>OMS Missiles and Space Operations</td>
<td>6-0</td>
</tr>
<tr>
<td>Total</td>
<td>18-2</td>
</tr>
</tbody>
</table>

TENTH TERM

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA Leadership and Administration</td>
<td>5-0</td>
</tr>
<tr>
<td>OCM Operational Communications</td>
<td>4-0</td>
</tr>
<tr>
<td>OPC Naval Ordnance and Fire Control</td>
<td>3-0</td>
</tr>
<tr>
<td>Total</td>
<td>12-0</td>
</tr>
</tbody>
</table>

*(Permissive Credit) To be taken by students who fail the English Entrance Examination and by others with permission from Head of Department.

Note 1: The above are for August input; for a March input, leave will occur during the 7th instead of the 5th term with a slight modification in the schedule.

Note 2: Courses designated by letters and numbers (e.g. Ma-031) are given by the Engineering School. Descriptions of these courses are contained in the Catalogue of the Engineering School.

COURSE DESCRIPTION

COURSE DESCRIPTIONS, PREREQUISITES, AND EXEMPTIONS

OTC TACTICS AND COMBAT INFORMATION CENTER (4-2). Shipboard tactical doctrine and procedures, and the functions and organization of CIC. USUAL BASIS FOR EXEMPTION: CIC school of 4 weeks or longer or qualified as OOD and/or CIC officer.

OCM OPERATIONAL COMMUNICATIONS (4-0). Essentials of operational communications including doctrine, organization, radio and visual procedures, command responsibilities, Registered Publications System, Technical (Code 4) Publications and Communications plans. USUAL BASIS FOR EXEMPTION: (a) Completion of NAVPERS 10916, 10918, and 10760 or (b) Appropriate formal communications course or (c) Appropriate experience in communications duties.

OAA AVIATOR'S AVIATION (3-0). A study of the present-day responsibilities and problems peculiar to a squadron commander. Course includes (a) a review of applied aerodynamics, (b) responsibilities associated with personnel, material, doctrine, training, morale, public relations, and continuous enducation of pilots and mechanics, and (c) aviation safety. PREREQUISITE: Designation as Naval Aviator. USUAL BASIS FOR EXEMPTION: Served as Commanding Officer of a fleet squadron or a graduate of a formal Test Pilot Training Course.

OAV NAVAL AVIATION SURVEY (3-0). Organizational structure and command relationship of entire naval aviation system; research and development, procurement, testing and evaluation of naval aircraft; specific discussions based on latest material available on missions, tasks, current and projected equipment, as well as present and future employment of aircraft squadrons, carriers and seaplane tenders. USUAL BASIS FOR EXEMPTION: Extensive aviation duty.

OOP OPERATIONAL PLANNING (3-0). Purpose and procedure for the Estimate of the Situation, the Development of the Plan, and the Preparation of the Directive (OpOrder); including the preparation of each under supervision. Staff organization. The Navy Planning System. PREREQUISITE: Facility in English Composition. USUAL BASIS FOR EXEMPTION: Naval War College Correspondence course "Strategy and Tactics (Part I)" or "Operational Planning and Staff Organization."

OAO AMPHIBIOUS OPERATIONS (3-0). Basic Orientation covering doctrine, fundamentals, planning, and current trends. USUAL BASIS FOR EXEMPTION: Completion of an Amphibious Force school and/or duty in an amphibious command.

OAS ANTI-SUBMARINE WARFARE (4-0). Surface, air, and sub-surface ASW doctrine. Submarine operating characteristics, offensive and defensive tactics, and weapons. ASW search, detection, and attack procedures, and weapons systems. Coordinated ASW operations are emphasized. Foreign students are offered a special course. PREREQUISITE: OTC (or exempt therefrom). USUAL BASIS FOR EXEMPTION: Completion since 1957 of: Coordinated ASW Course at NORFOLK, SAN DIEGO, LONDONDERRY, or HALIFAX, or ASW Officer or CO/XO Anti-Submarine Course at Fleet Sonar School.

G-7
OAT ADVANCED TACTICS (3-0). A survey of the status of fleet readiness and future concepts in various tactical fields, followed by student reports and seminars on selected Fleet and Intertype Exercises. PREREQUISITE: OTC (or exempt therefrom).

OFC NAVAL ORDNANCE AND FIRE CONTROL (3-0). A survey of the fields of surface and airborne ordnance including guns, bombs, rockets, and associated delivery systems. A discussion of the elements of present fire control systems, including computers, radar, and designation systems. An analysis of the capabilities and limitations of both present fire control systems and some proposed systems, both surface and airborne, from the standpoint of weapons systems evaluation and employment. A special course, OFC(F), (3-0) is offered for foreign students. USUAL BASIS FOR EXEMPTION: Completion of USNA, NROTC, or equivalent courses in naval ordnance and fire control and service experience in these fields.

OMW MINE WARFARE (3-0). Fundamentals of Mining Operations including mines, mine laying agents and mining planning; Principles of Mine Countermeasures Operation and Planning; Harbor Defense, and New Developments. A Special Course, OFC(F) (3-0) is offered to foreign Students; USUAL BASIS FOR EXEMPTION: Formal Mine Warfare Course of more than 3 weeks duration or duty on Mine Warfare Staff.

ORW RESTRICTED WEAPONS (3-0). Characteristics, capabilities, limitations and employment of current nuclear weapons and those under development. Foreign Officers are excluded. USUAL BASIS FOR EXEMPTION: Attendance within the previous two years at a one week nuclear weapon orientation course given by DASA or Nuclear Weapons Training Center, Pacific or Atlantic; or within the previous three years at a planning or employment course given by one of the above commands.

OMS MISSILES AND SPACE OPERATIONS (6-0). Principles of guidance and propulsion, operational capabilities and limitations of guided missile systems. Orientation in space technology, problems and potentials of operations in outer space. A special course OMS(F) (3-0) is offered to Foreign Students. USUAL BASIS FOR EXEMPTION: Equivalent experience or educational background.

OTD INTRODUCTION TO NAVAL TACTICAL DATA SYSTEM (3-0). A brief review of number systems with concentration in octal and binary operations. An introduction to boolean algebra and logic circuitry of modern computers. Modern high-speed digital computer principles. An introduction to operational programming for NTD8. A comprehensive coverage of the Naval Tactical Data System and its associated elements, its capabilities and limitations as planned for CVA(N), CG(N) and DLG types.

SMN SEAMANSHIP (3-0). The fundamentals of seamanship as applicable to the responsibilities and duties assigned to the naval officer on board ship. Included topics: duties of the officer of the deck; the deck log; international and inland rules of the road including pertinent court interpretations; ship-handling in conformance with the rules to avoid collision and in anchoring, mooring, towing and emergency procedures; replenishment at sea; duties of the first lieutenant; cargo handling and stowage.

SNA NAVIGATION I (2-2). Practical aspects of shipboard navigation, including marine piloting, radar and loran navigation. Included topics: charts; buoys; navigation lights; tides and currents; magnetic and gyro compasses; the navigator's records; voyage planning; electronic navigation devices. Practical work covers the use of hydrographic publications and the performance of chart work. USUAL BASIS FOR EXEMPTION: Successful completion of USNA, NROTC, OCS or equivalent course; or previous assignment as navigator (assistant navigator of large ship) for one year.

SNB NAVIGATION II (2-2). The theory and practice of celestial navigation as applicable to the navigator's work at sea. Included topics: introduction to nautical astronomy; the use of the nautical and air almanacs and the H.O. 214 and 249 series; the applications of celestial navigation. Practical work covers the navigator's day's work at sea. PREREQUISITE: SNA (or exempt therefrom). USUAL BASIS FOR EXEMPTION: Completion of USNA, NROTC, OCS or equivalent course in celestial navigation; or previous assignment as navigator (assistant navigator of large ship) for one year.

SME METEOROLOGY (3-0). The principles of meteorology and the effects of weather phenomena on naval operations. Included topics: structure of the atmosphere; weather elements; the station model; pressure and winds; theory of air masses and fronts; tropical storms; sources of weather information; sea and surf conditions; climatology and the principles of weather map analysis and forecasting.

SLA LEADERSHIP AND ADMINISTRATION (5-0). The improvement of Naval Leadership by broadening the line officer's knowledge and understanding of the following topics: methods and techniques of enlisted personnel administration; applications of the principles of management to the naval unit; philosophy of authority and responsibility with major emphasis on the principles of effective naval leadership. Instruction methods emphasize individual study projects and group study discussion.

SLO LOGISTICS AND NAVAL SUPPLY (2-4). The vital importance of naval logistics to operational readiness, logistic problems at the Commanding Officer level, the fundamental steps in the logistics process, and the Navy's system for providing logistic support to the operating unit. Topics covered include: determination of requirements, procurement, and distribution as steps in the logistics process; the organization and planning aspects of logistics administration; the Navy Supply System; Joint Logistic Procedures; funding; the role of bases, mobile support, and the operating unit in naval logistics; and logistics management at the operating level. USUAL BASIS FOR EXEMPTION: Completion of the Naval War College course in Logistics.

SNI NAVAL INTELLIGENCE (3-0). An overview of intelligence for naval officers and the setting within which naval intelligence functions. Included topics: nature of intelligence; development of modern intelligence; the role of intelligence in planning national policy and military strategy; the rise of Russia and Communism as international forces; the intelligence cycle, including the line officers role in intelligence collection; employment of intelligence by operational commanders; counterintelligence.
SAF PERSONAL AFFAIRS (3-0). The fundamentals of personal estate planning. Included topics: government benefits; life insurance and general insurance; budgeting and banking; borrowing; real estate; investments; wills and related legal matters.

EPA SURVEY OF PHYSICS I (3-0). An introduction to the fundamental concepts of statics and dynamics. Includes Newton’s Laws of motion, force, energy, momentum and circular motion. Vector addition and resolution of forces are also presented. USUAL BASIS FOR EXEMPTION: Equivalent educational background. TEXT: White, Modern College Physics, 3rd Ed.

EPB SURVEY OF PHYSICS II (3-0). A continuation of EPA. A survey of wave propagation, sound, temperature, heat, gas laws, the properties of light, and the science of color. USUAL BASIS FOR EXEMPTION: Equivalent educational background. TEXT: White, Modern College Physics, 3rd Ed.

EEF ELECTRICAL FUNDAMENTALS (4-0). A presentation of basic electrical phenomena. Topics include: DC circuits and components, magnetism, electromagnetism, instruments, AC circuits and components, resonance, transformers, batteries, and power sources. TEXT: Hickey and Villines, Elements of Electronics.

ERF ELECTRONICS FUNDAMENTALS (4-0). A qualitative approach to the fundamentals of electronics. Topics include: vacuum tubes, gas-filled tubes, cathode ray tubes, transistors, rectifiers, amplifiers, oscillators, modulators, detectors, receivers, transmitters, antennas and propagation. USUAL BASIS FOR EXEMPTION: Equivalent educational background. TEXT: Hickey and Villines, Elements of Electronics. PREREQUISITE: EEF or equivalent.

ENF NUCLEONICS FUNDAMENTALS (3-0). A study of atomic structure, natural and artificial radioactivity, nuclear structure, nuclear fission, and chain reaction. Introduction to reactor principles, reactor components, and nuclear power plants. USUAL BASIS FOR EXEMPTION: Equivalent educational background. TEXTS: Hoskinson, Nucleonics Fundamentals and NAVPERS 10786, Basic Nuclear Physics.

