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Abstract

This paper discusses the application of the Kaplan and Garrick (K&G) definition of risk in the con-

text of the managerial decision problem. These problems have a formulation that provides a different

information structure than that originally considered by K&G. A fourth question must to be asked. The

decision maker’s preferences must be ascertained. Without knowledge of decision maker preference

there is no risk. The answer to the fourth question gives the decision maker’s payoff function, v(Y ). A

new triple {Y, PY , v(Y )} replaces the original triple of K&G, {F, PF , Y (F )} and permits an explicit

quantification of risk.

1 Introduction

Risk has many definitions but one stands out above all the rest by proposing a concise quantitative

meaning. It is the definition that forms the basis for many analyses and is the genesis of the approach we

have taken in DRMI. This is the definition of risk proposed by S. Kaplan and B.J. Garrick (1981). DRMI

uses the three questions of Kaplan and Garrick (K&G), but the context of our problems requires an extension

in the form of a fourth question. The subtle, but important differences, in problem context between the

managerial decision problem and the engineering safety problem (the focus of the original work of K&G)

produce a different information structure. It is crucial that this difference be understood because a doctrinaire

application of the K&G definition diverts attention from consideration of important problem elements and

obscures the other information. The following presentation attempts to clarify these points. First, we review

the basic elements of a decision problem, with attention focused on risk management decisions. Second, we

review the K&G problem context to understand the rationale for their three question definition. Third, we

address the managerial decision problem context in detail, with special attention to the differences between

contexts. Finally, we provide a simple example to illustrate the important points.

2 The Elements of a Decision (Especially Risk Management)

Many managerial decisions are subject to significant uncertainty and risk becomes an overriding factor.

A prime example is the allocation of resources in defense organizations. Threats to national security change,

sometimes in unimaginable ways. Technological obsolescence occurs rapidly. Weapon systems costs and

development times cannot be predicted with certainty. Future costs for the various components of operations

and maintenance are uncertain. These circumstances, among many more, lead decision makers to view

resource allocation decisions as risk management decisions.

Risk management decisions, as with all decision problems, require definition of three elements [see the

statement by Professor Ron Howard at the end of Chpt. 15, pg. 126 in Savage (2009)]:
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1. A Set of Alternatives. If you don’t have alternatives there is nothing to choose.

2. An Information Structure. If you don’t see the connection between what you do and what’s going

to happen you can’t make a decision.

3. Decision Maker Preferences. If you don’t care what happens, you can do anything and it doesn’t

matter.

The set of alternatives in risk management initially contains only two elements: (1) NO, the risk is

“insufficient” to warrant further action and can be ignored; or (2) YES, there is “sufficiently high” risk and

it cannot be ignored. Only after accepting the affirmative alternative will we proceed to the management

decision problem: What course of action most reduces risk subject to resource constraints? Here there

can be many alternatives, generally classified in three broad groups: (1) prevention/avoidance actions; (2)

mitigation actions; and (3) “changing the rules” or negotiation with the environment.

The information structure is established by the problem definition. This includes definition of the de-

cision maker’s objective and its quantification using a variable called the outcome of concern. This is a

measure of gain (when the statement of the objective implies “more is better”) or a measure of loss (when

the statement of the objective implies “less is better”). Also included is the definition of all variables that af-

fect, or explain, the outcome of concern. These variables include those known to be under the control of the

decision maker, as well as those beyond the control of the decision maker. Finally, there is specification of

the function relating the outcome of concern to the explanatory variables. Probabilistic models for variables

and relations complete the problem definition to account for uncertainty.