ENP MARINE NUCLEAR PROPULSION (2-0). An introduction to nuclear power plants of possible use in marine propulsion. Includes principles of operation, fuels and materials, limitations and economy of various reactors, and a brief description of reactor power plants currently in use. PREREQUISITES: EGM and ENF or equivalent.

EEM ELECTRICAL MACHINERY (4-1). The fundamentals and applications of electrical machinery. Topics include: external characteristics of shunt and compound generators; shunt, series and compound motors; alternators; induction and synchronous motors; parallel operation of alternators and generators. Laboratory testing and demonstrations are utilized. TEXT: Dawes, Industrial Electricity, Parts I and II. PREREQUISITE: EEF or equivalent.

EMT MATERIALS OF ENGINEERING (4-0). A rapid survey of basic physical metallurgy of both ferrous and non-ferrous metals with emphasis placed on their engineering application; followed by a survey of fuels, lubricants, plastics and special problems involving fiber glass reinforcing. TEXTS: Coonan, Principles of Physical Metallurgy; Kinney, Engineering Properties and Applications of Plastics.

EGM MARINE ENGINEERING (5-0). Shipboard steam main propulsion plants and auxiliaries. Diesel engines, gas turbines, shipboard electrical distribution, miscellaneous naval auxiliary machinery, and organization and administration of shipboard engineering department. USUAL BASIS FOR EXEMPTION: Qualification as Engineering Officer of the Watch of a steam-propelled ship.

EDC DAMAGE CONTROL AND ATOMIC, BIOLOGICAL, CHEMICAL WARFARE DEFENSE (5-0). Fundamentals of ship construction and stability, stability calculations and analysis, damage control systems and organization, repair of damage; effects of ABC weapons, ABC detection, decontamination and personnel protection; disaster control ashore. PREREQUISITE: ENF or equivalent. USUAL BASIS FOR EXEMPTION: Completion of 10 week “Officers’ Basic Damage Control” Course, or completion of correspondence courses “Practical Damage Control” (NAVPERs 10936), “Theoretical Damage Control” (NAVPERs 10937), and “Radiological Defense” (NAVPERs 10771).

HEC ECONOMICS I INTRODUCTION TO ECONOMICS (4-0). An introduction to the principles of economic relationships and the functioning of an economic system.

HED ECONOMICS 101 INTERMEDIATE ECONOMICS (4-0). The techniques and principles of intermediate economic theory and analysis, including value, distribution, national income and economic dynamics. PREREQUISITE: Economics I.

HEI ECONOMICS 102 INTERNATIONAL ECONOMICS (4-0). An analysis of international trade, commercial policies, finance, aid, and world economic problems. PREREQUISITE: Economics I.

HGA ENGLISH 1 COMPOSITION (3-0). (Permissive Credit). A review of the basic principles of grammar and writing including student preparation of papers. To be taken by students who fail the English Entrance Examination or others with permission of the Head of Department.

HCB ENGLISH 101 ADVANCED COMPOSITION (3-0). An analysis and application of the techniques of expository writing.

HGC ENGLISH 102 EXPOSITORY LOGIC (3-0). A study of the elementary principles of symbolic and expository logic to develop clear thinking and proof in the presentation of ideas.

HCD ENGLISH 103 SEMINAR IN RESEARCH TECHNIQUES (1-0). A study of principles and techniques of research writing.
COURSE DESCRIPTION

HGA GEOGRAPHY 101 POLITICAL GEOGRAPHY (3-0).
A study of world areas, regions, and countries; peoples, their
distribution and political organizations.

HGB GEOGRAPHY 102 ECONOMIC GEOGRAPHY (3-0).
A study of the natural resources, technologies and industrial
complexes of areas, regions and countries, with emphasis on
strategic implications.

HHA HISTORY 101 U.S. HISTORY 1763-1865 (4-0).
The development of the Federal Union from the American Revo-
lution to the end of the Civil War.

HUH HISTORY 102 U.S. HISTORY 1865-present (4-0).
The development of the American nation from the recon-
struction crisis to the present.

HHC HISTORY 103 EUROPEAN HISTORY 1871-1919
(3-0). The international, internal and military development
of the major European states in the period before World
War I.

HEH HISTORY 104 EUROPEAN HISTORY 1919-present
(3-0). The international, internal, and military development
of the major European states since World War I.

HJA NAVAL JUSTICE I (3-0). The fundamentals of Naval
Justice as included in the Uniform Code of Military Justice,
Topics include: jurisdiction; preparation of charges and speci-
fications; offenses commonly triable by special and summary
courts-martial; and the rules of evidence.

HJB NAVAL JUSTICE II (3-0). Application of the funda-
mentals presented in HJA. Topics include: non-judicial pun-
ishment; investigations; courts of inquiry; summary and special
courts-martials. PREREQUISITE: Naval Justice I.

HLA LITERATURE I APPRECIATION OF LITERATURE
(3-0). An introduction to the understanding and enjoyment of
literature expressing the enduring problems of mankind.
Style and structure will be considered as well as content.

HLB LITERATURE II APPRECIATION OF LITERATURE
(3-0). A continuation of Literature I, with a brief exami-
nation of genres and periods of literature.

HLC LITERATURE 101 MASTERPIECES OF AMERICAN
LITERATURE (3-0). A study of those ideas which have
shaped American cultural life and reflect American thinking.

HLD LITERATURE 102 MASTERPIECES OF BRITISH
LITERATURE (3-0). A study of the significant ideas of
selected British thinkers as they pertain to social and cultural
life.

HLE LITERATURE 103 MASTERPIECES OF EUROPEAN
LITERATURE (3-0). A study of the significant ideas of
European writers. Plays, novels, and short stories will be
read and discussed.

HLF LITERATURE 104 MASTERPIECES OF RUSSIAN
LITERATURE (3-0). A study of selected Russian writers to
demonstrate the role of literature in Russian and Soviet
cultural life.

HLG LITERATURE 105 PHILOSOPHICAL TRENDS IN
MODERN LITERATURE (3-0). An examination of modern
literature expressing social, psychological, and cultural prob-
lems in order to show how literature reflects the aspirations
and the frustrations of modern man, PREREQUISITE: Per-
mission of Head of Department.

HPA POLITICAL SCIENCE 101 U.S. GOVERNMENT (4-0).
A study of the structure and powers of the Federal Govern-
ment, its relation to the individual states, and its military
aspects.

HNS POLITICAL SCIENCE 102 ORGANIZATION FOR
NATIONAL AND INTERNATIONAL SECURITY (3-0). The
factors of power, geopolitics, national security; the evolution,
structure, organization and functions of the organs and agencies
for U.S. national defense, the United Nations, and regional
organizations.

HAD POLITICAL SCIENCE 103 AMERICAN DIPLOMACY
(3-0). An analysis of the major problems of United States
foreign relations in Europe, Latin America, and the Far East
from 1900 to the Korean conflict.

HAP POLITICAL SCIENCE 104 ASIAN POWERS (4-0).
The international, internal, and military problems of the major
Asian and Southeast Asian states, exclusive of Communist
China.

HIR POLITICAL SCIENCE 105 INTERNATIONAL REL-
ATIONS (3-0). A study of the nation-state system, the
forces making for conflict, adjustment, and harmony, with
emphasis on nationalism, imperialism, war, and diplomacy.
PREREQUISITE: POLITICAL SCIENCE 102.

HIL POLITICAL SCIENCE 106 INTERNATIONAL LAW
(5-0). A survey of the basic principles of International Law
with emphasis on jurisdiction and the rules of warfare. Case
and problem discussions.

HPG POLITICAL SCIENCE 107 MIDDLE EAST AND
AFRICA (3-0). A study of the states and regions of the
contemporary Middle East and Africa with emphasis on the
rise of nationalism and concomitant individual, regional, and
international problems, aspirations and objectives.

HPH POLITICAL SCIENCE 108 COMPARATIVE GOV-
ERNMENT (4-0). A study of the nature, organization and
operation of modern authoritarian, democratic and non-
democratic governments of the major powers. Prerequisite:
POLITICAL SCIENCE 101.

HPI POLITICAL SCIENCE 109 ATLANTIC COMMUNITY
(3-0). A study of the states in the Atlantic Community; their
political, economic, military ideological, and sociological re-
lations, both regional and international.
HPJ POLITICAL SCIENCE 110 THEORY AND PRINCIPLES OF INTERNATIONAL RELATIONS (3-0). A seminar in the scope and theories of International Relations and techniques of research in the field; the analysis of problems.

HPK POLITICAL SCIENCE III LATIN AMERICA (3-0). A study of contemporary Latin America with emphasis on the problems and objectives of the constituent states, their regional and international relationships.

HPL POLITICAL SCIENCE 112 SINO-SOVET BLOC (4-0). An analysis of the international relations of Communist China, Soviet Russia, and their respective satellites with emphasis on their military significance to the United States.

HPM POLITICAL SCIENCE 113 INTERNATIONAL COMMUNISM (2-0). A study of Communism; its development, strategy and tactics, subsequent interpretations and successes and failures.

HPN POLITICAL SCIENCE 114 AMERICAN TRADITIONS AND IDEALS (3-0). The traditions, ideals and values of our civilization and the role of the military in implementing the image of America in the world. Prerequisite: HISTORY 101 OR 102.

HPO POLITICAL SCIENCE 115 THEORY OF MILITARY WARFARE AND SEA POWER (3-0). A study of strategic concepts, their conflicts in implementation of national objectives, and development of the science of naval warfare and weaponry in relationship to national power. Prerequisite: Permission of Head of Department.

HPP POLITICAL SCIENCE 116 GREAT ISSUES (3-0). Seminar on the issues confronting the United States correlating the knowledge gained in previous courses in order to develop responses to the challenges facing the United States. Prerequisite: Permission of Head of Department.

HSY PSYCHOLOGY I INTRODUCTION TO PSYCHOLOGY (3-0). A survey of principles underlying human behavior with emphasis on the application of these principles to human relations and problems of social adjustment.

HYB PSYCHOLOGY 101 APPLIED PSYCHOLOGY (3-0). A study of group dynamics, rating procedures, criminology, and personality formation and adjustment. Individual projects are assigned. Prerequisite: PSYCHOLOGY I.

HSG SPEECH I SPEECH AND GROUP PROCEDURES (4-0). Practice in speech fundamentals with student participation through presentations and the conference method.

HSB SPEECH 101 ADVANCED SPEECH (2-0). A study through practice of techniques in obtaining desired audience response. Prerequisite: SPEECH I.

HDS UNDESIGNATED 199 (1-0)-(3-0). Independent study in Social Science and Humanities subjects in which formal course work is not offered. Prerequisite: Permission of the Head of Department.
GENERAL LINE CURRICULUM

TABULATION OF COURSE OFFERINGS BY DEPARTMENTS

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Short Title</th>
<th>Hours per Week</th>
<th>Total Credit</th>
<th>* Scheduling Classification</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVAL WARFARE DEPARTMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aviator's Aviation</td>
<td>OAA</td>
<td>3</td>
<td>3</td>
<td>x</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Naval Aviation Survey</td>
<td>OAV</td>
<td>3</td>
<td>3</td>
<td>x</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Amphibious Operations</td>
<td>OAO</td>
<td>3</td>
<td>3</td>
<td>x</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Anti-Submarine Warfare</td>
<td>OAS</td>
<td>4</td>
<td>4</td>
<td>x</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Advanced Tactics</td>
<td>OAT</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Operational Communications</td>
<td>OCM</td>
<td>4</td>
<td>4</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Naval Ordnance and Fire Control</td>
<td>OFC</td>
<td>3</td>
<td>3</td>
<td>x</td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>Missiles and Space Operations</td>
<td>OMS</td>
<td>6</td>
<td>6</td>
<td>x</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Mine Warfare</td>
<td>OMW</td>
<td>3</td>
<td>3</td>
<td>x</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Operational Planning</td>
<td>OOP</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>Restricted Weapons</td>
<td>ORW</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Tactics and Combat Information Center</td>
<td>OTC</td>
<td>4</td>
<td>5</td>
<td>x</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Introduction to Naval Tactical Data System</td>
<td>OTD</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>SEAMANSHIP AND ADMINISTRATION DEPARTMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal Affairs</td>
<td>SAF</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>Leadership and Administration</td>
<td>SLA</td>
<td>5</td>
<td>5</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Logistics and Naval Supply</td>
<td>SLO</td>
<td>2</td>
<td>2</td>
<td>y</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Meteorology</td>
<td>SME</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>Seamanship</td>
<td>SMN</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>Navigation I</td>
<td>SNA</td>
<td>2</td>
<td>3</td>
<td>x</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Navigation II</td>
<td>SNB</td>
<td>2</td>
<td>3</td>
<td>x</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Naval Intelligence</td>
<td>SNI</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>APPLIED ENGINEERING DEPARTMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damage Control and ABC</td>
<td>EDC</td>
<td>5</td>
<td>5</td>
<td>x</td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>Warfare Defense</td>
<td>EEF</td>
<td>4</td>
<td>4</td>
<td>x</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Electrical Fundamentals</td>
<td>EEM</td>
<td>4</td>
<td>4 1/2</td>
<td>y</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Marine Engineering</td>
<td>EGM</td>
<td>5</td>
<td>5</td>
<td>x</td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>Materials of Engineering</td>
<td>EMT</td>
<td>4</td>
<td>4</td>
<td>x</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Nucleonics Fundamentals</td>
<td>ENF</td>
<td>3</td>
<td>3</td>
<td>x</td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>Marine Nuclear Propulsion</td>
<td>ENP</td>
<td>2</td>
<td>2</td>
<td>y</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Survey of Physics I</td>
<td>EPA</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Survey of Physics II</td>
<td>EPB</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Electronics Fundamentals</td>
<td>ERF</td>
<td>4</td>
<td>4</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Algebra and Trigonometry I</td>
<td>Ma010</td>
<td>3</td>
<td>3</td>
<td>x</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Basic Algebra and Trigonometry II</td>
<td>Ma011</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Algebra and Trigonometry Refresher</td>
<td>Ma015</td>
<td>3</td>
<td>3</td>
<td>x</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>Survey of Analytic Geometry and Calculus</td>
<td>Ma050</td>
<td>4</td>
<td>4</td>
<td>y</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>HUMANITIES DEPARTMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Law</td>
<td>HIL</td>
<td>5</td>
<td>5</td>
<td>y</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>International Relations</td>
<td>HIR</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Organization for National and International Security</td>
<td>HNS</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Naval Justice I</td>
<td>HJA</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Naval Justice II</td>
<td>HJB</td>
<td>3</td>
<td>3</td>
<td>y</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Speech and Group Procedures</td>
<td>HSG</td>
<td>4</td>
<td>4</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

* x—Required course unless exemption granted
 y—Elective
 o—Not applicable to women students
UNITED STATES NAVAL
POSTGRADUATE SCHOOL

Catalogue for 1961-1962

THE MANAGEMENT SCHOOL

MONTEREY ★ CALIFORNIA
Root Hall (Reference and Research Library, Navy Management School, and some offices and classrooms of the Engineering School)
THE NAVY MANAGEMENT SCHOOL

Director
HERBERT HENRY ANDERSON
Captain, U.S. Navy
B.S., USNA, 1941
M.B.A., Harvard Univ., 1953
National War College, 1958

Assistant Director
LESTER ALLEN REDDING
Commander, U.S. Navy
A.B., George Washington Univ., 1956
M.S., U.S. Naval Postgraduate School, 1961

Administrative Officer
MABEL MARIE STOCKERT
Commander, U.S. Navy
A.B., Capital University, 1931
M.B.A., George Washington Univ., 1956

STAFF

Oscar Richard Blanton, Commander, SC, U.S. Navy; B.S., Military Instructor; Ohio State Univ., 1942; M.B.A., Stanford Univ., 1952.

William Howard Church, Professor of Management (1956); A.B., Whittier College, 1933; M.S.P.A., Univ. of Southern California, 1941.

Herman Paul Ecker, Professor of Management (1957); A.B., Pomona College, 1948; A.M., Claremont Graduate School, 1949.

Jacob Hugh Jackson, Jr., Professor of Management (1957); A.B., Stanford Univ., 1939; M.B.A., 1947.

Edward Leslie MacCordy, Lieutenant Commander, CEC, U.S. Navy; Military Instructor; B.S., Tufts College, 1947; M.S., Rensselaer Polytechnic Institute, 1957.

John David Senger, Associate Professor of Management (1957); B.S., Univ. of Illinois, 1945; M.S., 1948.

Waino W. Suojanen, Associate Professor of Management (1959); B.S., Univ. of Vermont, 1942; M.B.A., Harvard Univ., 1946; Ph.D., Univ. of California, 1955.

Tore Tjersland, Associate Professor of Management (1961); B.S., Univ. of Colorado, 1950; M.B.A., Syracuse Univ., 1953; Ph.D., Stanford Univ., 1961.

*Date in parenthesis indicates year of joining the Postgraduate School faculty.

MISSION

The mission of the Navy Management School is to provide graduate education for Naval Officers in the theories, philosophies, and application of scientific methods of Management specifically oriented to the Navy in order to advance efficiency and economy of operation, afloat and ashore.

TASKS

The tasks assigned the Navy Management School are:

1. To conduct an educational program in Management at the graduate level for Naval Officers.
2. To conduct for Naval Officers a basic survey course of four weeks duration in the summer term in the Elements of Management.
3. To act as host for Bureau and Office sponsored workshop seminars in Management in conjunction with the "Elements of Management."

PROGRAMS

The Navy Management Course

The Navy Management Course is a ten months course at the graduate level which leads to the degree, Master of Science in Management. The course convenes once yearly commencing in August. The curriculum is under the direction of a faculty composed of civilian and Naval Officer instructors selected to represent the optimum combination of specialized knowledge and diversity of management experience.

The purpose of education in management is to broaden the officer’s scope of learning in order that he may enhance his ability to organize, plan, direct, coordinate, and control activity in which he, through the leadership of people, combines the resources of money and materials to accomplish the Navy’s objectives. The Naval Officer, commander or executive, is continuously concerned with promoting his organization and
determining its objectives, with the consideration of the means to these ends, and with the implementation of his decisions through appropriate delegation of duties and the effective motivation of those personnel concerned.

In fulfillment of these demands upon the Naval Officer, the Navy Management Course has the following objectives:

1. To develop comprehensive understanding by the officer of management of the Navy in the operating forces and the shore establishment.

2. To develop a sound appreciation by the officer for the interaction of the Navy's mission with public and defense policies.

3. To cultivate the habits of analysis for determination of pertinent facts, of reasoned decision making, and of imaginative thinking in the development of alternative courses of action.

4. To provide the officer with the quantitative tools of analysis and to foster the use of scientific method in management functions.

5. To encourage the officer in the development of ethical standards for professional and personal use.

6. To develop an appreciation for the human factor in the realization of organizational objectives.

The curriculum is structured to require all officers, regardless of code designator, to participate in the required "core" courses. These courses provide the foundation and tools of management and lead into the electives. The elective system offers moderate flexibility to meet the interests of the individual officer and provides limited specialization in fields of interest to the various supporting agencies. Under present limitations of scheduling and course offerings, elective courses are not offered in the first and second terms.

Instruction is conducted by classroom lecture, case study, and seminar discussion. Throughout, the course stresses development of the officer's ability in problem solving and in expressing his thoughts concisely and meaningfully in oral and written work.

The classroom instruction program is supplemented by a special lecture series wherein the officer has the opportunity to hear discussion of Management topics by Flag Officers of the military services, business executives, and educators of comparable rank from the civilian community. Additionally, speakers from civilian and military activities are scheduled at appropriate times to augment the classroom instruction in various technical and specialized areas.

Through the medium of field trips, usually of two to three days duration, the officer is afforded the opportunity of discussing management philosophy and problems with leading executives in their own environment. Visits are made to military and civilian installations for this purpose.

Entrance Standards

Officers assigned to the Navy Management Course should have already demonstrated a high degree of potential for growth and executive responsibility.

Officers entering the Navy Management Curriculum must possess a baccalaureate degree or the equivalent from an accredited institution or institutions. The equivalency of the degree shall be interpreted as the successful completion of 120 semester hours of work from an accredited institution of higher learning.

There is a wide range of undergraduate majors which provide adequate preparation for the Navy Management Curriculum. It is highly desirable, however, that officers entering the Navy Management School should have completed a basic course in college algebra. Review of this subject is strongly encouraged in the period between receipt of orders and reporting for instruction.

Degree Candidacy

An officer possessing a baccalaureate degree from an accredited institution normally shall be admitted to candidacy for the Master's degree upon enrollment. Officers lacking the baccalaureate degree, or those whose academic preparation is of such quality as to cast doubt upon their ability to maintain quality of work at the B average, shall be required to demonstrate quality of work at the B grade level for the first academic term before being admitted to candidacy for the Master's degree.

Requirements for the Master of Science Degree in Management

1. In accordance with the provisions of Public Law 303-80th Congress, the Superintendent is authorized to confer Bachelors of Science, Masters, and Doctors Degrees in Engineering and related fields pursuant to such regulations as the Secretary of the Navy may prescribe.

2. The degree Master of Science in Management is conferred by the Superintendent upon the successful completion of a curriculum which has been approved by the Academic Council of the Navy Management School as meriting a degree provided the specific requirements stated in the following paragraphs are met:

 a. The student shall remain in residence a minimum of one academic year (four terms).

 b. The student shall complete not less than 60 term hours (10 semester hours) of course work which must include all the required or "core" courses.

 c. To be eligible for the Master's Degree, the student must attain a minimum average quality point rating of 2.0. In special cases and under very extenuating circumstances, minor deficiencies may be waived at the discretion of the Academic Council.

 d. The student shall be required to demonstrate proficiency in oral and written presentation, and to demonstrate the qualities of scholarly investigation and analysis.
e. The student must be recommended to the Superintendent by the Academic Council as meriting the award of the Master's Degree in Management and as having fulfilled requirements of (a), (b), (c), and (d) above. Those not to receive the Master's Degree will be awarded a Certificate of Course Work Completed or Bachelor's Degree, as appropriate.

Grading Standards

To evaluate the performance of each student, a quality point number is assigned for each letter grade achieved by the student in his courses as follows:

<table>
<thead>
<tr>
<th>Performance</th>
<th>Grade</th>
<th>Quality Point Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>A</td>
<td>3.0</td>
</tr>
<tr>
<td>Good</td>
<td>B</td>
<td>2.0</td>
</tr>
<tr>
<td>Fair</td>
<td>C</td>
<td>1.0</td>
</tr>
<tr>
<td>Barely Passing</td>
<td>D</td>
<td>0.0</td>
</tr>
<tr>
<td>Failure</td>
<td>X</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

When the term hour value of a course is multiplied by the quality point number of the student's grade, a quality point value for the student's work in that course is obtained. The sum of the quality points for all courses divided by the sum of the term hour value of all courses gives a weighted numerical evaluation of the student's performance termed the Quality Point Rating (QPR). A student achieving a QPR of 2.0 has maintained a B average in all courses.