Decision maker preferences are complicated when uncertainty is present. Uncertainty creates an en-

vironment called “decision making under risk”. In this environment decision maker preferences literally

exhibit “more twists and turns” than decisions made under certainty [see Chris Starmer (2000)]. The simple

linear “more is better” or “less is better” payoff function is inadequate to explain decisions and led to the

use of a nonlinear utility function [see Bernoulli, (1954)]. Recent research exposing the defects of the utility

function has led to its replacement with a prospect function [Kahneman and Tversky (1979)]. This describes

the preferences of the decision maker using a payoff function with: (i) a reference point separating losses

from gains; (ii) loss aversion where losses loom larger than gains; (iii) and decreasing marginal returns

with respect to both losses and gains. The characteristics of a prospect function become critically important

in risk assessment. This is especially so for the reference point. For example, suppose the decision maker

has a preference for “less rather than more” of the outcome (e.g.,fatalities, econmic loss, etc.). An outcome

probability distribution depicting the very high likelihood of very large values for the outcome may cause

this decision maker to conclude the situation is “too risky” and demand that “something be done to lower

the risk”. On the other hand, another decision maker may observe the same distribution but conclude the

situation has “low” risk. Why? The first decision maker may have a much lower reference point than the

second decision maker. Without a knowledge of preferences (i.e., the payoff function) the information gen-

erated in risk assessment is meaningless. This last point is of major importance for, as Sam Savage says

[Chpt. 7, pg. 53 in Savage (2009)]: “Risk is in the eye of the beholder." What is risky to one person may

not be so to another. The need to explicitly recognize the role played by preferences in risk assessment and

management is of paramount importance.

3 The Kaplan and Garrick Quantitative Definition of Risk

Hanford, Chernobyl, Three Mile Island and Fukushima Dai-Ichi are names that forever will be associ-

ated with potential catastrophe. As a result, nuclear reactor operations have become the subject of public

concern for at least 50 years. Assessing the risks to the public of these large, complex engineering systems
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forms a major challenge in analysis. One must confront many problems, but most important is developing a

detailed description of how a normally operating system can fail or degrade. Thus, it is natural first to ask:

“What can go wrong?” Fault trees and similar mathematical structures are used to define an extensive set of

(failure) scenarios. Given this list it is next logical to ask “How likely is each to occur?” This requires an

exercise in applied probability theory to obtain the likelihood of occurrence of each of the failure scenarios.

Finally, one must attempt to predict the consequences of failure, i.e., the outcomes that result for each of

the many ways the system can fail. Thus, the final question to ask is: “If it does go wrong, what is (are)

the consequence(s)?” The answers to these questions provide the basis for public debate and the exercise of

public judgement. The acceptability, or otherwise, of the risk is ultimately a function of the public’s risk

perception. This is the context out of which grew the K&G quantitative definition of risk.

Stanley Kaplan and B. John Garrick (1981) define risk as the answers to three questions:

1. What can go wrong?

2. How likely is it to go wrong?

3. If it does go wrong, what are the consequences?

The answer to the first question defines a (failure) scenario, denoted by Si. The answer to the second

question is the probability, pi of the scenario. The answer to the third question is the end result or outcome,

Yi, generated by the process (sequence of events) described by the scenario. (Note: Kaplan and Garrick use

xi to denote this and refer to it as the “consequence” – a term we reserve for the decision maker’s valuation

of the outcome – see below.) Thus, risk is portrayed by Kaplan and Garrick as a set of triples:

{Si, pi, Yi} (1)

where i = 1, 2, . . . , N. is employed to distinguish between the different scenarios. N is the total number of

scenarios and should be large enough to form a “complete” set (as explained by Kaplan (1997)).

Each scenario is thought of as comprising a chain of events:

Si = {Fi1, Fi2, . . . , FiKi}. (2)

This form of the scenario is produced immediately from fault tree analyses and similar methods associated

with engineering safety studies (i.e., nuclear reactor safety studies). Each scenario represents a unique

concatenation of events. If Fi1 is the initiating even that occurs with probability pi(1), and all succeeding

events in the chain occur with probabilities pi(k|k − 1), then the likelihood of the scenario comprised of K
events is

pi = pi(1) · pi(2|1) · · · · · pi(Ki|Ki − 1). (3)

The likelihood of the scenario is identical to the likelihood of the outcome. Thus, the last two elements of

the triple specify a probability distribution over the outcome:

PY = {Yi, pi}. (4)

This is the heart of Probabilistic Risk Assessment (PRA) as advocated by Kaplan and Garrick.

One major and one minor observation must be made before proceeding.