The Course "Elements of Management"

This course is of four weeks duration, presented once a year in the summer. It is a basic survey course in Management designed for officers attending the Engineering School of the U.S. Naval Postgraduate School. It is also of value for selected officers who may be sponsored by Bureaus and Offices of the Naval Establishment, and who will be attending the workshop seminars.

The curriculum is designed to:

1. Acquaint the officer with the principles of management and administration.
2. Examine current problems of management within the Naval Establishment and general approaches to the solution of these problems.
3. Familiarize the officer with the modern practice and method of management in civilian activities with emphasis on relationship to their applications within the Naval Establishment.

No special preparation or qualification for this course is required. A certificate is awarded upon completion of the course.

Workshop Seminars

In conjunction with the aforementioned program, the Management School acts as host to Bureaus and Offices which desire to sponsor special programs and workshop seminars. The classroom program may be expected to form an excellent base for further discussion of special problems.

TABLE I

<table>
<thead>
<tr>
<th>No.</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REQUIRED COURSES</td>
<td></td>
</tr>
<tr>
<td>Mn-400</td>
<td>Individual Research</td>
<td>40</td>
</tr>
<tr>
<td>Mn-410</td>
<td>Management Economics</td>
<td>50</td>
</tr>
<tr>
<td>Mn-420</td>
<td>Financial Management I and II</td>
<td>80</td>
</tr>
<tr>
<td>Mn-440</td>
<td>Industrial Management</td>
<td>40</td>
</tr>
<tr>
<td>Mn-452</td>
<td>Management Psychology</td>
<td>30</td>
</tr>
<tr>
<td>Mn-453</td>
<td>Personnel Administration and Industrial Relations</td>
<td>30-50</td>
</tr>
<tr>
<td>Mn-463</td>
<td>Materiel Management</td>
<td>30</td>
</tr>
<tr>
<td>Mn-470</td>
<td>Quantitative Methods</td>
<td>50</td>
</tr>
<tr>
<td>Mn-490</td>
<td>Organization and Management</td>
<td>50</td>
</tr>
<tr>
<td>Mn-491</td>
<td>Management Policy</td>
<td>30-40</td>
</tr>
<tr>
<td>Mn-492</td>
<td>Business and Government</td>
<td>30</td>
</tr>
</tbody>
</table>

ELECTIVE COURSES

Mn-413	Economic Analysis	30
Mn-414	International Economics	30
Mn-423	Advanced Cost Accounting	30
Mn-424	Auditing	30
Mn-425	Military Comptrollership Seminar	30-50
Mn-455	Personnel Administration Seminar	30
Mn-461	Procurement and Contract Administration	30
Mn-462	Scientific Inventory Management	30
Mn-473	Decision Making Techniques	30
Mn-480	Facilities Planning	30-50
Mn-481	Logistics	30
Mn-482	Military Planning	30
Mn-495	Organization and Management Seminar	30
Ma-170	*Calculus for Management	30
Ma-371	*Management Statistics	30
Ma-471	*Electronic Data-Processing and Management Control	30
OA-471	*Operations Analysis for Navy Management	40

* Officers with requisite preparation in mathematics through calculus are encouraged to elect this sequence of courses. Courses are described in Engineering School Catalogue and presented by the Mathematics Department.

Ma-170 and Ma-371 exempt the student from the required course Mn-470, Quantitative Methods.

TABLE II

<table>
<thead>
<tr>
<th>Course Content</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Organization and Management</td>
<td>15</td>
</tr>
<tr>
<td>Personnel Management</td>
<td>15</td>
</tr>
<tr>
<td>Production Management</td>
<td>15</td>
</tr>
<tr>
<td>Financial Management</td>
<td>15</td>
</tr>
</tbody>
</table>
COURSE DESCRIPTION

Mn-400 INDIVIDUAL RESEARCH (4.0-0)

Objective—To familiarize the officer with research methodology and techniques and to develop familiarity with the use of source and reference materials.

Description—The student is expected to formulate a problem or select a topic considered by the staff of the School to be of interest and importance to Navy or Defense Management. The investigation will be undertaken independently under the supervision of one or more staff members. From his readings and observations, the student is expected to analyze the problem or topic and present his findings in a written report. The selection of the problem or topic is made early in the academic year and the final report submitted near the end of the course.

Mn-410 MANAGEMENT ECONOMICS (5.0-0)

Objective—To analyze the nature and the prospects of the American economic system, how our private enterprise system has been able to achieve high productivity and living standards. To consider the problems of economic stability, progress, growth, and opportunity in a free society.

Description—The course concentrates on the principal problem areas in economics such as productivity, unemployment, fluctuating prices, competing economic systems, and the maintenance of the four distinguishing features of our economic system; namely, private property, freedom of enterprise, freedom of contract, and freedom of consumer choice.

The nature of a capitalistic society and American modifications is studied. The necessity for efficient resource use and expanding productivity in relation to the defense effort is considered. The role of money, the determination of income and national product, the value of money and the price level, government fiscal and monetary policy are explored. International economics and economics of war and defense are evaluated. Studies are made of social goals and economic institutions of communism, capitalism, and socialism.

Mn-414 INTERNATIONAL ECONOMICS (3.0-0)

Objective—To give the student a better understanding of international economic problems and relations among nations.

Description—The first half of the course is devoted to partial, general, and equilibrium theories of international trade, the advantages of trade, tariff policy, commercial policies of various countries, international agreements, and international monetary institutions.

The second half is devoted to an understanding of the concern of the more economically advanced nations for the well-being of the underdeveloped areas and an appreciation for the humanitarian, political, and international specialization aspects of the problem.

Mn-420 FINANCIAL MANAGEMENT I and II (8.0-0)

Objective—To promote a better understanding of financial management as a part of executive control and to further the utilization of financial management, method, and technique of the Navy in the administration of command.

Description—Introduces the concept of comptrollership and its utilization in the Navy; studies the application of accounting principles in industry; surveys cost accounting including cost budgeting and standard costs; covers the concept and application of the Naval Industrial Fund; surveys accounting for appropriated funds in the Navy; portrays the relationship of Navy budgeting to the national economy; develops the budget process and the estimating and justifying of Navy budgets; surveys the nature of appropriations, apportionment, allocations, and the administration of funds; introduces the concept of audit and the Navy internal audit program.

Mn-423 ADVANCED COST ACCOUNTING (3.0-0)

Objective—To increase the officer's background in cost control through problem solving and philosophical development to the point of practical application of cost principles in any operating situation.

Description—Further develops the concepts and allocation of cost, fixed versus variable cost, cost and operating budgets, flexible budgets, standard cost accounting and variance analysis, applications of cost accounting for control, and utilization of cost accounting by the military organizations.

Mn-424 AUDITING (3.0-0)

Objective—To develop the philosophy of management control through audit and the technique of audit procedure to the point of practical application in the military services.

Description—Further develops the concepts and organization for audit, audit programs and reports, comprehensive and functional audits, utilization of audit for control, and the military applications of audit.

Mn-425 MILITARY COMPTROLLERSHIP SEMINAR (3.0-5.0-0)

Objective—To thoroughly familiarize the officer in the principles, philosophy, and methods of financial management necessary to organize for and effectively administer accounting,
Mn-440 INDUSTRIAL MANAGEMENT (4.0-0)

Objective—To develop the ability of the officer to analyze, design, and control the systems necessary to carry out the missions of the organization to which he is assigned.

Description—The student examines the function and intent of various subsystems such as scheduling, inventory control, performance measurement, work study, quality control, cost control and budgetary control functions as a prelude to studying their interaction within the whole system. The interaction between information flows within the system and between subsystems is studied. The characteristics of data required for decision making within the system and its environment, the location of optimal decision points and the design criteria of electronic and human information systems are examined.

Mn-455 PERSONNEL ADMINISTRATION SEMINAR (3.0-0)

Objective—To provide the officer with the opportunity for more intensive study of specific areas in the broad fields of personnel administration and industrial relations, while developing his ability to perform individual research and present his findings in a conference atmosphere.

Description—A combination of case method and individual student presentation in specialized study areas is utilized. Officer students participate in discussions and presentations on such facets of personnel administration as: promotions, evaluation of performance, supervisory development, incentive programs, utilization of personnel, conditions leading to turnover of personnel, testing and classification, and military-civilian relationships.

Mn-461 PROCUREMENT AND CONTRACT ADMINISTRATION (3.0-0)

Objective—To develop an awareness in the officer of the complex procurement problem and its related aspects as it affects the defense economy.

Description—The elements of the procurement cycle are discussed beginning with the impact of requirements determination on procuring activities with the legal, fiscal, technical, business, production, security, facilities, inspection, termination factors involved.

The various procurement laws and regulations are analyzed with the purpose of understanding how the system of military procurement causes a rearrangement of economic and legal procedures to meet demands that cannot be satisfied by normal methods. The effects on the financial and legal aspects of the national economy are reviewed and discussed.
Mn-462 SCIENTIFIC INVENTORY MANAGEMENT (3.0-0)

Objective—To provide the officer with an appreciation and understanding of the scientific basis for managing inventories. To increase competence in managerial decision making and the exercise of executive judgment pertinent to inventory management.

Description—This course covers basic concepts and formulae used in arriving at Economic Order Quantities, Reorder Points, Reorder Frequencies, and Variable Safety Levels. The course provides a basis for understanding the more scientific determination of the two decisions that create inventory: "how much" of the item is to be purchased, and "when" it is to be purchased. Basic accounting considerations for developing costs to order and hold are examined, as well as factors considered to be important in establishing safety levels of stocks. Opportunities are provided to study and analyze several research projects which introduce the use of mathematical inventory theory, and their application to the Inventories of the Navy Supply System.

Mn-463 MATERIEL MANAGEMENT (3.0-0)

Objective—To familiarize the student with the broad concepts of materiel management throughout the Department of Defense and to indicate the impact that limited materiel resources has on planning and operations at all levels of the military establishment.

Description—This course presents the broad functions of materiel planning, requirements determination, procurement, distribution and control applied to the introduction, development and supply support of major military programs. A broad overview is given of the organizations of the Department of Defense, the three departments, and the four services, in the materiel management field.

Mn-470 QUANTITATIVE METHODS (5.0-0)

Objectives—To provide a knowledge of statistical methods and theory as applied to numerical data or observations with the objective of preparing the officer to make rational decisions in the face of uncertainty. In addition, this course equips the student with analytical tools required in the study of subsequent courses involving the use of scientific methods.

Description—The course includes problem formulation, data collection methods, and techniques of statistical analysis; such as, probability theory, correlation and regression, control charts, sampling distributions, and time series. The application of these mathematical techniques in areas of military management is presented as a foundation upon which intuitive decision making can be improved by the application of the tools of statistical analysis.

Mn-473 DECISION MAKING TECHNIQUES (3.0-0)

Objective—To explore the continuing advances in the application of scientific methods to the management decision process.

Description—The course explores the application of science to decision making involving a survey of available tools of quantitative analysis. This survey is descriptive in nature and is designed to familiarize the student with the potential of new techniques the mathematician can make available to him. Routine and exception decision making are analyzed to determine the factors which contribute to optimum decisions in the naval management environment.

Mn-480 FACILITIES PLANNING (3.0-5.0-0)

Objectives—To develop an understanding by the officer of methods of direction and control of the complex shore facilities planning and programming process.