First, the use of the word “consequence” in the third question is unfortunate. While it may be acceptable

prose, it leads to confusion. Decision theory reserves the term “consequence” for reference to the decision

maker’s preferences (i.e., how the decision maker “feels” or “values” the likely outcomes). We know from

Ron Howard that preferences are vital to a well-posed decision problem, yet nowhere do K&G query de-

cision maker preferences. Why? Risk assessment in their context ultimately becomes a matter of public
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policy. The answer to the question: “Is the risk too great?” cannot be answered without knowledge of the

public’s preferences over the outcomes. This information can only be ascertained through public forums

and political institutions. K&G do not address this process. K&G focus only on the development of the

information to which the public applies their preferences in order to make a decision. This is explicitly

recognized by Garrick in his recent book (2008, pg.5).

Second, the scenario concept is identical to the concept of future condition that we use at DRMI. Both

refer to events that have yet to happen and both represent events that influence the outcome of concern.

Thus, we can write Fi = Si.and analogous to (4) we obtain:

PF = {Fi, pi}.

4 The Managerial Perspective

The context of the managerial decision problem under uncertainty is best described as follows. The

central problem is the choice of a variable X so as to make another variable Y behave in a desired way. Y
is the outcome of concern and is defined by a function of two types of explanatory variables:

Y = f(X,F ). (5)

X represents the decision variable and is under the control of the decision maker. F is a random variable

representing the factors beyond control of the decision maker. The function f(X,F ) is known. The only

information we have about F is its probability distribution, PF .We refer to F to as the future condition. The

decision maker chooses X so that Y takes on values over the planning period that are “best” in the sense

of the objectives of the decision maker. The “best” decision is conditional on F and is a function of F (i.e.

X = h(F )) and (5) becomes

Y = f(h(F ), F ) = g(F ). (6)

Given F and f(·, ·) we can determine, Y, the outcome of concern (the “consequence” in Kaplan and Garrick

(1981)). In this representation of the system, g(·) is considered known, but F must be estimated subject to

its assumed PF (popularly referred to as an “educated” guess).

This is a much richer information set compared to that assumed by K&S. Here we have knowledge of

(5) and (6). Given F we know Y, the resulting outcome of concern (the “consequence” in the terminology

of K&S). We also have acess to decision maker preferences. The decision maker may be an individual

(e.g., CEO, CFO or CIO, program manager, etc.), a small group of individuals (e.g., an executive board,

council, etc.) or an agent for an organization (e.g., the US DoD, Navy, Army, Air Force, etc.). In each case

preferences exist and are articulated. They are the foundation of the defintion of Y and of what is meant by

“best” (for both X and Y ).

All of this means we need to interpret differently the three questions of K&S. More importantly, a fourth

question must be asked!

4.1 The First Question

The first question posed by K&G concerns F. “What can go wrong?” Quite simply, we can “guess

wrong” – F can take a value different from what we have assumed and our decision variable, X turns

out to be “wrong” (suboptimal) so the resulting Y = g(F ) is “wrong”; i.e., takes on a value that is less

desirable than would be the case had we “guessed right” with respect to F. The managerial decision problem

formulation specifies a direct connection between F and Y through X = h(F ). We know, therefore, the

“consequences” for any value of F. It matters little if we choose to describe “what goes wrong” in terms of

F or in terms of the corresponding Y. What really matters is that we have correctly identified F and that we

have correctly constructed (6).

4



4.2 The Second Question

The second question posed by K&G concerns the probability distribution over F, denoted by PF .Know-

ing this distribution, and the system defined by (6), we can always derive the probability distribution PY .
Practically speaking, this is seldom done using the calculus (as in textbooks on probability, statistics and

random variables). In practice we more often use simulation modelling to obtain PY given PF and (6).

Therefore, the answer to the second question is PY . PF and PY equivalent in the sense that once we know

PF we can quickly obtain the corresponding PY . Similar to the first question, it matters little if we choose

to describe “how likely it is to go wrong” in terms of PF or PY .

4.3 The Third Question

The answer to the first two questions provide the information necessary to compute the answer to the

third question posed by K&G. Given PF and (6) we have PY . This is the important implication of the

problem context defined by (6). There is no need to ask the third question posed by K&G. It is a question

asked and answered in the process of formulating the decision problem; i.e., in the development of (6).

There is, however, need to ask a fourth question.

4.4 The Fourth (really the “new” third) Question

While knowledge of Y and PY is absolutely essential, risk cannot be assessed without knowledge of the

decision maker’s preferences over the probable Y . We need to know how the decision maker values to the

probable Y.Without preferences the decision maker doesn’t care what happens – there is NO risk. Therefore

we ask a fourth question with reference to PY :

“How do you feel about it? How do you feel about the likely Y ?”

This question asks the decision maker to state preferences with respect to the likely Y. What outcomes

do you most prefer to avoid? What outcomes do you most prefer to experience? The answer is the decision

maker’s payoff function, sometimes called the value function (the former name is less confusing in this

note),

v(Y ). (7)

This function is NOT a utility function [see the extensive review in Schoemaker (1982)]. It is a prospect

function as described in Kahneman and Tversky (1979): v(Y ) = v+(Y ) + v−(Y ) where

v+(Y ) = [Y − YR]β if Y − YR > 0
v−(Y ) = −λ|Y − YR|γ if Y − YR < 0

when more Y is preferred to less Y. If preferences are reversed so less Y is preferred to more Y then we

have

v+(Y ) = −λ[Y − YR]γ if Y − YR > 0
v−(Y ) = |Y − YR|β if Y − YR < 0.

This function is characterized by: (i) a reference point, YR, that distinguishes the Y representing gain from

the Y representing loss; (ii) loss aversion, represented by the constant, λ > 0; and (iii) decreasing marginal

returns for both losses and gains, represented by the powers 0 ≤ β < 1 and 0 ≤ γ < 1. Figure 1 is an

example where “more is better” and Figure 2 is an example of the “less is better” case (YR = 3 in both

cases).
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4.5 A Quantitative Measure of Risk

We find the K&G definition of risk applied in the context of the managerial decision problem produces

a new triple:

{Y, PY , v(Y )} (8)

the third element of which, v(Y ), provides us the information needed to evaluate risk quantitatively. Two

quantitative measures immediately come to mind: (i) the expected value of the payoff, E{v(Y )}; and (ii)

the probability of loss in terms of the payoff, Pr{v(Y ) < 0}.

Figure 1: Prospect Function v(Y ) when more Y is preferred to less Y.

Figure 2: Prospect Function v(Y ) when less Y is preferred to more.

4.5.1 Expected Payoff

The most widely used of any measure (see Kahneman and Tversky (1979), Schoemaker (1982), Wakker

(2003) and the literature cited in Starmer (2000)), is the expected value of the payoff function1:

R1 = E{v(Y )} =
k=K∑
k=1

v(Y )pk(Y ). (9)

1We assume distributions are in the form of relative frequency histograms (as produced by simulation software). K is the

number of categories, ∆y is their width,M is the number of trials, fk is the frequency count, and pk = fk ·∆y/M.
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If E{v(Y )} < 0 then the decision maker expects a loss (on average). If E{v(Y )} > 0 then the deci-

sion maker expects a gain (on average). E{v(Y )} is NOT equivalent to E{Y } under any circumstances.

Decision makers faced with risky decisions do not exhibit risk neutrality – a fact long established.

The use of this measure in the risk assessment decision problem is straight forward. If E{v(Y )} ≥ 0,
then we expect NO loss given the status quo. Everything is cool, don’t worry be happy! If E{v(Y )} < 0
then we expect a loss. The status quo is “too risky” – something must be done (to reduce the risk)! We now

face a risk management problem.

The answer to the risk management problem requires ordering all the alternatives by the risk measure

(9). Now, however, the expected payoff is dependent on the alternative, A. We indicate this by replacing PY
with PY |A (i.e., the distribution of Y conditioned on the alternative A that we implement). Thus,

R1(A) = E{v(Y |A)} =
k=K∑
k=1

v(Y )pk(Y |A).

The risk minimizing alternative is A = A∗ where

R1(A
∗) = min

A
[R1(A)] = min

A
[E{v(Y |A)}] = E{v(Y |A∗)}.