Description—The course includes analysis of the basic problems involved in development of requirements and programming and procurement of long lead-time support facilities. The complexity of the process brought about by technological change, modification of strategic and tactical concepts, limited budgets and their structure, the executive-legislative relationship, and internal organization are examined to determine basic problem areas and feasible solutions. The consideration of resources in site selection, standardization, compatibility of facilities and operations, and replacement and disposal of obsolete facilities are examined in relation to the problem of providing a shore establishment which effectively supports naval operations.

Mn-481 LOGISTICS (3.0-0)

Objective—To develop an understanding of the relationship between strategy, tactics, and logistics.

Description—The role of logistics is emphasized and related to economic and management considerations under both cold and hot war conditions. Logistics planning and programming, requirements, procurement, maintenance, transportation, and distribution are discussed. The philosophy of the seminar is a "generalist" approach to the area of logistics by employing all of the relevant management philosophies, principles, and skills developed in required core management courses.

Mn-482 MILITARY PLANNING (3.0-0)

Objective—To familiarize the officer with the method, characteristics and dynamics of the military planning process.

Description—The course concerns itself with the planning functions of the Department of the Navy at the seat of government. The steps in military planning from the highest levels of government through the Department of Defense are examined. The student studies the roles of various bureaus and agencies in planning with the objective of gaining an understanding of the points of correlation and coordination of policy and program planning. In the study of the levels of military planning, the techniques of control of operations are studied as measures of progress toward program objectives.
Mn-490 ORGANIZATION AND MANAGEMENT (5.0-0)

Objective—This course serves as a general introduction to the study of management. The goal is to stimulate a lasting interest on the part of the officer in a philosophy of management which will make a permanent contribution toward improving the overall effectiveness, efficiency, and economy of the Naval Establishment. With this end in view, military, governmental, commercial, and philanthropic organizations are studied in order to develop generalizations aimed at improving the administration of the Navy consistent with national goals and objectives.

Description—The practice of management is a unique combination of both art and science. Both aspects of administration are studied. Primary emphasis is placed on the utilization of the results of empirical research in the social and behavioral sciences to the practical problems of organization and administration encountered by the Naval Officer. In addition, the officer reviews a cross section of the literature on the art of management and studies the application of knowledge to actual situations through the use of the case method. The analysis of the role of the professional manager in the large organization is followed by a discussion of value and fact in administration. The study of formal organization includes policy, operations and control, span of control, authority and responsibility, methods of organizing, and communication. Informal organization includes such topics as primary relations, leadership, and motivation. The basic decision making processes are analyzed and various administrative techniques are evaluated. The comparative aspects of administration are emphasized to enable the Naval Officer to manage effectively, efficiently, and economically wherever he may be stationed during his military career.

Mn-491 MANAGEMENT POLICY (3.0-4.0-0)

Objective—To develop and/or increase ability of the officer to analyze and to synthesize the important factors in management situations to the end that the military executive may maximize his contribution to the successful attainment of vital military and managerial objectives.

Description—The course is directed at the viewpoint of the higher levels of management and is designed as the coordination point of all offerings in Navy Management. The officer, throughout the course, is encouraged in the decision process to the end that he will achieve reasoned and responsible decisions. The emphasis will be on typical management problem analysis and policy formulation. In this action process, the officer will be expected to appraise situational problems, define objectives, develop realistic plans with control devices suitable to measure progress as plans are implemented. The dynamics of organizational structure and the human element under changing conditions and environment are considered as well as the short and long term implications of planning on operations. The course will make use of topical problems and case studies drawn from Navy, Defense, and civilian sources.

Mn-492 BUSINESS AND GOVERNMENT (3.0-0)

Objective—To acquaint the Naval Officer with the role of government and to discuss the scope and growth of government planning and control of industry, resources, banking, and business fluctuations. To acquaint the student with the operation, administration and coordination of legislative, judicial, and executive branches of the government. To examine the interrelationships of the various executive departments and agencies and their roles in the formulation of public and defense policies.

Description—The course will cover the public policies of the national government as they affect the economic, political, and social order; the increasing importance of the role of government in our society and the responsiveness of national government to competing claims of various interest groups. Careful examination will be given to the legislative process including the roles of committee hearings and investigations, and the role of interest groups and lobbies. Study will be made particularly of defense policy, its effect upon the Navy, and the budgetary process in the formulation of the National Strategy. The roles of the various regulatory agencies and commissions will be examined for their interactions with the Defense and other executive departments of the government. Students will be expected to analyze legislative, administrative, judicial, and executive aspects of current political and economic questions such as defense mobilization, conservation, labor-management relations, public housing, health, security, and government organization.

Mn-495 ORGANIZATION AND MANAGEMENT SEMINAR (3.0-0)

Objective—To direct attention to organizational changes necessitated by changing objectives, new concepts, and new programs. To inquire into the managerial problems associated with changing programs and to examine management approaches used in successfully adapting to change. To explore areas and opportunities for improvements in management practice, methodology, and philosophy.

Description—Studies are made of organizations and organizational units of industry, Defense, and the Navy. Studies are made of activities engaged in research and development and new advanced programs to examine the near and long term objectives, the planning phases, the organizational structure, the advanced managerial method, and techniques. Problems in staffing are discussed. Problems of reorganization in government and private industry are studied to develop the factors initiating change in organizational structure and management method.
CURRICULA AT OTHER INSTITUTIONS

The curricula in this section are conducted entirely in civilian universities but are supervised by the Superintendent, U.S. Naval Postgraduate School. Table I shows the duration and place of each curriculum and the school official at Monterey responsible for administration, including initiation of changes to curriculum, contact with students and college faculty, and related functions.

The information on courses is taken from the latest college catalogues but are subject to change from year to year. Changes depend upon the scheduling problems at the institution and the background of individual students. Further detailed information can be obtained from the catalogue of the college concerned, by writing to the responsible school official at Monterey, or to the liaison official at the college as shown in Table I.

BUSINESS ADMINISTRATION

(Group ZKH)

At Harvard University

Objective—A curriculum consisting generally of courses in the fields of finance, business organization, marketing, statistics, public relations, administrative practices, and geography. The curriculum at Harvard is of two-year duration and leads to a Master's Degree in Business Administration. The summer between academic years is spent in individual assignments with industrial companies.

Typical Curriculum:
First Year (All courses required)

Administrative Practices
Business Responsibilities in the American Society
Control
Finance
Marketing
Production
Written Analysis of Cases

Second Year (10 half-year courses required)

Business Policy (Required)
Courses in General Business Management
Courses in Industrial and Financial Accounting
Courses in Production/Manufacturing
Courses in Finance/Investment
Courses in Advanced/International Economics
Courses in Personnel Administration/Human Relations
Courses in Marketing/Sales/Merchandising
Courses in Transportation
Courses in Military Management
Courses in Taxation
Courses in Foreign Operations
Courses in Probability and Statistics for Business Decisions
Courses in Industrial Procurement

(Group ZKM)

At University of Michigan

Objective—A curriculum consisting generally of courses in the fields of finance, business organization, marketing, statistics, public relations, administrative practices, and geography.

The one-year curriculum at the University of Michigan is for advanced students having a major in Business Administration and leads to a Master's Degree in Business Administration.

Typical Curriculum:

Accounting
Statistical Methods
Money and Banking
Financial Principles
Personnel Administration
Personnel Administration Skills
Marketing Principles and Policies
Electronic Data Processing
Business Law
Economics of Enterprise
Business Policy
Business Games Lab
Marketing Principles and Policies II
Business Statistics - Accounting and Finance

(Group ZKS)

At Stanford University

Objective—A curriculum consisting generally of courses in the fields of finance, business organization, marketing, statistics, public relations, administrative practices, and geography. The curriculum at Stanford University is of two-year duration and leads to a Master's Degree in Business Administration. The summer between academic years is spent in individual assignments with industrial companies.

Typical Curriculum:

Required - First Year

Business Economics
Management Accounting
Business Statistics
Business Organization and Management
Business Finance
Marketing Management
Psychological Aspects of Business
Manufacturing I
Human Elements in Business
Legal Process in Business
Employment Relationships

Required - Second Year

Manufacturing II
Business Policy Formulation and Administration

Electives - Second Year

Courses in Industrial and Financial Accounting, Audit, Comptrollership
Courses in Production/Manufacturing
Courses in Finance/Investment/Banking
Courses in Personnel Administration/Industrial Relations
Courses in Marketing/Sales
Courses in Transportation
Courses in Insurance/Risk Management
Courses in Advanced Economics/International Trade
Courses in Research/Small Business Management
Courses in Business Information Systems Data Processing
Courses in Purchasing

Z-1
NAVAL POSTGRADUATE SCHOOL

CIVIL ENGINEERING ADVANCED
Electrical Engineering

(GROUP ZGL)
At Rensselaer Polytechnic Institute

Objective—To provide advanced education for selected CEC officers in Electrical Engineering with emphasis on power plants, and Electrical Utility distribution.

SUMMER TERM

11.05 Engineering Mathematics (review).
7.03 Circuit Theory I (special course taken with cooperative program students - 7 1/2 contact hours per week).
7.60 Electrical Machines Theory.
or
7.40 Electronics I (special program with cooperative students - 7 1/2 contact hours per week).

FALL TERM

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>T7.73 Motor Characteristics & Control</td>
<td>3</td>
</tr>
<tr>
<td>G7.15 Network Theory I</td>
<td>3</td>
</tr>
<tr>
<td>G7.99 Thesis</td>
<td>3</td>
</tr>
<tr>
<td>*G7.xx Electrical Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td>(Major)</td>
<td></td>
</tr>
<tr>
<td>**TorG Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

*G7.xx Electrical Engineering Electives | 3 |
(Major - Fall Term)

FALL TERM

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>T7.73 Motor Characteristics & Control</td>
<td>3</td>
</tr>
<tr>
<td>G7.15 Network Theory I</td>
<td>3</td>
</tr>
<tr>
<td>G7.99 Thesis</td>
<td>3</td>
</tr>
<tr>
<td>*G7.xx Electrical Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td>(Major)</td>
<td></td>
</tr>
<tr>
<td>**TorG Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

*G7.xx Electrical Engineering Electives | 3 |
(Major - Fall Term)

a) G7.13 Advanced Industrial Electronics
b) G7.04 Symmetrical Components

** TorG Electives (Fall Term) | 3 |

a) T11.12 Advanced Calculus (required if not taken in summer term)
b) TorG Mechanical Engineering Course
c) T7.13 Response of Physical Systems
d) Illumination Engineering (no credit toward degree)
e) Either G7.13 or G7.04 above

SPRING TERM

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>G7.23 Advanced Electricity & Magnetism</td>
<td>3</td>
</tr>
<tr>
<td>G7.99 Thesis</td>
<td>3</td>
</tr>
<tr>
<td>T7.65 Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>*G7.xx Electrical Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td>(Major)</td>
<td></td>
</tr>
<tr>
<td>**** TorG Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

**G7.xx Electrical Engineering Elective | 3 |
(Major - Spring Term)

a) G7.01 Power Systems Stability
b) G7.06 Advanced Electrical Machines
c) G7.08 Power Plant Design (CEC) (concurrently with G12.48 Power Plant Design (CEC)
d) G7.16 Network Theory II

**** TorG Elective (Spring Term)

a) T7.46 Feedback Control Engineering
b) T or G Mechanical Engineering Course
c) Any one of (a), (b), (c), (d) of ** G7.xx above.

The program is to lead to a Master of Electrical Engineering Degree. Other electives compatible with degree requirements may be required to meet scheduling conflicts.