Of course, this ordering must be reconciled with the ordering induced by the cost. In most cases a trade-

off must be made between the desire to minimize risk and to minimize cost (e.g., A∗ is the most costly

alternative while the least costly alternative reduces risk the least).

4.5.2 Probability of Loss

Research on decisions under risk finds decision makers are loss averse (as distinct from risk averse).

Losses loom larger than gains in deciding what to do. Therefore it is natural to consider a second measure

of risk that directly responds to this observation. One such measure is the probability of loss. For the

preferences pictured in Figure 1 we have:

R2 = Pr{v(Y ) < 0} =
k=KR∑
k=1

pk(v) = Pr{Y < YR} =
k=KR∑
k=1

pk(Y ). (10)

whereKR denotes the category index closest to, or including Y R. For the case pictured in Figure 2 we have:

R2 = Pr{v(Y ) < 0} =
k=K∑
k=KR

pk(v) = Pr{Y < YR} =
k=K∑
k=KR

pk(Y ).

Note the computation of this measure is easier than the computation in (9) since we only need PY .
The use of this measure in risk assessment is similar to that outlined above. IfR2 ≤ Rmax whereRmax is

the decision maker’s maximum acceptable level of risk then the status quo is NOT “too risky”.– everything

is OK, don’t worry, be happy. If R2 > Rmax then the status quo is “too risky” and a risk management

problem confronts us.

As above, we use (10) to induce an ordering over the risk management alternatives. This now requires

computing

R2(A) = Pr{v(Y |A) < 0} =
k=MR∑
k=1

pk(Y |A)
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for each alternative. The risk minimizing alternative is A = A∗where

R2(A
∗) = min

A
[R2(A)] = min

A
[Pr{v(Y |A) < 0}].

Note that R1 = R2 when the decision maker exhibits extreme loss aversion. This happens when the

decision maker prefers never to experience a loss. Such a preference is consistent with a payoff function

where v(Y ) = −∞ for all Y corresponding to a loss, while 0 < v(Y ) <∞ for all Y corresponding to gain.

This form of the payoff function is denoted by v∞(Y ) and is defined by

v∞(Y ) = lim
λ→∞

1

λ

 lim
β→0
γ→0

v(Y )

 .
This limiting case is a payoff function that looks like a relay switch or step function with v∞(Y ) = 0 for

Y < YR and v∞(Y ) = −∞ for Y ≥ YR. This gives [see Wall (2010)]

R2 = Pr{v∞(Y ) < 0} = Pr{Y < YR} =
k=MR∑
k=1

pk(Y ) =
k=M∑
k=1

v∞(Y )pk(Y ) = E{v∞(Y )} = R1.

4.6 Summary

Risk assessment and risk management are decision problems. Their formulation requires definition of

the three elements described so well by Ron Howard: (a) a set of alternatives; (b) an information structure

connecting alternatives to the outcome of interest; and (c) preferences. The definition of risk popularized by

K&G derives from an engineering safety context that assumes (a) and concentrates on development of (b).

It does NOT say anything about (c). The K&G definition is motivated by the desire to understand a complex

system, its possible failure modes and their probability of occurrence. This produces the information needed

to relate the probable outcomes to the two alternatives: (i) NO there is no “significant” risk; or (ii) YES

there is “too much risk” to ignore. Decision maker preferences are left out because the risk analysis that

is the focus of K&G is a public policy issue and the relevant preferences are not available to the analyst.

Only though political and institutional processes are these determined. The managerial perspective, and its

definition of risk, is different from that of K&G. The important difference here is the preference information.

The payoff function is known to the decision maker. It is the product of consideration of organizational

goal(s) and objective(s) by a single person, or a relatively small group. This may take some deliberation

to obtain agreement in a small group, but the result is still a payoff function. For the managerial decision

problem the definition of risk becomes:

Risk is a combination of the answers to four questions:

(1) What can go wrong? ANSWER: F
(2) How likely is it to go wrong? ANSWER: PF
(3) If it does go wrong, what are the outcomes? ANSWER: Y and PY
(4) How do you feel about it (the likely Y )? ANSWER: preferences as expressed in v(Y )

The original definition of risk as portrayed by the triple in (1) now has another form based on the system

representation in (5):

{Y, PY , v(Y )}. (11)

The the outcome of interest replaces the named scenario. The thing that “can go wrong” is Y taking on a

value different from what the decision maker prefers (given what was assumed about F ). The probability

distribution of the Y replaces the probability distribution for F. “Consequence” no longer refers to the

resulting outcome; it refers the preferences of the decision maker as described by v(Y ).
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5 Example

Consider driving home after work on a Friday to pick up your date for an evening of dining, dancing and

fun. The transit to your destination is fraught with hazards: traffic congestion, accidents, mechanical failures,

personal injury, etc. You do not want to keep your date waiting (it can produce “bad” consequences). Since

you lost your cell phone this morning, you can’t communicate with your date once you’ve left the office

(besides, you’re not suppose to use the cell phone when you drive). So, what time do you tell your date to

expect you?

The outcome of concern is Y = T, the time it takes to drive home. Is it reasonable to tell your spouse

you will be home in 15 minutes, 30 minutes, 45 minutes? Let’s look at how our two approaches to risk

assessment would proceed.

5.1 The engineering safety approach

The engineering safety approach performs a fault analysis. First the normal state of the system is ex-

plicitly defined. In the example this is represented by the probability distribution of travel time given that

no problem occurs with the auto. For example, if “all goes well” then travel time is a random variable with

mean = 0.5 hr. Second, the ways in which the system fails to achieve normal operation is defined. For

example, there could be: (a) mechanical failure; (b) traffic congestion; (c) an accident involving material

damage; (d).an accident involving bodily injury; etc. Each of these “failure modes” would be decomposed

into more detail. For instance, mechanical failure could result from a flat tire, loss of coolant, lack of petrol,

ignition system failure, etc. There are many scenarios, one for each probable combination of events and

referenced by a unique name. Third, each of the individual events comprising a scenario are assigned a

probability. These individual probabilities are combined using the laws of probability and assigned to the

respective named scenario. Fourth, each of the individual events in a scenario is evaluated in terms of the

time it adds to the total travel. Finally these are summed and assigned to the named scenario.

To illustrate in more detail, suppose that traffic analysts decide to measure travel time, T, in hours and

that data indicates the “normal” travel time is closely approximated by a PERT-distributed random variable

with min = 0.25 hrs., max = 0.75 hrs. and most likely value = 0.5 hrs. Normal travel time is defined as travel

time in the absence of any failure scenario.

Safety engineers define only three fault events, or failure scenarios that generate travel times longer than

“normal”: mechanical failure, M; traffic congestion, C; and accident, A. Suppose further analysis indicates

the following scenarios form a “complete” set in the sense defined by Kaplan (1997):

• S1 :M

• S2 : C

• S3 : A

Assume detailed analysis shows these occur with the following probabilities:

• p1 = p(M) = 0.03

• p2 = p(C) = 0.10

• p3 = p(A) = 0.02

Finally, data analysis, reveals the total travel time, Ti, for each scenario is PERT-distributed with:

• T1 : min = 0.5 hrs., max = 2.5 hrs., most likely = 1.0 hrs.
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• T2 : min = 0.75 hrs., max = 3.0 hrs., most likely = 1.25 hrs.

• T3 : min = 0.5 hrs., max = 3.5 hrs., most likely = 2.5 hrs.

The results of such an analysis is summarized by a set of three triples contained in Table 1 :

TABLE 1: TRAVEL TIMES GIVEN PROBLEM EVENT

Scenario Probability Outcome

M 0.03 PERT(0.5, 2.5, 1.0)
C 0.10 PERT(0.75, 3.0, 1.25)
A .02 PERT(0.5, 3.5, 2.5)

.

The reason for this structured approach is now clear. The second and third columns of this table define

the probability distribution of the outcome of interest. This is a mixture distribution made up of the three

PERT components and is pictured in Figure 3. This is the key information for the decision maker. Risk

cannot be assessed, however, because without decision maker preferences (the payoff function) we cannot

evaluate the implications of this information.