Sанitary Engineering

(GROUP ZGM)
At the University of Michigan

Objective—To provide advanced technical instruction for selected CEC officers in the field of water supply and sewerage.

SUMMER TERM

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE120 Fundamentals of Experimental Research</td>
<td></td>
</tr>
<tr>
<td>CE152 Water Purification and Treatment</td>
<td></td>
</tr>
<tr>
<td>CE131 Cost Analysis and Estimating</td>
<td></td>
</tr>
</tbody>
</table>

FALL TERM

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACT109 Bacteriology for Engineers</td>
<td></td>
</tr>
<tr>
<td>CE153 Sewage and Sewage Disposal</td>
<td></td>
</tr>
<tr>
<td>CE155 Environmental Sanitation</td>
<td></td>
</tr>
<tr>
<td>EH260 Sanitary Chemistry</td>
<td></td>
</tr>
<tr>
<td>EH264 Stream Sanitation</td>
<td></td>
</tr>
</tbody>
</table>

SPRING TERM

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE157 Industrial Waste Treatment</td>
<td></td>
</tr>
<tr>
<td>CE250 Sanitary Engineering Research</td>
<td></td>
</tr>
<tr>
<td>CE254 Advanced Sanitary Engineering Design</td>
<td></td>
</tr>
<tr>
<td>CE255 Sanitary Engineering Seminar</td>
<td></td>
</tr>
<tr>
<td>EH265 Advanced Stream Sanitation</td>
<td></td>
</tr>
<tr>
<td>NE190 Elements of Nuclear Engineering</td>
<td></td>
</tr>
<tr>
<td>EH228 Radiological Health</td>
<td></td>
</tr>
</tbody>
</table>

This curriculum affords the opportunity to qualify for the degree of Master of Science in Engineering.
SOIL MECHANICS AND FOUNDATIONS

(GROUP ZGR)

At Rensselaer Polytechnic Institute

Objective—To provide advanced technical education for selected CEC officers in the field of soil mechanics and foundations.

SUMMER TERM

11.25 Engineering Mathematics
10.11 Engineering Geology
Soil Mechanics & Foundations Refresher

FALL TERM

11.41 Advanced Calculus
10.12 Advanced Engineering Geology
G5.30 Soil Mechanics I
G5.32 Foundation Engineering I
G5.87 Prestressed Concrete
G5.37 Soil Mechanics III

SPRING TERM

G5.31 Soil Mechanics II
G5.33 Foundation Engineering II
T5.25 Hydrology
G5.82 Shipbuilding and Ship Repair Facilities (CEC)
G5.36 Soil Mechanics Seminar
G5.49 Thesis

This Curriculum affords the opportunity to qualify for the degree of Master of Civil Engineering.

STRUCTURES

(GROUP ZGI)

At the University of Illinois

Objective—To provide advanced technical instruction for selected CEC officers in the field of structural design.

FIRST SUMMER

Math 343—Advanced Calculus
CE 460*—Structural Analysis or CE 461—Structural Theory & Design

**Physics 201—Basic Concepts of Elementary Physics—No graduate credit
or—TAM 321—Advanced Mechanics of Materials—½ unit
or—Approved Elective in Mechanics, Mathematics or Physics—½ unit

FOUR WEEKS FOLLOWING FIRST SUMMER SESSION

CE 160 Building Construction—no graduate credit
CE 290 Contracts & Specifications—no graduate credit
(or other appropriate courses)

FALL TERM

CE 464 Reinforced Concrete Design
or CE 366 Behavior of Reinforced Concrete Members
CE 471 Numerical & Approximate Methods of Structural Analysis
CE 383 Soil Mechanics
CE 461* Structural Theory & Design
or CE 462 Structural Theory & Design
Physics 383 Atomic & Solid State Physics for Engineers

SPRING TERM

CE 465 Steel Design
CE 474 Behavior of Structures under Dynamic Loads
CE 472 Advanced Numerical Methods in Engineering
CE 384 Applied Soil Mechanics
Physics 382—Nuclear Physics

SECOND SUMMER

Math 345 Differential Equations & Orthogonal Functions
CE 497 Special Problems (½ to 2 units)
Approved Elective related to purposes of curriculum

SECOND FALL

CE 477 Design of Structures for Dynamic Loads
NE 401 Fundamentals of Nuclear Engineering
CE 467 Behavior of Reinforced Concrete Structures
or CE 468 Analysis & Design of Prestressed Concrete Structures
CE 497 Special Problems
or Approved Elective (TAM 451—Theory of Electricity with Application of Engineering Problems, TAM 461—Inelastic Behavior of Engineering Materials, NE 454 Nuclear Engineering Lab Investigations, NE 458 Nuclear Reactor Engineering & others
or CE 499 Thesis.

* Students having no previous background in Statically Indeterminate Structures must take CE 460 and follow it with CE 461.

** Required for Navy CEC officers with weak or remote Physics background.

WATERFRONT FACILITIES

(GROUP ZGP)

At Princeton University

Objective—To provide advanced technical instruction in waterfront development, including planning, design, construction, rehabilitation and maintenance of waterfront facilities.

SUMMER TERM

Mathematics
Strength of Materials
Reinforced Concrete
Fluid Mechanics
Soil Mechanics
FALL TERM

CE505 Advanced Structures
CE511 Waterfront Structures
CE513 Port and Harbor Engineering, Research preparatory to the writing of the thesis

One elective from the following group:

CE501 Soil Stabilization
ME531 Applied Elasticity
ME525 Industrial Management
SOC 544 Urban Sociology

SPRING TERM

CE512 Waterfront Structures

Two electives from the following group:

CE502 Soil Mechanics
CE504 Municipal Engineering
CE508 Soil Physics
POLITICS 512 Public Administration

This curriculum affords the opportunity to qualify for the degree of Master of Science.

CIVIL ENGINEERING (Qualification)

(GROUP ZGQ)

At Rensselaer Polytechnic Institute

Objective—A thirteen-month curriculum, to qualify officers for civil engineering duties. Successful completion of this course normally leads to a degree of Bachelor of Science in Civil Engineering. At present this is the only program for line officers transferring to Civil Engineering Corps.

SUMMER SESSION

5.08 Surveying, Curves and Earthwork (CEC)
5.76 Structural Analysis I
5.78 Reinforced Concrete I

FALL TERM

5.09 Contracts and Specifications
5.15 Highways & Airports
5.75 Building Construction
5.77 Structural Design I
5.80 Structural Analysis & Design II
10.11 Engineering Geology
7.22 Utilization of E.E. in Naval Establishments (CEC)

SPRING TERM

5.32 Soil Mechanics (CEC)
5.79 Reinforced Concrete II
T5.82 Intermediate Structures I
T5.24 Construction Methods and Estimates
12.42 Heating & Ventilating (CEC)
13.54 Metallurgy & Welding
2.60 City Planning Principles

SECOND SUMMER SESSION

7.69-12.48 Power Plants (CEC) ME ½ term—EE ½ term
5.35 Foundation Engineering (CEC)
5.70 Sanitary Engineering (CEC)

COMPTROLLERSHIP

(GROUP ZS)

At George Washington University

Objective—To develop in officers of mature judgment and a broad background of professional experience the ability to interpret and analyze operational statistics for the purpose of developing standards of performance; to provide a periodic review of operations in order to denote areas of management which are not meeting standards; to review budget estimates; and to plan program for the improvement of management economy and efficiency through better organization, administration and procedures and better utilization of manpower, materials, facilities, funds and time. The course is designed to give graduates a working knowledge of managerial controls adequate for assignment to comptroller duties as a normal preparation for command and executive billets in the shore establishment and leads to the degree Master of Business Administration.

Typical Curriculum:

Undergraduate Courses:

General Accounting
Business Reports and Analyses
Industrial and Governmental Economics
Statistical Decision Making

Graduate Courses:

Cost Accounting
Managerial Accounting
Internal Control and Audit
Financial Management
Seminar in Marketing
Seminar in Contract Administration
Business Organization and Management
Reading and Conference in Comptrollership
Human Relations in Business
Research Seminar in Comptrollership
Seminar in Comptrollership
Governmental Budgeting

HYDROGRAPHIC ENGINEERING

(GROUP ZV)

At Ohio State University and
USN Hydrographic Office

Objective—A two-year course in Hydrographic Engineering to prepare officers for assignment to duties at the Hydrographic Office, on hydrographic survey expeditions, or on major fleet staffs. The curriculum is divided into Phase I and Phase II. Phase I consists of 18 months' academic instruction at Ohio State University and presents a sound fundamental theoretical knowledge of geodesy, cartography, and photogrammetry, par-
MANAGEMENT AND INDUSTRIAL ENGINEERING
(GROUP ZT)
At Rensselaer Polytechnic Institute

Objective—To prepare selected officers for managerial and industrial engineering billets in the Navy's industrial organization. The curriculum majors in industrial engineering and its application to managerial problems and leads to the degree Master of Science in Management Engineering.

Typical Curriculum:

SUMMER
Statistical Methods
Law in Management and Engineering

FALL
Cost Finding and Control
Analytical Methods in Management
Organization Planning and Development
Personnel Tests and Measurement
Choice between: Marketing and
Research and Design Management

SPRING
Cost Analysis
Industrial Relations
Production Planning and Control
Financial Planning and Control
Seminar in Management

METALLURGICAL ENGINEERING
(GROUP ZNM)
At Carnegie Institute of Technology

Objective—To obtain the maximum possible metallurgical background in a nine-month program designed specifically for the graduate of the Naval Construction and Engineering Curriculum.

FALL SEMESTER
E611 Physical Metallurgy
E641 Ferrous Metallurgy
E645 Metallography Lab.
E647 Non-Ferrous Metallography
E651 Mechanical Metallurgy
E661 Modern Metallurgical Practice
S125 Physical Chemistry
S291 Statistical Quality Control

SPRING SEMESTER
E612 Physical Metallurgy
E642 Ferrous Metallography
E646 Metallography Lab.
E648 Non-Ferrous Metallography
E624 Process Metallurgy
E662 Modern Metallurgy Practice
S126 Physical Chemistry
S292 Statistical Quality Control
Successful completion of this curriculum may lead to a B.S. degree in Metallurgy depending on the academic background of the student.
NAVAL ARCHITECTURE
(ADVANCED HYDRODYNAMICS)

(GROUP ZNA)

At University of California
(Two Semesters)

Objective—To provide advanced education in the hydrodynamics aspects of Naval Architecture.

Required Courses
ME298 Ship Theory (Hydrodynamics) (3) two semesters
ME298 Foil and Hydrofoil Theory (3) one semester
MA270 Technical Hydrodynamics (3) one semester

Electives as required for complete program of about 12 units per semester from:
ME298 Ship Theory (Structures) (3)
ME298 Free Surface Effects (2)
ME298 Theory of Plates and Shells (4)
PH222 Mathematical Methods of Theoretical Physics (3)
Statistics 130E Statistical Inference for Engineers (3)
ME298 Acoustics in Naval Architecture (3)
ME299 Special Study

NAVAL CONSTRUCTION AND ENGINEERING
(GROUP ZNB)

At Massachusetts Institute of Technology and at Webb Institute of Naval Architecture

Objective—To qualify officers for naval construction and engineering assignments. Successful completion of this curriculum normally leads to "Engineering Duty" designation.

HULL DESIGN AND CONSTRUCTION

SUB-SPECIALTY
(XIII-A-1) at M.I.T.