Figure 3: Travel Time Distribution given a “Failure” Occurs

5.2 The managerial decision context

Let us now recast this problem in the context of a managerial decision problem. The decision maker is

our friend who’s date must be notified when to expect to meet our friend for an evening on the town. The

problem is to not keep the date waiting. Being early is no problem, but being late can ruin the evening. Our

friend must commit to a pick-up time. At what time from now should it be: 15 min., 30 min., 45 min., an

hour?

What can go wrong? The answer is obvious and stated in terms of the outcome of concern (the “conse-

quence” in the language of K&G): you are later than you said you’d be. How likely is it to go wrong? The

answer to this question is determined by your structural model. You know congestion could be a problem.

You know mechanical failure could occur. You know there could be an accident. It is obvious to you that

travel time, T, is a function all the possible situations:

T = f(C,M,A).
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You also happen to have two very smart analysts working for you who are experts in modeling and

data analysis. You put them on the case. A few minutes later they come back and say: “It’s easy, all you

need is simulation modeling”. They say travel times have a mixture distribution composed of two distinct

parts: (i) the first describes travel time when no problems arise (nothing breaks down, no traffic congestion,

accidents, mechanical failure.); and (ii) the second describes travel times when there are problems. They

have researched the data and find there are three events that cause problems (the same as determined in the

engineering safety analysis). Their combined probability is PF = 0.13,representing the likelihood of any

failure/problem/difficulty. The likelihood of a “normal” commute home is PN = 1−PF = 0.87. They also

find that “normal” travel time is described by a PERT-distributed random variable with min = 0.25 hrs.,

max = 0.75 hrs. and most likely value = 0.5 hrs. (they have referenced the same traffic data as the safety

engineers). Their simulation model describing travel time, T, is

T = Z · TN + (1− Z) · TF (12)

where TN is “normal” travel time, TF is travel time given a “failure” has occurred, and Z is a Bernoulli

random variable with p = PN . TF is a random variable whose value is sampled from the distribution of

T1with probability p1, the distribution of T2 with probability p2 or the distribution of T3with probability p3.

TF = mixture {T1, p1;T2, p2;T3, p3}.

Each Ti is PERT-distributed as in Table 1 (again, the analysts have employed the same data as the safety

engineers). Thus, the distribution of TF is in Figure 3. This looks reasonable to you (equations were never

your strength – but your “boys” are smart and know their stuff). You tell them to go ahead and get some

results that you can understand!

The analysts return a minute later and show you the simulation output. It’s the estimated probability

distribution shown in Figure 4. You look at it and they explain its meaning. You understand now that travel

time could be considerably longer than the 30 minutes you expect. What do you tell you date? Is it too risky

to say you’ll be home in half an hour?

Figure 4: Simulated Travel Time

5.2.1 The (Extreme) Loss Averse Decision Maker

Suppose you know that if you arrive earlier than announced, it doesn’t matter. Arriving on-time, five

minutes early or 15 minutes early result in the same consequence – you wait for your date. On the other
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hand you know if you are later than announced there will be “trouble” – arriving later than announced always

results in “trouble”. You don’t mind being early, but you never want to be late! You are loss averse. The

distribution in Figure 4 tells you that

P (T > .50 hrs.) = 0.573, P (T > 0.75 hrs.) = 0.146, and P (T > 1.0 hrs.) = 0.126.

There is better than a one-in-two chance travel time will be more than 30 minutes. Can you accept those

odds? If not then you’d decide on a later arrival time. If you can accept the odds implied by P (T > 0.75
hrs.) = 0.145, then you’d tell your spouse to expect you in 45 minutes. If not, then you consider the

consequences for you of P (T > 1.0 hrs.) = 0.126? If you can “live with” this prospect, then you’ll call

your spouse and say you’ll be home in one hour.

The loss averse decision maker cannot decide what to do without considering PT in terms of the payoff

function, v(T ). In this instance, v(T ) = v∞(T ) and is only a function of TR, the reference point for travel

time.

5.2.2 The Expected Consequences Decision Maker

Suppose you are motivated by expected payoff (consequence). You know two things concerning the

consequences of your decision: (i) the later you arrive after your announced time, the worse things will be;

and (ii) it doesn’t matter how early you arrive –.it’s all the same to your spouse. You just will have to wait

until the spouse is ready.