FIRST SUMMER
2.046 Strength of Materials & Dynamics
8.00 Physics
13.20 Elementary Warship Design
18.07 Review of Mathematics

SECOND SUMMER
6.251 Princ. of Machine Computation

SECOND FALL
1.631 Adv. Hydromechanics I
3.391T Properties of Metals
13.12T Naval Structural Th. I
13.22T Nav. Ship Propulsion I
13.30 Mechanical Vibration
13.44 Nav. Ship Gen. Arrgts. II

SECOND SPRING
1.503 Naval Structural Analysis II
1.632 Adv. Hydromechanics II
3.392T Properties of Metals
13.13T Naval Structural Theory II
13.24T Naval Electrical Eng.
1.683 Experimental Hydro.
or
2.212 Adv. Mechanics
Intersessional period; Field Trip

THIRD FALL
2.126 Exp. Stress Analysis
13.15T Naval Struct. Des. II
13.41 Prin. of Ship Design

THIRD SPRING
13.23 Nav. Ship Prop. II
13.46T Prel. Des. of Nav. Ships
Thesis
and either:
1.588 Buckling of Struc. & Struc. Elem.
or
2.216 Plates and Shells

MARINE ELECTRICAL ENGINEERING (POWER & CONTROL)

(XIII-A-2) at M.I.T.

FIRST SUMMER
2.046 Strength of Materials & Dynamics
8.00 Physics
13.20 Elementary Warship Design
18.07 Review of Mathematics

FIRST FALL
1.612 Fluid Mechanics
2.081 Strength of Materials
2.402 Thermodynamics
13.94 History of Naval Ships
18.05 Adv. Calc. for Eng.

1.502 Naval Structural Analysis I
2.501 Heat Transfer
13.00 Principles of Naval Architecture
13.43T Nav. Ship Gen. Arrgts I
18.10 Elem. Statistics

FIRST SPRING
1.502 Naval Structural Analysis I
2.402 Thermodynamics
13.94 History of Naval Ships
18.05 Adv. Calculus for Eng.
First Spring

- 6.021 Electronic Dev. & Circ.
- 6.022 Elec. Dev. & Circ. Lab
- 13.00 Princ. of Naval Arch.
- 13.43T Naval Ship Gen. Arrgts I
- 18.18 Probability

Second Summer

- 6.03 Fields, Energy & Forces
- 6.051 Electronic Cir. & Signals
- 6.052 Electronic Cir. & Sig. Lab

Second Fall

- 3.391T Prop. of Metals
- 6.01 Feedback Cont. Theory
- 13.22T Nav. Ship Propulsion I
- 13.41 Princ. of Ship Design

Electives:
- 6.17T Illumination
- 6.20 Electronic Cont. & Meas.

Second Spring

- 3.392T Prop. of Metals
- 6.06 Electro. Energy Conv.
- 6.216 Dynamics of Elec. Mach.

Third Summer

- 6.251 Prin. of Digital Comp.
- 8.055 Elem. Nuclear Physics

Third Fall

- 6.35T Acoustics
- 6.632 Elec. Inst. & Control
- 13.45T Prin. Naval Ship Design

Third Spring

- 13.23 Nav. Ship Prop. II
- 13.46T Prelim. Des. of Nav. Ships

 Thesis

Electronics Engineering

(XIII-A-3) at M.I.T.

First Summer

- 2.046 Strength of Materials & Dynamics
- 8.00 Physics
- 13.20 Elem. Warship Design
- 18.07 Review of Math

First Fall

- 1.612 Fluid Mechanics
- 2.402 Thermodynamics
- 13.94 History of Naval Ships

First Spring

- 6.021 Electronic Dev. & Circ.
- 6.022 Elec. Dev. & Circ. Lab
- 13.00 Princ. of Naval Arch.
- 13.43T Naval Ship Gen. Arrgts I
- 18.18 Probability

Second Summer

- 6.03 Fields, Energy & Forces
- 6.051 Electronic Circuits & Sig.
- 6.052 Electronic Circuits & Sig. Lab

Second Fall

- 3.391T Properties of Metals
- 6.07 Energy Trans. & Rad.
- 6.601 Feedback Cont. Theory
- 13.41 Princ. of Ship Design
- 13.44 Naval Ship Gen. Arrgts. II

Electives:
- 6.17T Illumination
- 6.20 Electronic Cont. & Meas.

Second Spring

- 3.392T Prop. of Metals
- 6.06 Electromech. Energy Conv.
- 6.571 Statistical Th. of Com.

Third Summer

- 6.251 Prin. of Digital Comp.
- 8.051 Atomic & Nuclear Physics

Third Fall

- 6.08 Molecular Eng.
- 6.536 Sys. Eng. & OP. Research
- 6.629 Radar System Eng.

 Thesis

Third Spring

Any one or two of:

- 6.622 Antennas
- 6.623 Princ. of Pulse Circ.
- 6.633 Active Circ. Theory
- 6.635 Transistors

 and
- 13.46T Prelim. Des. of Nav. Ships

 Thesis
Ship Propulsion Engineering (XIII-A-4) at M.I.T.

FIRST SUMMER

- 2.046 Strength of Materials & Dynamics
- 8.00 Physics
- 13.20 Elem. Warship Design
- 18.07 Review of Math

FIRST FALL

- 1.501 Structural Mechanics
- 2.25 Fluid Mechanics
- 2.402 Thermodynamics
- 13.94 History of Naval Ships

SECOND SUMMER

- 6.251 Principles of Machine Comp.
- 8.055 Elem. Nuclear Physics

SECOND FALL

- 2.252 Gas Dynamics
- 3.391T Prop. of Metals
- 13.22T Naval Ship Propulsion I
- 13.30 Mechanical Vibration
- 13.44 Nav. Ship Gen. Arrgts. II
- 22.21 Nuclear Reactor Phys. I

SECOND SPRING

- 2.212 Adv. Mechanics
- 2.112 Heat Engineering
- 2.782 Intro. to Auto. Cont.
- 3.392T Properties of Metals
- 22.22 Nuclear Reactor Phys. II

Intersessional period: Field Trip

THIRD FALL

- 2.213 Gas Turbines
- 3.396 Nuclear Metallurgy
- 13.41 Princ. of Ship Design

THIRD SPRING

- 2.783 Adv. Automatic Control
- 13.23 Nav. Ship Propulsion II

NAVAL POSTGRADUATE SCHOOL

Hull Design and Construction

At Webb Institute of Naval Architecture

This three-year curriculum is basically equivalent to the Hull Design and Construction Sub-specialty at M.I.T. The schedule provides for a long winter practical work period (field trip), each year, during which the students work in a Naval shipyard or other suitable installation.

FIRST SUMMER

Practical Naval Architecture I

Calculus Review — Mechanics Review

FIRST YEAR

Calculus III and IV

Differential Equations

Theoretical Fluid Mechanics I and II

Ship Model Testing

Thermodynamics I

Mechanical Processes

Mechanics of Materials I and II

Laying off

Practical Naval Architecture II and III

Theoretical Naval Architecture I and II

Naval Architecture Design I and II

Ship Resistance and Propellers I

SECOND YEAR

Engineering Economic Analysis

Industrial Organization

Metallurgy I and II

Advanced Structure I and II

Structural Laboratory

Electrical Engineering IV

Ship Resistance and Propellers II

Elementary Nuclear Physics and Reactors

Theoretical Naval Architecture III

Theory of Warship Design I and II

Warship Design I and II

Thermodynamics II

Marine Engineering III and IV

THIRD YEAR

Advanced Theoretical Fluid Mechanics

Vibrations

Machine Design

Theory of Warship Design III and IV

Warship Design III and IV

Marine Engineering V and VI

Internal Combustion Engines

Nuclear Power in Warship Design

Thesis

This curriculum affords the opportunity to qualify for the degree of Master of Science.
NAVAL INTELLIGENCE

(GROUP ZI)

At the U.S. Naval Intelligence School, Washington, D.C.

Objective—Nine months of instruction to train selected officers in all phases of intelligence. Following the intelligence course the students normally study a foreign language to qualify as an interpreter-translator. The length of time devoted to language study is dependent upon the language studied and the previous linguistic training of the student.

NUCLEAR ENGINEERING (ADVANCED)

(GROUP ZNE)

At Massachusetts Institute of Technology

Objective—To qualify officers for the technical direction of nuclear power development in the Navy. Graduates of this program can normally expect to be assigned duties within the nuclear power development program under the direction of the Bureau of Ships. This curriculum affords the opportunity to qualify for the degree of Master of Science.

FIRST SUMMER

8.06N Nuclear Physics
M351 Advanced Calculus
M352 Advanced Calculus
8.051 Atomic and Nuclear Physics

FALL TERM

3.396 Nuclear Metallurgy
6.67 Prin. of Control Systems
8.531 Nuclear Physics for Engineers I
22.21 Nuclear Reactor Physics I
22.41 Nuclear Reactor Physics Lab.

SPRING TERM

8.532 Nuclear Physics for Engineers II
22.22 Nuclear Reactor Physics II
22.23 Nuclear Reactor Engineering
Thesis

ELECTIVE

22.24 Nuclear Plant Dynamics
22.42 Nuclear Reactor Lab.

SUMMER

Thesis

OCEANOGRAPHY

(GROUP ZO)

At the University of Washington and USN Hydrographic Office

Objective—A two-year course in Oceanography to prepare officers for assignment to billets requiring knowledge in this field. The curriculum is divided into Phase I and Phase II.

Phase I consists of 18 months' academic instruction at the University of Washington and provides a comprehensive theoretical and practical foundation in the various aspects of oceanography, including submarine geology, physical oceanography, chemical oceanography, marine meteorology, and marine biology. A summer period of work at sea and in the laboratory is included. Phase II consists of 6 months' practical instruction at the USN Hydrographic Office under the cognizance of the Hydrographer. For students with an adequate educational background, this curriculum affords the opportunity to qualify for the degree of Master of Science in Oceanography.

PERSONNEL ADMINISTRATION AND TRAINING

(GROUP ZP)

At Stanford University

Objective—A one-year curriculum to prepare officers for assignment in personnel administration and supervision, or administration of training activities. It includes instruction in Statistical Methods; General, Educational and Social Psychology; General and Educational Sociology; General School Supervision; Counseling Techniques; Guidance; Personnel Management; Administration; Business and Professional Speaking; Personnel Test and Measurements; and Record Studies. Leads to a Master's Degree in Education.

PETROLEUM ADMINISTRATION AND MANAGEMENT

GAS, OIL AND WATER RIGHTS

(GROUP ZHS)

At Southern Methodist University

Objective—A one-year curriculum to prepare officer-lawyers for assignment to billets concerned with the administration and management of the Naval Petroleum Reserves and with the special problems in water rights. This curriculum provides the student with a study of government regulations in oil and gas law taxation problems, and special research and study of the evolution of law concerning water rights, current law affecting these rights, and technical problems encountered.

This course leads to a Masters Degree for qualified officers.

PETROLEUM ENGINEERING

(GROUP ZL)

At the University of Pittsburgh and in the petroleum industry

Objective—A program consisting of two terms of academic work at the University of Pittsburgh followed by about one year in the field with a major integrated oil company. It is designed to equip naval officers with a knowledge of petroleum production engineering as well as a broad understanding of the petroleum industry. Future billet assignments may be in the Naval Petroleum Reserve system and in the higher echelons of the Defense Department concerned with petroleum logistics and where liaison with the oil industry is required.
CURRICULA AWAY

FALL TERM
Ch.E 17 Petroleum Processes for Petroleum Engineers
Ch.E 11 Industrial Calc. for Pet. Engr.
Geology 2 Historical Geology
Pet. Engr. 101 Drilling and Development

SPRING TERM
Ch.E 12 Industrial Calc. for Pet. Engr.
Pet. Engr. 102 Pet. Production Practice
Pet. Engr. 113 Natural Gas Laboratory
Pet. Engr. 107 Gathering, Transp. and Storage
Geology 120 Geology of Oil and Gas for Engr.