The understanding date. You have a very understanding date who is well aware of the potential problems

with Friday night traffic. Still, it is better to be on-time if at all possible. Your preferences in this case produce

a payoff function like that depicted in Figure 5, where the payoff function intersects the T axis at T = TR
(illustrated using TR = 1.0). What would you decide if this was your payoff function? The probability

distribution of arrival times is exactly as in Figure 4, but now deciding what TR to use depends onE{v(T )}.
What’s best?

Figure 5: Payoff Function v(T ) with

β = 0.01, γ = 0.60, λ = 1.5

Simulation of (12) tells us the answer when you view Figure 4 in the light of Figure 5. The results are

summarized in Table 2.
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TABLE 2: PAYOFF SUMMARY

TR P (v < 0) E{v(T )} P (T > TR)

0.25 1.000 −.857 1.000
0.50 0.574 0.058 0.574
0.75 0.146 0.659 0.146
1.00 0.126 0.734 0.126

All announced arrival times greater than or equal to 30 minutes produce positive expected values. If you

arrive early all the “gains” are the same, so announcing you’ll be home in half an hour is a solution.

The not-so-understanding date. Your date definitely does not like to wait. If you say you’ll be there in

one hour, you better not be late! Your preferences in this case produce a payoff function like that in Figure

6 (again illustrated it with TR = 1.0 hour). Now what would you decide with these preferences over T?
What’s best?

Figure 6: Payoff Function v(T ) with β = 0.01, γ = 0.70, λ = 4.0

Simulation again gives the answer by producing an estimation of the distribution of v(T ) from the

distribution for T depicted in Figure 4. The results are summarized in Table 3. Now the only alternatives

with expected “gain” are those with announced arrival times at least as great as 45 minutes. Anything less

and you might a well forget about any fun tonight!

TABLE 3: PAYOFF SUMMARY

TR P (v < 0) E{v(T )} P (T > TR)

0.25 1.000 −1.973 1.000
0.50 0.575 −.432 0.575
0.75 0.146 0.363 0.146
1.00 0.125 0.523 0.125

6 Conclusion

The context of the managerial decision problem provides a much richer and more specific information

structure than that of the problem originally addressed by K&G. The outcome of interest and it’s unit of
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measurement are defined. This includes the equation specifying its values in terms of the variable(s) under

the control of the decision maker, X, and the variable(s) beyond control (e.g., the future condition(s), F ).

The answer to “What can go wrong?” is straight forward: the prediction of F is wrong (i.e., there is a

prediction error). This leads to the “wrong” decision, X, and the “wrong” outcome, Y. Given eqs.(5) and

(6), we find that the “wrong” F immediately expresses itself in terms of the “wrong” Y. Thus “What can go

wrong?” can be answered in terms of the future conditions or directly in terms of the outcome of concern.

The same reasoning can be applied to the second question posed by K&G: “How likely is it to go

wrong?” It is natural to state the answer in terms of the probability distribution over F, PF . Again, however,

use of eqs.(5) and (6) allows the answer to be stated directly in terms of the probability distribution over

Y, PY .
While K&G’s third question is now seen to be redundant, there still is need to ask a fourth question. The

risk assessment/management decision problem is not complete until we have decision maker preferences.

We need to ask: “How do you feel about it?” How do you, the decision maker, feel about the picture PY
presents? We need to know the preferences of the decision maker for avoiding loss. We need to know how

the decision maker values the probable outcomes depicted by PY . We need to know the decision maker’s

payoff function, v(Y ). This function will be reference-dependent with a reference value, YR, that separates

those Y representing gain from those Y representing loss. It will be convex for losses and concave for gains.

Moreover, it will exhibit loss aversion where losses loom larger than gains (where losses carry more weight

than gqains).

We still find risk to be represented by a “triple”, but with re-defined elements. Risk is a combination of

three pieces of information:

{Y, PY , v(Y )}.

The precise combination depends upon whether the decision maker is motivated by maximizing E{v(Y )}
or minimizing P{v(Y ) < 0}.

7
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