The curriculum does not lead to a degree.

PETROLEUM ENGINEERING CURRICULUM
UNIVERSITY OF TEXAS
(Group ZL)

Objective—A one-year academic curriculum to prepare officers for assignments to duty involving the administration and operation of Naval Petroleum Reserves. The curriculum provides the student with a knowledge of petroleum development and production procedures, geology, petroleum economics and reservoir engineering. In order to provide the student with practical knowledge of crude oil and natural gas production engineering, the academic work will be followed by about one year in the field with a major integrated oil company.

A suggested program for a course of study leading to the degree of Master of Science in Petroleum Engineering is as follows:

SUMMER SESSION

<table>
<thead>
<tr>
<th>COURSES</th>
<th>TITLE</th>
<th>CREDIT HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 372 or Math. 374</td>
<td>Boundary Value Problems</td>
<td>3</td>
</tr>
<tr>
<td>P. En. 661a</td>
<td>Fourier & Laplace Transforms</td>
<td>3</td>
</tr>
</tbody>
</table>

FALL SEMESTER

P. En. 385K Mechanics of Oil & Gas Prod. 3
P. En. 389 Economic Analysis in the Petroleum Ind. 3
Math. 374 (If Math. 372 taken during summer) 3
or Math. 372 (If Math. 374 taken during summer) 3
or Math. 355 High Speed Computer Programming 3
P. En. 698a Research & Thesis 3

SPRING SEMESTER

P. En. 385L Mechanics of Oil & Gas Production 3
P. En. 383 (T.p.2) Advanced Well-Logging & Correlation 3
P. En. 387 Secondary Recovery of Petroleum 3
P. En. 698b Research & Thesis 3

Major—Petroleum Engineering 21-24 hrs.
Minor—Mathematics 6 - 9 hrs.

The requirement for a Minor in Mathematics is not mandatory and a Minor in Geology may be substituted depending on the background of the individual student.

NAVAL POSTGRADUATE SCHOOL

PETROLEUM MANAGEMENT
(Group ZMK)
At University of Kansas

Objective—A one-year curriculum to meet an immediate need for the graduate level education of Supply Corps (3100) officers in the functional proficiency area of petroleum management and administration. This curriculum leads to a Master of Science degree. Certain specific prerequisite courses in the engineering and business administration fields are required.

TYPICAL CURRICULUM:

Graduate Engineering Courses - (15 Semester Hours Required)
Field Practice in Natural Gas
Theoretical Principles of Petroleum Production
Appraisal of Oil and Gas Properties
Thesis (Problem in Petroleum Procurement)

Graduate Business Administration Courses - (15 Semester Hours Required)
Introduction to High Speed Data Processing
Controllership
Transportation
Personnel Management
Industrial Training and Supervision
Development of Business Enterprise
Legal Aspects of Business
Probability
Advanced Cost Accounting
Industrial Procurement

RELIGION
(Group ZU)
At selected universities

Objective—Each officer student enrolled in this curriculum pursues courses of instruction in such subjects as psychology, theology, homiletics, counselling, hospital ministry and education.

An officer selected in this curriculum will be enrolled at Harvard University, Catholic University, University of Chicago, University of Notre Dame, Fordham University, Union Theological Seminary, or the Menninger Foundation, depending on the field of study selected.

RETAILING
(Group ZMG)

At Graduate School of Retailing, University of Pittsburgh

Objective—To educate the Supply Corps (3100) officer in the functional proficiency area of retailing which emphasizes
consumer markets, sales promotion, merchandise and merchandising, and the management function associated therewith. This curriculum leads to a Master’s Degree in Retailing.

TYPICAL CURRICULUM:

The Market for Consumer Goods
Research Methods and Analysis
Human Relations
Merchandising Management I and II
Personnel Management
Merchandise Information
Administration of the Selling Function
Management of Service Operations
Credit, Finance and Control
Sales Promotion
Merchandise Design and Fashion
Seminar in Retail Distribution
Seminar in Managerial Areas

POLITICAL SCIENCE
(GROUP ZST)

At Tufts University and Stanford University

Objective—A two-year curriculum to prepare officers of mature judgment and broad background of professional knowledge in the fields of international relations, economics, political science, sociology, geography and history. Leads to a Master’s Degree for qualified officers.

TRANSPORTATION MANAGEMENT
(GROUP ZMN)

At Northwestern University

Objective—A one-year curriculum to meet an immediate need for graduate level education of Supply Corps (3100) officers in the functional proficiency area of transportation management and leads to the degree of Master of Business Administration.

TYPICAL CURRICULUM:

Basic Accounting II
Financial Management
Basic Marketing
Basic Statistics I
Accounting for Financial and Profit Management II
Problems in Business Economics
Basic Statistics II
Transportation Policy
Accounting for Financial and Profit Management III
Human Problems in Administration
Research Seminar
Transportation Management
Problems in Business Administration
Social Problems in Administration
Marketing Management
Transportation Seminar
TABLE I

CURRICULA AT OTHER INSTITUTIONS

SUPERVISED BY U.S. NAVAL POSTGRADUATE SCHOOL

<table>
<thead>
<tr>
<th>Curriculum</th>
<th>Group</th>
<th>Length</th>
<th>Institution</th>
<th>Liaison Official</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Administration (M)</td>
<td>ZKH</td>
<td>2 yrs.</td>
<td>Harvard</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Business Administration (M)</td>
<td>ZKM</td>
<td>1 yr.</td>
<td>Michigan</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Business Administration (M)</td>
<td>ZKS</td>
<td>2 yrs.</td>
<td>Stanford</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Civil Engineering, Advanced (N)</td>
<td>ZKL</td>
<td>2 yrs.</td>
<td>Stanford</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>ZGL</td>
<td>1 yr.</td>
<td>RPI</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>ZGH</td>
<td>1 yr.</td>
<td>RPI</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Sanitary Engineering</td>
<td>ZGM</td>
<td>1 yr.</td>
<td>Michigan</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Soil Mechanics and Foundations</td>
<td>ZGR</td>
<td>1 yr.</td>
<td>RPI</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Structures</td>
<td>ZGI</td>
<td>1 yr.</td>
<td>Illinois</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Waterfront Facilities</td>
<td>ZGP</td>
<td>1 yr.</td>
<td>Princeton</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Naval Architecture (N)</td>
<td>ZNA</td>
<td>9 mos.</td>
<td>U. of Calif.</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Naval Construction and Engineering (N)</td>
<td>ZNB</td>
<td>3 yrs.</td>
<td>MIT</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Naval Intelligence (S)</td>
<td>ZI</td>
<td>9 mos.</td>
<td>USN Intel. Scol, Wash., D.C.</td>
<td>Dir, USN Intelligence School</td>
</tr>
<tr>
<td>Nuclear Engineering (N)</td>
<td>ZNE</td>
<td>15 mos.</td>
<td>MIT</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Oceanography (R)</td>
<td>ZO</td>
<td>2 yrs.</td>
<td>U. of Wash. & USN Hydro Off.</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Personnel Administration & Training (E)</td>
<td>ZP</td>
<td>1 yr.</td>
<td>Stanford</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Petroleum Administration & Management (E)</td>
<td>ZHS</td>
<td>1 yr.</td>
<td>SMU</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Petroleum Engineering (N)</td>
<td>ZL</td>
<td>2 yrs.</td>
<td>Pittsburgh</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Petroleum Management (M)</td>
<td>ZMK</td>
<td>2 yrs.</td>
<td>U. of Texas</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Religion (E)</td>
<td>ZU</td>
<td>1 yr.</td>
<td>Various</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Retailing (M)</td>
<td>ZMG</td>
<td>1 yr.</td>
<td>Pittsburgh</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Political Science (E)</td>
<td>ZST</td>
<td>2 yrs.</td>
<td>Tufts</td>
<td>CO, NROTC</td>
</tr>
<tr>
<td>Transportation Management (M)</td>
<td>ZMN</td>
<td>1 yr.</td>
<td>Northwestern</td>
<td>CO, NROTC</td>
</tr>
</tbody>
</table>

The letter in parentheses indicates the school official at Monterey who is responsible for the curriculum so marked:

(E) Administrative Officer, Engineering School
(M) Director, Management School
(N) Officer-in-Charge, Naval Engineering
(R) Officer-in-Charge, Meteorology
(S) Staff Secretary, Superintendent's Office
For Your Convenience

NOTES and MEMORANDA
INDEX

NAVAL POSTGRADUATE SCHOOL

Administrative Staff ... A-3
Calendar — General Information A-4 - A-5
Facilities — History .. A-6 - A-7
Libraries ... A-8

ENGINEERING SCHOOL

Administrative Staff — Naval Staff E-3
Civilian Faculty ... E-3 - E-7
General Information .. E-7 - E-8
Degree Requirements ... E-8 - E-10
Laboratories ... E-10 - E-11
Table of Curricula .. E-12

CURRICULA

Advanced Mathematics — Aeronautical Engineering E-13 - E-15
Advanced Science ... E-15
Electronics — Communications — Advanced Electronics E-16 - E-17
Underwater Acoustics — Information and Control Systems — Special Electronics for CEC Officers E-18 - E-19
Meteorology — Advanced Meteorology — Naval Engineering E-19 - E-21
Naval Engineering (Mechanical), (Electrical) — Mechanical Engineering — Electrical Engineering — Nuclear Power E-22 - E-24
Nuclear Engineering Effects — Operations Analysis E-24 - E-26
Ordnance Engineering — Weapons Systems (General) — Advanced Weapons Systems (Chemistry) .. E-26 - E-27
Advanced Weapons Systems (Electrical Engineering), (Physics) E-28 - E-29
Weapons Systems (Special) — One Year Science E-30

COURSE DESCRIPTIONS

Aeronautics ... E-31 - E-34
Biology — Chemistry and Chemical Engineering — Communications E-34 - E-38
Crystallography — Electrical Engineering E-38 - E-44
Electronics ... E-44 - E-47
Geology — Lecture Program — Mathematics E-48 - E-55
Mechanical Engineering ... E-56 - E-58
Meteorology ... E-61 - E-63
Oceanography ... E-63 - E-64
Operations Analysis .. E-64 - E-66
Ordnance — Physics .. E-66 - E-71

GENERAL LINE AND NAVAL SCIENCE SCHOOL

Staff and Faculty ... G-3 - G-4
General Information — Baccalaureate Curricula — 9½ month curriculum G-5 - G-6
Special Programs — B.S. Curriculum Schedule — Course Description G-6 - G-11
Table of Course Offerings ... G-12

NAVY MANAGEMENT SCHOOL

Staff and Faculty — Programs .. M-3 - M-4
Entrance Standards — Degree Requirements — Curriculum M-4 - M-5
Course Descriptions ... M-6 - M-9

CURRICULA AT OTHER INSTITUTIONS

Business Administration .. Z-1
Civil Engineering (Electrical), (Mechanical), (Sanitary), (Soil Mechanics), (Structures), (Water Front Facilities) Z-2 - Z-3
Naval Architecture — Naval Construction and Engineering Z-6 - Z-8
Table of Curricula at other institutions Z-10 - Z-11